
Int. J. Electron. Commun. (AEÜ) 172 (2023) 154887

A
1

Contents lists available at ScienceDirect

Int. J. Electron. Commun. (AEÜ)

journal homepage: www.elsevier.com/locate/aeue

Design space exploration for energy-efficient approximate Sobel filter
Alain Aoun a,∗, Mahmoud Masadeh b, Sofiène Tahar a

a Electrical and Computer Engineering, Concordia University, Montréal, Canada
b Computer Engineering Department, Yarmouk University, Irbid, Jordan

A R T I C L E I N F O

Keywords:
Approximate computing
Approximate full adders
Approximate arithmetic
Sobel filter
Digital circuits
Energy efficiency
Edge detection

A B S T R A C T

Approximate computing (AC) is an emerging computing paradigm for energy efficiency. AC is most suitable
for error-tolerant applications, e.g., image processing. The Sobel filter is an edge detector which is used
heavily in image processing. One of the basic blocks in the hardware implementation of the Sobel filter is
the full adder (FA), which approximation can greatly reduce the energy consumption of the filter. In this
paper, we propose three new Non-exact FAs (NeFAs) that are suitable for image processing. The proposed
NeFAs along with existing approximate FAs are used to create a library of approximate FAs. We use this
library to perform a design space exploration (DSE) of the approximate Sobel filter, which is an essential step
when searching for an optimized implementation. Experiments have shown that the executed DSE was able
to achieve a target reduction of up to 75% in area and power. We analyzed the generated designs objectively
and subjectively. Using the subjective assessment, we defined two Pareto optimal criterion where we found
that the implementations based on the proposed NeFA are in the Pareto optimal for high target reduction,
i.e., most efficient designs. Based on the objective assessment, we found that the NeFA-based designs achieve
outstanding quality and produce finer edges than the exact design in some cases.
1. Introduction

Approximate computing (AC), known as best-effort computing, is a
nascent computing paradigm that sacrifices accuracy where imprecise
results are acceptable. AC generates designs with a reduced area,
power, delay, or energy. Various applications, e.g., image processing,
machine learning, and digital signal processing, show intrinsic error
tolerance due to various factors, namely, (i) redundant and noisy input
data; (ii) lack of golden or single output; (iii) imperfect perception in the
human sense; and (iv) implementation algorithms with self-healing and
error attenuation patterns. Research in the field of AC has investigated
the approximation of the input data, e.g., approximate load value [1],
or the approximation of the arithmetic operations such as the work
in [2]. Arithmetic operations, e.g., addition, subtraction, multiplication,
division, multiply-and-accumulate (MAC), squaring, and square root,
received great attention for approximation. In this work, we target
the addition operation, where we propose three new approximate full
adders (FAs) suitable for image processing applications.

Application of artificial intelligence, e.g., self-driving cars, has been
in high demand recently where these applications have a great de-
pendence on computer vision. Objects in an image can be detected
by a computer using various techniques such as edge detection [3].
Edges of images represent a jump intensity between adjacent pixels.
Edge detection preserves the fundamental structural properties of an

∗ Corresponding author.
E-mail address: a_alain@ece.concordia.ca (A. Aoun).

image while reducing the amount of data and eliminating nonessential
information. Existing techniques of edge detection belong to two main
classes: (1) Gradient : such as the Sobel filter, which detects edges by
locating the minimum and the maximum in the first derivative of the
image [4]; and (2) Laplacian: such as Gaussian filter, which looks for
zero crossings in the second derivative of the image [5].

Edges are points in the image with a sudden change in color. It
indicates a transition between objects or a transition between an object
and its background. Edge detection includes noise reduction, edge en-
hancement, and edge localization. For instance, the Sobel filter detects
and emphasizes edges [4]. It calculates the gradient of image intensity
at each pixel and finds the direction of the largest increase from light
to dark and the rate of change in that direction. The result shows how
suddenly the image changes at each pixel, and the probability that pixel
defines an edge. The Sobel filter utilizes two 3 × 3 kernels/masks
matrices, given as 𝑀𝑥 and 𝑀𝑦 as follows:

𝑀𝑥 =
⎡

⎢

⎢

⎣

1 2 1
0 0 0

−1 −2 −1

⎤

⎥

⎥

⎦

𝑀𝑦 =
⎡

⎢

⎢

⎣

1 0 −1
2 0 −2
1 0 −1

⎤

⎥

⎥

⎦

where the 𝑀𝑥 kernel evaluates changes in the horizontal direction,
while the 𝑀𝑦 kernel evaluates changes in the vertical direction. By
vailable online 24 September 2023
434-8411/© 2023 Elsevier GmbH. All rights reserved.

https://doi.org/10.1016/j.aeue.2023.154887
Received 12 May 2023; Accepted 31 August 2023

https://www.elsevier.com/locate/aeue
http://www.elsevier.com/locate/aeue
mailto:a_alain@ece.concordia.ca
https://doi.org/10.1016/j.aeue.2023.154887
https://doi.org/10.1016/j.aeue.2023.154887
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aeue.2023.154887&domain=pdf


AEUE - International Journal of Electronics and Communications 172 (2023) 154887A. Aoun et al.

