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Machine learning is widely used these days to extract meaningful information out of the Zettabytes of sen-

sors data collected daily. All applications require analyzing and understanding the data to identify trends,

e.g., surveillance, exhibit some error tolerance. Approximate computing has emerged as an energy-efficient

design paradigm aiming to take advantage of the intrinsic error resilience in a wide set of error-tolerant appli-

cations. Thus, inexact results could reduce power consumption, delay, area, and execution time. To increase

the energy-efficiency of machine learning on FPGA, we consider approximation at the hardware level, e.g.,

approximate multipliers. However, errors in approximate computing heavily depend on the application, the

applied inputs, and user preferences. However, dynamic partial reconfiguration has been introduced, as a

key differentiating capability in recent FPGAs, to significantly reduce design area, power consumption, and

reconfiguration time by adaptively changing a selective part of the FPGA design without interrupting the re-

maining system. Thus, integrating “Dynamic Partial Reconfiguration” (DPR) with “Approximate Computing”

(AC) will significantly ameliorate the efficiency of FPGA-based design approximation. In this article, we pro-

pose hardware-efficient quality-controlled approximate accelerators, which are suitable to be implemented

in FPGA-based machine learning algorithms as well as any error-resilient applications. Experimental results

using three case studies of image blending, audio blending, and image filtering applications demonstrate

that the proposed adaptive approximate accelerator satisfies the required quality with an accuracy of 81.82%,

80.4%, and 89.4%, respectively. On average, the partial bitstream was found to be 28.6× smaller than the full

bitstream.
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1 INTRODUCTION

The class of brain-inspired machine learning (ML) algorithms that enable a computer to learn
from observational data is called Deep Neural Networks (DNNs) [1]. DNNs are applicable in
error-tolerant applications, such as video analysis, natural language processing, and image/speech
recognition [2]. However, such large-scale networks have quite high memory and computational
requirements. Thus, an energy-efficient realization of the DNNs is of paramount interest. For in-
stance, Reference [3] explored novel models and topologies at the algorithmic level, while Refer-
ence [4] proposed emerging devices capable of mimicking the neuronal dynamics at the hardware
level. Moreover, other brain-inspired machine learning approaches are also being implemented
with emerging devices such as hyperdimensional computing [5], rhythmic spike [6], and high-
dimensional computing [7].

Approximate computing (AC) has emerged, due to the breakdown of Moore’s law and
Dennard scaling, to enable processing the associated big-data with battery-powered systems in
an energy- and resource-efficient manner. Another related important field, which has re-emerged
is Stochastic Computing [8], which processes analog probabilities by means of digital circuits, and
has recently been shown to provide an advantage for energy-efficient deep CNNs [9]. Judiciously
approximating certain computations, such as addition [10] and multiplication [11], provides
significant benefits in energy. AC is greatly suitable for applications, such as computer vision,
data mining, scientific computing, machine learning, multimedia, and digital signal processing,
that exhibit error-tolerance due to the following factors [12]: (i) redundant and noisy input data,
(ii) lack of golden or unique output, (iii) imperfect perception in human sense where individual
hearing and vision are not very sensitive, and (iv) implementation algorithms with self-healing
and error attenuation patterns. Neural networks (NN) with intrinsic error-resiliency are
capable of tolerating approximation in the underlying computations. Thus, approximation could
be introduced at the hardware level of the DNN. Moreover, hardware approximation reduces
accuracy could be recovered by re-training the network [13].

The fundamental computation unit in NN is a neuron, which performs a multiply-accumulate

(MAC) operation. The most power-consuming operation among NN computation is multiplica-
tions. To address this issue, we propose using approximate multipliers. However, the workloads
(input data) for these types of applications are increasingly dynamic [14] and thus can lead—for
some inputs—to intolerable errors for a static approximate design, i.e., the design is fixed dur-
ing the whole execution of the applied inputs. Therefore, to overcome this shortcoming, the ap-
proximate design should dynamically change for changing inputs. This is a critical requirement
for convolution-based applications where the MAC operation consists about 90% of its computa-
tions [15]. Adapting the internal structure for a scalar/single approximate multiplier introduces
area overhead for an FPGA-based design. Thus, it will not be addressed in this work. However, it
is more suitable for embedded software design rather than FPGA-based design as shown in Refer-
ence [16].