c
t
N
u
i

convoluting the image with two kernels, it is possible to approximate
the derivatives, especially when using small integer values, which
makes this approach computationally efficient. This method is com-
monly applied in autonomous systems with a sensor camera for frame
preprocessing, where the Sobel filter is a popular choice. By using
the Sobel filter, it becomes possible to perform feature extraction in
real-time, making it an ideal for collision avoidance [6].

of Circuits, Systems and Computers The Sobel filter implementation
heavily relies on addition operations where FAs are the basic building
blocks for most of its hardware. Therefore, due to their significant
importance, we propose three Non-exact FAs (NeFAs) that are most
suitable for image processing. The proposed NeFAs are competitive
with other existing approximate FAs in terms of resource usage and
quality. Therefore, with the aim of identifying the most suitable ap-
proximate implementation of the Sobel filter, we perform a design
space exploration (DSE). During the DSE process, we look into de-
signs achieving various savings in resource usage while maintaining
an acceptable level of quality. The quality is assessed objectively and
subjectively. The objective quality assessment relies on the multi-scale
structural similarity (MS-SSIM) [7] factor. The subjective assessment is
performed by visually inspecting the quality. The performed DSE allows
us to identify the most suitable approximation settings, i.e., the proper
approximate FA and the optimal approximation level.

In the remainder of this paper, we will discuss the related work
in Section 2. Thereafter, we will present the proposed NeFAs in Sec-
tion 3 followed by the proposed methodology for DSE of approximate
Sobel filter in Section 4. In Section 5 we will present an analysis of
the generated approximate designs in terms of resource usage and
quality, i.e., objective and subjective assessment. We conclude this
work in Section 6.

2. Related work

In this section, we highlight some of the literature work that is most
related to the work proposed in this paper, namely, (i) approximation
of the Sobel filters; and (ii) design of approximate full adders.

2.1. Approximate Sobel filter

In [8], the authors presented different approximations of the Sobel
filter using truncation techniques. They compared the output when the
data size is reduced by one bit to the exact output, and found a match.
However, a significant loss of quality was observed when the data size
was reduced by two bits. When the data size was reduced by three bits,
the output of the filter was barely recognizable. In [9], the authors
investigated workload-aware approximate computing applied to the
Sobel filter. Their design of the Sobel filter featured 18 multipliers and
17 adders, each with different settings. They discovered that even with
the same approximation configuration, different input workloads could
produce varying output qualities.

A study conducted in [10] utilized a Sobel filter application to
evaluate 10 designs of approximate full adders (FAs). The authors
observed that an approximate adder logic with the appropriate ap-
proximate bits can be used for edge detection filtering, resulting in
satisfactory error rates and image quality. In another approach pro-
posed in [11], the authors introduced Learned Approximate Computing
(LAC), which focused on optimizing application kernels instead of hard-
ware approximations. The effectiveness of LAC was assessed through
various applications, including the 3 × 3 Sobel filter for edge detection.
Additionally, the authors of [12] extended a RISC-V processor by
incorporating a variable bit-width memory unit alongside the existing
variable bit-width arithmetic units. They evaluated the impact of both
variable bit-width arithmetic and memory units on the output accu-
racy and energy consumption of the Sobel filter. In [13], the authors
explored the usage of approximate parallel-prefix adders (PPA) in the
Sobel operator. They indicated that the CRA-based filter is the most
energy efficient. However, PPA filters are faster than CRA designs.
2

2.2. Approximate full adders

The hardware implementation of the Sobel filter relies heavily
on the addition operation. Thus, one approach of investigating an
approximate implementation of the Sobel filter is to approximate the
addition operation. Thus, we dedicate this section to present related
work that targeted the approximation of the adders. The authors of [14]
designed a memristor-based approximate FA and subtractor with a logic
minimization technique. The proposed design is verified by developing
an 8-bit Carry Ripple Adder (CRA) to perform bitwise pixel addition
of two grayscale images. Similarly, the designed 8-bit Ripple Borrow
Subtractor (RBS) is verified on foreground detection. In [15], the
authors proposed a novel design of approximate 4–2 compressors. They
presented a modified architecture of the Dadda Multiplier [16] and
effectively utilized the proposed compressor with a reduced error at
the output. The proposed compressor consists of a FA and two 2-to-
1 multiplexers. Similarly, the authors of [17] presented an efficient
imprecise 4:2 and 5:2 compressors by changing the truth table of the
exact compressors to gain simpler logic functions with fewer output
errors. Then, efficient approximate multipliers are designed based on
the presented inexact compressors.

The authors of [18] proposed three approximate FAs with accept-
able accuracy, low power, and low delay, where they evaluated the
effects of die-to-die (D2D) process variation on the threshold voltage
of approximate FAs. They utilized the proposed approximate FAs in
the ripple carry adder structure and image Sharpening algorithm. The
authors of [19] enhanced the accuracy of approximate multipliers using
a set of proposed approximate compressors which can compress any
number of inputs to arbitrary numbers of output bits. They used the
probability of being one in the input bits to determine the compression
ratio. The authors of [20] proposed six novel 1-bit approximate FAs
where they compared their performance against the related work,
which showed that two proposed approximate FAs are competitive.

In [2], the authors approximated the mirror-based FA and called it
AMA. They generated five AMAs by eliminating a set of transistors in
each iteration of the approximation process. In the first iteration, they
generated AMA1 which is the closest to the exact implementation. Fur-
thermore, the last iteration generated AMA5 which is a buffer. Based on
the investigation in [21], the AMA showed superiority. Subsequently,
we only include the AMAs in the library of approximate FAs used in
the DSE of this paper.

Previous studies have mainly focused on approximation techniques
for arithmetic units. Thereafter, the overall performance of these units
was evaluated by using the Sobel filter as an application. However,
as the Sobel filter is critical in image processing, finding the optimal
approximated version is crucial. Therefore, in this paper, we aim to
perform a DSE to determine the most appropriate design settings of
the approximate Sobel filter.

3. Proposed approximate full adders

The edge detection using the Sobel filter heavily relies on arithmetic
addition. Subsequently, the hardware implementation of the Sobel filter
will consist of a large number of FAs. Thus, developing an approximate
FA that greatly reduces resource usage while achieving good quality is
direly needed to optimize the implementation of the approximate Sobel
filter. To this aim, we propose three Non-exact FAs (NeFA) that are
most suitable for the approximation of the Sobel filter. Fig. 1 depicts
their schematic diagrams, i.e., NeFA1, NeFA2 and NeFA3. The NeFA1
is a result of eliminating four logic gates from the exact FA, i.e., 1 ×
XOR, 1 × OR and 2 × AND gates. In addition, since in a CRA the
arry generation is in the critical path, the carry out is assigned as
he second input. In another direction of designing the NeFA, we use
AND and NOR gates as they are basic gates with minimal resource
sage, i.e., require four transistors. Moreover, the quality of the output
s improved by adding an Inverter, i.e., two transistors, to the circuit.



AEUE - International Journal of Electronics and Communications 172 (2023) 154887A. Aoun et al.

d
a
F
E
e
e
t
a
r
d
w
N

a
s
m
S
T
B
h
a
d

4

d
a

Fig. 1. Schematic of the proposed (a) NeFA1, (b) NeFA2, and (c) NeFA3.
Table 1
Truth table for the proposed approximate full adders.

Inputs NeFA1 NeFA2 NeFA3

A B Cin Cout Sum ED Cout Sum ED Cout Sum ED

0 0 0 0 0 0 0 1 −1 0 1 −1
0 0 1 0 1 0 0 0 1 0 1 0
0 1 0 1 0 −1 0 1 0 0 1 0
0 1 1 1 1 −1 1 1 −1 0 1 1
1 0 0 0 1 0 0 1 0 0 1 0
1 0 1 0 0 2 1 1 −1 1 0 0
1 1 0 1 1 −1 0 1 1 0 1 1
1 1 1 1 0 1 1 1 0 1 0 1

Table 2
Synthesis of the library of basic arithmetic units.

Design Area (μm2) Power (μW) Delay (fs)

NeFA1 3.60 0.858 40
NeFA2 5.04 0.606 30
NeFA3 2.52 0.210 20

AMA1 [2] 8.28 1.624 50
AMA2 [2] 3.96 0.466 40
AMA3 [2] 3.24 0.333 30
AMA4 [2] 3.60 0.459 30
AMA5 [2] 2.16 0.145 0

Exact 10.08 2.716 80

The truth table of the NeFAs is shown in Table 1 where the error
istance (ED), which represents the difference between the exact and
pproximate values, is shown. A positive ED indicates that the exact
A gives a higher value than the approximate. However, the negative
D indicates that the approximate FA has a higher value than the
xact FA. Error cancellation due to positive and negative errors proved
fficiency in enhancing the quality of approximate designs [22]. The
hree proposed NeFA, i.e., NeFA1, NeFA2 and NeFA3, produce an
verage ED of 0, 0.125, and 0.25 and a maximum ED of 2, 1 and 1,
espectively. The error rate (ER) is the count of erroneous outputs
ivided by the total number of outputs, i.e., 23 for a FA. From Table 1
e determine ERs of 62.5%, 62.5% and 50% for NeFA1, NeFA2, and
eFA3, respectively.

In addition to having an acceptable quality, the resource usage of
n approximate FA is important. For this purpose, we performed the
ynthesis of the proposed NeFAs in addition to the five approximate
irror adders (AMA) proposed in [2]. The synthesis is performed using
ynopsys Design Vision [23] and TSMC 65 nm CMOS technology [24].
he resource usage of the eight approximate FAs is shown in Table 2.
ased on the synthesis results, we notice that the proposed NeFAs are
ighly competitive with the existing AMAs. The obtained area, power,
nd delay fall within the minimum and maximum values of the related
esigns with a great reduction compared to the exact design.

. Design space exploration of approximate Sobel filter

Approximate computing is based on the principle of significance-
riven approximation, making it important to identify the parts of
system that can be approximated and determine the appropriate
3

approximation settings [25]. If the most significant bits (MSBs) of a
hardware design are approximated, it can lead to poor quality. Our
proposed approach aims to limit the negative impact of approximation
on the MSBs while maximizing the benefits of using approximate
hardware. We search for designs that result in minimal quality loss
while achieving a maximum reduction in resource usages, such as area
and power.