FPGAs are usually very efficient in executing algorithms that involve simple arithmetic op-
erations on a large amount of data [17]. Also, it is possible to adapt the implementation of a
neural network such that it would be more beneficial when implementing it with FPGA such
as Bitwise Neural Network (BNN) for resource-constrained environments [18, 19], integer ap-
proximation of the reservoir computing based on the mathematics of hyper-dimensional com-
puting [20], and randomly connected neural network based on a resource-efficient fully-integer
approach [21]. However, Reference [22] showed that despite the high performance offered by the
digital signal processing (DSP) blocks, their usage might not be efficient in terms of overall per-
formance and area requirements for some applications. An important advantage of FPGAs is their
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flexibility, where these devices can be configured and re-configured on site and at runtime by the
user. In 1995, Xilinx introduced the concept of partial reconfiguration (PR) in its XC6200 series
to increase the flexibility of FPGAs by enabling re-programming parts of a design at runtime while
the remaining parts continue operating without interruption [23]. The basic premise of PR is that
the device hardware resources can be time-multiplexed similar to the ability of a microprocessor
to switch tasks. Partial reconfiguration eliminates the need to fully reconfigure and re-establish
links, and dramatically enhances the flexibility that the FPGAs offer. This enables adaptive and
self-repairing systems with reduced area and dynamic power consumption. Configuration at fine-
granularity leads to higher reconfiguration time, while configuration at coarse-granularity results
in resource wastage.

To control the quality of approximation and reduce the associated errors, various techniques
have been proposed. However, none of these state-of-the-art techniques has explored the poten-
tial of different approximate hardware designs and their adaptation based on the applied inputs
to improve the individual output quality. To address the above challenges, we propose to dynami-
cally adapt the functionality of the FPGA-based approximate accelerators using machine learning and
dynamic partial reconfiguration. The proposed technique integrates the benefits of machine learn-
ing, approximate computing, and dynamic partial reconfiguration and thus positively impacts the
area and power consumption. In this article, we introduce a novel concept of a decision tree-based
design selector that constantly monitors the input data and quickly determines the most suitable
approximate design; then, accordingly partially reconfigures the FPGA with the selected approx-
imate design while keeping the whole error-tolerant application intact. Although the proposed
methodology is applicable to any error-tolerant application including neural networks and deep
learning, we demonstrate its effectiveness using image and audio processing applications, which
are based on a single multiplication operation per input data.

An approximate program is representable in a data flow graph (DFG), which is a collection of
nodes and their connecting edges, where a node represents an operation and the edge represents
the connectivity of the nodes with their data flow. For the DFG of an approximate program it
is required to identify the non-critical computations by analyzing the output sensitivity to the
accuracy of the final results. Then, these computations can be executed approximately for the
non-critical nodes while executing the critical nodes accurately. However, static approaches fail to
consider the runtime information. To solve this problem, the authors of Reference [24] proposed
a runtime approximate computing framework. They use a low-cost method to assess the effect
of inputs on the accuracy of computation at every node in the DFG and then decide whether
we should simply use approximate operation or perform an accurate computation. Our proposed
work is tangential to Reference [24]. Thus, both approaches could be integrated together, where
Reference [24] identifies if a specific multiplication operation is approximable or not based on
the applied inputs. Then, our proposed solution picks the most suitable design to perform the
specified operation. As a future work, we plan to extend our work by building an ML-based model
to identify the approximable node/operation in a DFG, then another related model identifies the
best suitable approximate design to use. In this work, we use three case studies that are based on a
simple DFG with a single multiplication operation. Thus, we can avoid both under-approximation
and over-approximation issues.

The main contributions of this article are the following: (1) a library of 20 FPGA-based approx-
imate accelerators, which have a reduced area, power, delay, and energy compared to the exact
design; (2) a lightweight decision tree-based design selector implemented on FPGA to pick the
most suitable approximate design based on the applied inputs; (3) a runtime adaptive approximate
system implemented on FPGA utilizing the feature of dynamic partial reconfiguration with a data-
base of 21 reconfigurable modules.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 4, Article 57. Pub. date: August 2021.



57:4 M. Masadeh et al.

The rest of the article is organized as follows: Section 2 introduces the related work to the as-
surance of quality of FPGA-based approximate designs. Section 3 explains the concept of dynamic
partial reconfiguration. Section 4 discusses the proposed methodology and the design selector. Sec-
tion 5 provides the system architecture and experimental results of an image blending application
on adaptive designs. We conclude the article in Section 6 with some future work directions.

2 RELATED WORK

This section describes the state-of-the-art in quality assurance of approximate computing at both
software and hardware levels. Then, it discusses their drawbacks and how our proposed work over-
come these limitations. Approximate computing is applicable to all layers of the computing stack,
i.e., software [25], architecture [26], and circuit [27]. A detailed description is surveyed in Refer-
ences [28, 29]. In References [30, 31], several research challenges related to this emerging comput-
ing paradigm have been described, including controlling the output error specially for dynamically
changing inputs. Managing the quality of approximate hardware design for dynamically changing
inputs has a significant importance to ensure that the obtained results satisfy the required target

output quality (TOQ). To the best of our knowledge, there are very few works targeting the
assurance of the accuracy of approximate systems compared to designing approximate compo-
nents. While most prior works focus on error prediction, in this article, we aim to overcome the
approximation error through an input-dependent design adaptation.