The Sobel filter includes various arithmetic operations, e.g., multi-
plication, addition, and square root. We introduce approximation into
multiple operations to generate an approximate filter with a specified
design metric, e.g., a design with 45% less power consumption. For
instance, as shown in Fig. 2, we propose to design an approximate
filter by approximating its basic operations with specific configurations,
e.g., swapping 10 exact FAs with approximate ones in a 16-bit CRA.
Accordingly, we generate suitable designs for a selected reduction in
a given metric. In this work, we generate hardware solutions that
shrink area and power usage where the target reduction ranges from
5% to 95% with a step of 5% for each metric. The reductions are
achieved using the method proposed in [26] which solves for position
independent replacement. The position independent replacement relies on
measuring the resource usage saving, i.e., area and power, based on the
quantity while neglecting the placement and routing. For example, if a
circuit has eight exact FAs, when replacing only one exact FA with its
approximated counterpart, the total area and power usage are projected
to be the same regardless of the position of the FA that was replaced.
The equations that solve for position independent replacement are:

𝑀𝑇 =
𝑛
∑

𝑖=1
𝑄𝑖 ×𝑀𝑖 (1)

𝑄𝑇 =
𝑛
∑

𝑖=1
𝑄𝑖 (2)

where 𝑛: the types of basic cells, 𝑀𝑇 : the total resource usage, 𝑄𝑖: the
quantity of a given unit, e.g., exact full-adder, 𝑄𝑇 : the total quantity,
and 𝑀𝑖 is the correspondent hardware usage, e.g., area or power usage,
of a given unit. Eq. (1) estimates the total resource 𝑀𝑇 , e.g., total
area usage, by summing the product of the quantity and the resource
usage of each basic component. Furthermore, Eq. (2) looks at the
total quantity of basic components. For instance, if a circuit contains
eight FAs, the quantity of approximate and exact FAs must be eight.
We applied position independent replacement and generated various
implementations of the approximate Sobel filter. For that, we replace
the exact FAs, with AMA1-AMA5 [2]. Moreover, we utilize our newly
proposed approximate FAs, i.e., NeFA1, NeFA2, and NeFA3.

As shown in Fig. 2, as a first step, the hardware usage of the basic
cell (𝑀𝑖) has to be identified. This step is required to solve Eq. (1). The
results of the synthesis are summarized in Table 2. Then, we decide the
𝑄𝑇 required to implement the hardware of the Sobel towards solving
Eq. (2). As depicted in Fig. 3, the Sobel circuit receives eight inputs,
i.e., A, B, C, D, E, F, G and H, illustrating the bordering pixels of the
targeted pixel. The Sobel circuit includes twelve 8-bit CRA units, two
8-bit 2’s complement units, two 8-bit squaring (SQR) units, one 16-bit
CRA unit and one 16-bit square root unit. In this paper, the square root
unit is exact, and the 2’s complement is performed using inverters and
8-bit CRA. Thus, the total number of 8-bit CRA units is 14. Also, the



AEUE - International Journal of Electronics and Communications 172 (2023) 154887A. Aoun et al.

n
C
o

(
a
W
t
e
l
a
c
a

t
a
l
a
i
o
T
t
a
T
F
c
o
o
o
e
5
c
b

Fig. 2. Proposed methodology to generate approximate Sobel filter.
f
c
t
t
F
n
t
b
a
S
r
t

n
u

Fig. 3. Hardware implementation of the Sobel filter.

umber of FAs is eight, sixteen and thirty-one in the 8-bit CRA, 16-bit
RA and SQR units, respectively. Thereafter, we define the quantities
f FAs in the Sobel hardware as 𝑄𝑇 = 190.

Using the synthesis results of Table 2 and 𝑄𝑇 , we solve Eqs. (1) and
2) for various target reductions in order to identify the number of exact
nd approximate FAs in each unit that satisfies the required reduction.
e solve the two equations to find the configuration that achieves

he chosen reductions in terms of area and power, simultaneously. For
xample, for a 25% reduction goal, we seek to gain a reduction of at
east 25% in both area and power. In this work, we target homogeneous
pproximate designs where only one type of approximate basic cell is
onsidered. Thus, for Eqs. (1) and (2), we determine 𝑛 = 2 (exact and
pproximate).

Table 3 shows the quantities of exact and approximate FAs in
he 8-bit CRA for a provided target reduction when using a specific
pproximate FA. The given number indicates the number of exact FAs
ocated in the most significant bits (MSBs) while the remaining are
pproximate FAs located in the least significant bits (LSBs). As shown
n Table 3, solving Eqs. (1) and (2) resulted in a negative quantity
f FAs, i.e., quantities highlighted in red, for some target reduction.
his indicates that the target reduction cannot be achieved using this
ype of approximate FA. The trend of negative quantities is the same
cross the three units, i.e., 8-bit CRA, 16-bit CRA and SQR units. Thus,
able 3 is illustrative to a success or failure of a given configuration.
rom Table 3, we notice that all designs (AMA1-AMA5, NeFA1-NeFA3)
an achieve a reduction of 5%, 10% and 15%. On the other hand, none
f the designs can achieve a reduction of more than 75%. A reduction
f 70% and 75% is achievable by two designs only. One design is based
n AMA5 and the other design is utilized on NeFA3. All of the designs,
xcept the AMA1-based design, can achieve a reduction from 20% to
0%. All of the designs, except the ones based on AMA1 and NeFA2,
an achieve a reduction of 55% to 60%. A 65% reduction is achieved
4

y three designs only, i.e., based on NeFA3, AMA3, and AMA5
Table 3
Quantities of exact FAs in an 8-bit CRA for various target reduction.

Target Type of full adder

Reduction NeFA1 NeFA2 NeFA3 AMA1 AMA2 AMA3 AMA4 AMA5

5% 7 7 7 5 7 7 7 7
10% 6 6 6 3 6 6 6 6
15% 6 5 6 1 6 6 6 6

20% 5 4 5 −1 5 5 5 5
25% 4 4 5 −4 4 5 4 5
30% 4 3 4 −6 4 4 4 4
35% 3 2 4 −8 3 3 3 4
40% 3 1 3 −10 2 3 3 3
45% 2 0 3 −13 2 2 2 3
50% 1 0 2 −15 1 2 1 2

55% 1 −1 2 −17 0 1 1 2
60% 0 −2 1 −19 0 0 0 1

65% −1 −3 1 −22 −1 0 −1 1

70% −1 −4 0 −24 −2 −1 −1 0
75% −2 −4 0 −26 −2 −1 −2 0

80% −2 −5 −1 −28 −3 −2 −2 −1
85% −3 −6 −2 −31 −4 −3 −3 −1
90% −4 −7 −2 −33 −4 −3 −4 −2
95% −4 −8 −3 −35 −5 −4 −4 −2

5. Design analysis

In this section, we discuss the hardware resource usage and the
output quality of the various approximate Sobel filter implementations
that are generated by the DSE performed in this paper. We compare
them with the exact design to determine their effectiveness. The gen-
erated implementations of the Sobel filter are modeled in VHDL and
Matlab [27] for synthesis and quality analysis, respectively.

5.1. Resource usage

The resource usage of the approximate Sobel filter designs generated
by the DSE is estimated using Synopsys Design Vision [23] and TSMC
65 nm CMOS technology [24]. The synthesis results are summarized
in Fig. 4. As shown in Table 4 we found that in average, the achieved
reduction in area is almost equal to the target reduction, i.e., actual
reduction ≈ targeted reduction. These measurements confirm the ef-
ectiveness of the proposed DSE. On another note, from Table 4 we
an notice that the actual power reduction, i.e., static, dynamic and
otal power, exceeds the target reduction since all approximate FAs in
he library offer greater reductions in power compared to the area.
urthermore, even though the position independent replacement does
ot consider the delay, the actual reduction in delay also exceeded
he target reduction. On the other hand, the designs are generated
y solving Eqs. (1) and (2) for area and power simultaneously while
ssuring that the target reductions in the two aspects are satisfied.
ubsequently, for a given target reduction more approximate FAs are
equired to achieve the aimed area reduction than the quantity needed
o achieve the desired power reduction.

Fig. 4(a) shows the obtained area for all generated designs. We can
ote that for a given target reduction, all designs achieve a similar area
sage except when AMA5 is used. This is due to the simple structure



AEUE - International Journal of Electronics and Communications 172 (2023) 154887A. Aoun et al.

o
u
o
r
t
i

Table 4
Target reduction versus actual reduction in resource usage.

Target (%) 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Area (%) 7.5 11.2 13.6 16.2 19.1 22.5 28.0 31.6 41.7 45.9 46.2 55.2 44.1 100 100
Delay (%) 8.6 16.2 19.6 27.1 31.6 37.2 43.1 48.8 53.9 60.4 62.9 69.5 74.8 82.7 84.9
Static power (%) 9.2 22.3 27.5 33.6 39.9 47.8 56.9 65.0 71.1 78.7 79.9 88.8 92.8 99.9 99.9
Dynamic power (%) 9.9 23.7 29.1 35.0 41.5 49.6 58.6 66.7 72.6 80.1 81.4 89.7 92.6 100 100
Total power (%) 9.4 22.4 27.6 33.7 40.0 47.8 56.8 64.8 70.8 78.4 79.6 88.3 92.1 99.3 99.4
Fig. 4. (a) Area, (b) Delay, (c) Static power, (d) Dynamic power, (e) Total power, and (f) Power area delay product of the designs generated by the DSE.
f AMA5, i.e., buffer, which when cascaded does not increase the area
sage linearly, i.e., the hardware can be simplified. The obtained delay
f all proposed designs is shown in Fig. 4(b). For a target reduction
anging from 5% to 15% the implementation based on AMA1 has
he lowest delay. Moreover, for a target reduction of 5% to 65% the
mplementation based on AMA3 results in the longest delay.
5

Figs. 4(c), 4(d) & 4(e) shows the static, dynamic and total power
consumption of the generated designs, respectively. From these figures,
we can notice that the applied position independent replacement will re-
sult in an even reduction in static and dynamic power. The approximate
Sobel filters based on AMA1 have minimal power for a reduction of 5%,
10%, and 15%. However, for other target reductions, the DSE is unable



AEUE - International Journal of Electronics and Communications 172 (2023) 154887A. Aoun et al.
Fig. 5. Six benchmarks images: (a) barb, (b) bikesgray, (c) cameraman, (d) lena, (e) mandrill, and (f) peppers.
to generate a design utilizing AMA1. For a reduction of 20% to 50%,
the designs based on NeFA2 have minimal power. The Power-Area-
Delay-Product (PADP) of the generated designs is shown in Fig. 4(f).
The designs based on AMA1 and the proposed NeFA2 have minimal
PADP for a target reduction ranging from 5% to 15% and 20% to 50%,
respectively.

5.2. Quality analysis

The quality of an approximate design is equally important to re-
source usage. We dedicate this section to analyzing the quality of the 92
designs generated by the DSE. For this purpose, we use six well-known
benchmark images as shown in Fig. 5, namely, ‘‘barb’’, ‘‘bikesgray’’,
‘‘cameraman’’, ‘‘lena’’, ‘‘mandrill’’, and ‘‘peppers’’. The quality assess-
ment of the resulting edge detection is performed objectively and
subjectively, i.e., visually. The multiscale structural similarity (MS-
SSIM) [7] index, which evaluates the similarity of the input image
in comparison to the reference image, is used to analyze the results
objectively. The MS-SSIM value ranges from 0 to 1 where a greater
value for MS-SSIM indicates a better output quality.

Objective Quality Assessment : When assessing the quality objectively,
we noticed that the trend in the obtained MS-SSIM is independent of
the input images. However, the quality depends on the utilized design.
Thus, in the objective quality assessment we limit the interpretation to
the average MS-SSIM or the overall trend. Fig. 6 shows the average
MS-SSIM of the various benchmark images when using the various
designs. In general, we can notice that for a higher target reduction, the
quality decreases as more approximation is introduced into the design.
However, in some cases, a higher target reduction, i.e., a higher level of
approximation, resulted in better quality. For instance, the approximate
Sobel filter design based on NeFA3 with a target reduction of 55%
resulted in better quality than the design based on the same full adder,
i.e., NeFA3, and a target reduction of 50%. This is due to the nature
of the application, i.e., edge detection, where different algorithms
may produce different results. Thus by introducing approximation, we
6

Fig. 6. Target reduction versus average output quality for the 92 designs generated
by the DSE.

introduce a variation to the Sobel filter. Moreover, from Fig. 6 we can
notice that a single approximate FA will not always lead to the highest
quality.

We propose two methods to select the Pareto optimal configura-
tions. The first selection method is based on the average MS-SSIM while
in the latter the selection is based on the number of times a design
achieves the best MS-SSIM in each of the six images, i.e., a voter-based
selection. Table 5 shows the Pareto optimal design based on the two
selection methods. For the first criterion, we notice the approximate
filters based on AMA5 achieved the best quality in four cases, i.e., four
different target reductions. However, for the second criterion, AMA2-
based designs outperform AMA5-based designs. Furthermore, we notice
that for a high target reduction, i.e., target reduction ≥40%, the designs



AEUE - International Journal of Electronics and Communications 172 (2023) 154887A. Aoun et al.
Fig. 7. Edge detection of ‘‘barb’’ using (a) Exact, (b) AMA5 (Target = 60%), and (c) NeFA3 (Target = 60%), Implementation of the Sobel filters.
Table 5
Pareto optimal designs.

Target reduction 1st Criterion 2nd Criterion

5% AMA4 AMA4
10% AMA5 AMA2
15% AMA5 AMA2
20% AMA2 AMA2
25% AMA5 AMA5
30% AMA2 AMA2
35% AMA5 AMA5

40% NeFA1 NeFA1
45% NeFA3 NeFA3

50% AMA3 AMA3

55% NeFA3 NeFA3
60% NeFA3 NeFA3
65% NeFA3 NeFA3
70% NeFA3 NeFA3
75% NeFA3 NeFA3

based on our proposed approximate FAs, i.e., NeFAs, are the Pareto
optimal except for a target reduction of 50%. Finally, we note that the
best performing AMA-based design was at most four times in the Pareto
optimal list. However, the proposed NeFA3 was six times on the Pareto
list regardless of the selection criterion.

Subjective Quality Assessment : The previous analysis was based on
the obtained MS-SSIM of the obtained designs. However, approximate
computing has reemerged since the output quality of some applications
is evaluated by human senses, e.g., the visual interpretation of images.
From Fig. 7, we notice that the approximate Sobel filter based on
NeFA3 and a target reduction of 60% outperforms the design based
on AMA5 and the same target reduction. Comparing the results in
Figs. 7(b) and 7(c) we notice that NeFA3 produced less noise around
the head of ‘‘barb’’. Similarly, we can notice that the details of the
face of ‘‘barb’’ is better detected using NeFA3 compared to AMA5.
Another noticeable difference is the grey color of the background when
using NeFA3 instead of the black background. This trend in the quality
of edge detection when using the implementations based on AMA5
and NeFA3 with a target reduction of 60% is noticed among all the
six benchmark images. However, the MS-SIM of the two designs with
a target reduction of 60% showed equivalent performance in Fig. 6.
Thus, a subjective quality assessment is inevitable when analyzing
approximate Sobel filter designs.

Another example to illustrate the importance of subjective quality
assessment is the edge detection results shown in Figs. 8 and 9. We
can notice that the edge detection using the implementation of the
approximate Sobel filter based on NeFA2 with a target reduction of
40% is analogous to the edge detection by the exact implementation.
However, the average MS-SIM of this approximate design is only 0.44,
i.e., poor quality. Moreover, from Figs. 8(a) and 9(a) we can notice
7

that the approximate design may produce an edge detection with less
noise, e.g., less noise on the ground. These observations are noticed
among the three other benchmark images. Finally, from Fig. 10 we
can notice that the usage of an approximate FA that is closest to the
exact FA, e.g., AMA1, may not result in the best quality. For example,
the implementation based on AMA1 produced noise around the bike
lock, while the ‘‘more’’ approximate FA, i.e., NeFA2, produced finer
edges. Based on the aforementioned observations and based on the re-
source usage, we identify the approximate Sobel filter implementation
based on NeFA2 and a target reduction of 40% to be a ‘‘near golden’’
implementation of an approximate Sobel filter.

6. Conclusion

Approximate computing (AC) is a relatively new computing
paradigm. This approach aims to reduce the area, power, delay, or
energy required by sacrificing a certain level of accuracy where impre-
cise results are deemed acceptable. AC is used in various applications
such as image processing and machine learning. In this paper, we
targeted the approximation of the Sobel filter which is a popular image-
processing application. The hardware implementation of the Sobel filter
relies heavily on full adders (FAs). Therefore, due to their significant
importance, in this paper we proposed three new approximate FAs,
called NeFAs, that are most suitable for image processing and com-
petitive with existing approximate FAs. Subsequently, we generated a
library of approximate FAs that consists of the proposed NeFAs and five
well-known approximate FAs, i.e., AMA1-AM5 [2].

Design space exploration (DSE) is a crucial step in finding energy-
efficient solutions for computationally demanding applications. In this
paper, the performed DSE searches for implementations of approximate
Sobel filter that satisfy a target reduction of at least 5% to 95% with
a step of 5% in the area and power. The reduction is achieved by re-
placing the exact FA with an approximate counterpart from the library.
The implementations of the approximate Sobel filter use a single type of
approximate FA at a time, i.e., homogeneous approximation. The least
significant bits (LSBs) are approximated while keeping the calculation
of the most significant bits (MSBs) exact. The designs generated by the
DSE are analyzed objectively and subjectively. In the objective quality
assessment, we identified two Pareto optimal criteria. However, regard-
less of the selection criterion we deduced that the implementations
based on the proposed NeFAs are in the Pareto optimal for high target
reduction. Moreover, in the subjective quality assessment, we noticed
that the implementations based on the proposed NeFAs achieved an
outstanding quality where in some cases the NeFA-based implementa-
tion produced finer edges compared to the exact design, i.e., less noise.
In a future work, we aim to enrich the library of approximate FAs and
use more than one type at a time, i.e., heterogeneous approximation.
Moreover, we aim to extend the library of benchmark images in order
to offer a stronger quality analysis.



AEUE - International Journal of Electronics and Communications 172 (2023) 154887A. Aoun et al.
Fig. 8. Edge detection of (a) ‘‘camerman’’, (b) ‘‘lena’’, and (c) ‘‘peppers’’ using the exact implementation of the Sobel filters.
Fig. 9. Edge detection of (a) ‘‘camerman’’, (b) ‘‘lena’’, and (c) ‘‘peppers’’ using NeFA2 (Target = 40%) Implementation of the Sobel Filters.
Fig. 10. Edge detection of ‘‘bikesgray’’ using (a) Exact, (b) AMA1 (Target = 15%), and (c) NeFA2 (Target = 15%), Implementation of the Sobel filters.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data that has been used is confidential.

Acknowledgment

A preliminary version of this work has been published in ICM
2022 [28].
8

References

[1] Aoun A, Masadeh M, Tahar S. A machine learning based load value approximator
guided by the tightened value locality. In: Great lakes symposium on VLSI. ACM;
2023, p. 679–84.

[2] Gupta V, Mohapatra D, Raghunathan A, Roy K. Low-power digital signal
processing using approximate adders. IEEE Trans Comput-Aided Des Integr
Circuits Syst 2012;32(1):124–37.

[3] Ferrari V, Fevrier L, Jurie F, Schmid C. Groups of adjacent contour segments for
object detection. IEEE Trans Pattern Anal Mach Intell 2007;30(1):36–51.

[4] Sobel I, Feldman G. A 3 × 3 isotropic gradient operator for image processing.
In: Pattern classification and scene analysis. 1973, p. 271–2.

[5] Basu M. Gaussian-based edge-detection methods-a survey. IEEE Trans on Systems,
Man, and Cybernetics, Part C 2002;32(3):252–60.

[6] Kamçı S, Aksu D, Aydin MA. Lane detection for prototype autonomous vehicle.
2019, arXiv preprint arXiv:1912.05220.

[7] Wang Z, Simoncelli E, Bovik A. Multiscale structural similarity for image quality
assessment. In: Asilomar conference on signals, systems & computers, Vol. 2.
2003, p. 1398–402.

[8] Rodrigues G, Lima Kastensmidt F, Bosio A. Survey on approximate computing
and its intrinsic fault tolerance. Electronics 2020;9(4):557.

http://refhub.elsevier.com/S1434-8411(23)00361-8/sb1
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb1
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb1
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb1
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb1
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb2
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb2
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb2
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb2
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb2
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb3
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb3
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb3
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb4
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb4
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb4
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb5
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb5
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb5
http://arxiv.org/abs/1912.05220
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb7
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb7
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb7
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb7
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb7
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb8
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb8
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb8


AEUE - International Journal of Electronics and Communications 172 (2023) 154887A. Aoun et al.
[9] Ma D, Thapa R, Wang X, Jiao X, Hao C. Workload-aware approximate computing
configuration. In: Design, automation & test in europe. 2021, p. 920–5.

[10] Chung Y, Kim Y. Comparison of approximate computing with sobel edge
detection. IEIE Trans on Smart Processing and Computing 2021;10(4):355–61.

[11] Gupta V, Li T, Gupta P. LAC: Learned approximate computing. In: Design,
automation & test in europe. IEEE; 2022, p. 1169–72.

[12] Ndour G, Jost TT, Molnos A, Durand Y, Tisserand A. Evaluation of variable bit-
width units in a RISC-V processor for approximate computing. In: International
conference on computing frontiers. 2019, p. 344–9.

[13] Soares LB, da Rosa MMA, Diniz CM, da Costa EAC, Bampi S. Exploring Power-
Performance-Quality Tradeoff of Approximate Adders for Energy Efficient Sobel
Filtering. In: Latin American symposium on circuits & systems. 2018, p. 1–4.

[14] Muthulakshmi S, Dash CS, Prabaharan S. Memristor augmented approximate
adders and subtractors for image processing applications: An approach. AEU-Int
J Electron Commun 2018;91:91–102.

[15] Reddy KM, Vasantha M, Kumar YN, Dwivedi D. Design and analysis of multiplier
using approximate 4-2 compressor. AEU-Int J Electron Commun 2019;107:89–97.

[16] Dadda L. Some schemes for parallel multipliers. Alta Freq 1965;34:349–56.
[17] Ahmadinejad M, Moaiyeri MH, Sabetzadeh F. Energy and area efficient imprecise

compressors for approximate multiplication at nanoscale. AEU-Int J Electron
Commun 2019;110:1–11.

[18] Mirzaei M, Mohammadi S. Low-power and variation-aware approximate arith-
metic units for image processing applications. AEU-Int J Electron Commun
2021;138:1–13.
9

[19] Shirzadeh S, Forouzandeh B. High accurate multipliers using new set of
approximate compressors. AEU-Int J Electron Commun 2021;138:1–8.

[20] Parameshwara M. Approximate full adders for energy efficient image processing
applications. Journal of Circuits, Systems and Computers 2021;30(13):1–15.

[21] Masadeh M, Hasan O, Tahar S. Comparative study of approximate multipliers.
In: ACM great lakes symposium on VLSI. 2018, p. 415–8.

[22] Mazahir S, Hasan O, Shafique M. Self-compensating accelerators for efficient
approximate computing. Microelectron J 2019;88:9–17.

[23] Synopsys. Design compiler graphical. 2022, URL https://www.synopsys.com/
implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html.
Last Accessed May 12, 2022.

[24] CMC Microsystems. TSMC 65nm GP CMOS process technology. 2023, URL
https://www.cmc.ca/tsmc-65-nm-gp-cmos/. Last Accessed May 12, 2023.

[25] Masadeh M, Hasan O, Tahar S. Input-conscious approximate multiply-accumulate
(MAC) unit for energy-efficiency. IEEE Access 2019;7:147129–42.

[26] Aoun A. On the improving of approximate computing quality assurance (Master’s
thesis), Concordia University; 2021, URL https://spectrum.library.concordia.ca/
id/eprint/988392/. Unpublished.

[27] Mathworks. What is MATLAB?. 2022, URL https://www.mathworks.com/
discovery/what-is-matlab.html. Last accessed May 12, 2022.

[28] Aoun A, Masadeh M, Tahar S. On the Design of Approximate Sobel Filter. In:
International conference on microelectronics (ICM). IEEE; 2022, p. 102–6.

http://refhub.elsevier.com/S1434-8411(23)00361-8/sb9
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb9
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb9
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb10
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb10
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb10
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb11
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb11
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb11
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb12
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb12
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb12
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb12
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb12
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb13
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb13
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb13
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb13
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb13
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb14
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb14
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb14
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb14
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb14
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb15
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb15
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb15
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb16
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb17
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb17
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb17
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb17
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb17
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb18
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb18
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb18
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb18
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb18
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb19
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb19
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb19
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb20
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb20
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb20
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb21
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb21
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb21
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb22
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb22
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb22
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.cmc.ca/tsmc-65-nm-gp-cmos/
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb25
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb25
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb25
https://spectrum.library.concordia.ca/id/eprint/988392/
https://spectrum.library.concordia.ca/id/eprint/988392/
https://spectrum.library.concordia.ca/id/eprint/988392/
https://www.mathworks.com/discovery/what-is-matlab.html
https://www.mathworks.com/discovery/what-is-matlab.html
https://www.mathworks.com/discovery/what-is-matlab.html
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb28
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb28
http://refhub.elsevier.com/S1434-8411(23)00361-8/sb28

	Design space exploration for energy-efficient approximate Sobel filter
	Introduction
	Related Work
	Approximate Sobel Filter
	Approximate Full Adders

	Proposed Approximate Full Adders
	Design Space Exploration of Approximate Sobel Filter
	Design Analysis
	Resource Usage
	Quality Analysis

	Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgment
	References