Mainly, there are two approaches for monitoring and controlling the accuracy of results of
approximate systems at runtime. The first approach suggests to periodically, through sampling
techniques, measure the error of an approximate system by comparing its result with the exact
computation performed by the host processor. Then, a re-calibration and adjustment process is
performed to improve the quality in subsequent invocations of the system if the error is found
to be above a pre-defined threshold, e.g., Green [32] and SAGE [33]. However, the quality of
unchecked invocations cannot be ensured, and the previous quality violations cannot be com-
pensated. The second approach relies on implementing a light-weight pre-trained error predictor
to expect if the invocation of an approximate system would produce an unacceptable error for
a particular input dataset [34–37]. However, the quality checker, proposed in Reference [34], is
application-specific, and Reference [35] shows a low prediction accuracy for large applications.
Wang et al. [36] proposed a quality management framework for AC, by using multiple lightweight
predictors, that achieve a better energy efficiency than References [34] and [35] through avoiding
unnecessary rollback recoveries. Xu et al. [37] proposed a framework supporting an iterative
training process, to coordinate the training of the classifier and the accelerator with an intelligent
selection of training data. However, the works reported in References [32–37], mainly target
controlling software approximation, i.e., loops and functions approximation, through program
re-execution, and thus are not applicable for hardware designs. Moreover, they ignore input
dependencies and do not consider choosing an adequate design from a set of design choices.

Raha et al. [38] designed a dual-mode, reconfigurable adder block. Similarly, four designs of 4-to-
2 compressors are proposed in Reference [39]. Moreover, the deployment of a self-adaptive image
filter, which is able to choose among different degrees of binary adder approximations at runtime,
is also demonstrated in Reference [40]. However, the approaches, reported in References [38–40],
either have very limited configuration options (e.g., Reference [38]), area overhead (e.g., Refer-
ence [39]), or latency overhead (e.g., Reference [40]). Recently, Xu et al. [41] proposed a runtime
reconfigurable manager to select the most suitable approximate design based on the detected in-
put data distribution. However, they utilize approximate accelerators designed at the behavioral
level for various coarse-grained expected input data distributions. In addition, the proposed ap-
proximate circuits heavily depend on the training data used during the approximation process,

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 4, Article 57. Pub. date: August 2021.



A Quality-assured Approximate Hardware Accelerators–based on ML and DPR 57:5

where not all possible workload distributions can be precharacterized. Thus, the real workload
may differ completely from the training one. Xu et al. [42] also presented a self-tunable runtime
adaptive approximate architecture that is suitable for application-specific integrated circuit

(ASIC) designs. However, the used approximation techniques are variable-to-variable (V2V)

and variable-to-constant (V2C) optimization only. Overall, none of these state-of-the-art tech-
niques, i.e., References [32–42], exploits the potential of different settings of the approximate sys-
tem and their adaptations based on a user-specified quality constraint to ensure the accuracy of the
individual outputs, which is the main idea proposed in this work. Our proposed work is comple-
mentary to References [41] and [42] in the sense that our designs are approximated independently
of the applied inputs (unlike Reference [41]) and encompasses various simplifications (unlike Ref-
erence [42]).

An adaptive edge detection filter using dynamic partial reconfiguration (DPR) has been
proposed in Reference [43]. The effectiveness of the DPR feature for edge detection applications
is evaluated on the filter with different scenarios varying in size, complexity, and intensity of
computation, where the resource utilization and timing are evaluated. In Reference [44], a design
flow for image and signal processing IP (Intellectual Property) cores based on FPGA dynamic
partial reconfiguration have been proposed. The benefits of dynamic partial reconfiguration for
embedded vision applications have been quantified in Reference [45]. These benefits include area,
power, delay and energy reduction. The works, reported in References [43–45], show the benefits
of DPR. However, the used designs are exact rather than approximate ones.

In this article, we propose to use FPGA dynamic partial reconfiguration to adapt the architecture
of approximate accelerators using a decision tree-based design selector. The selected approximate
accelerator is expected to satisfy a given quality constraint for specific input data at runtime. To
the best of our knowledge, this is the first work that dynamically adapts the FPGA-based approximate
system utilizing dynamic partial reconfiguration.

3 DYNAMIC PARTIAL RECONFIGURATION

In this section, we briefly describe the FPGAs architecture that can utilize partial reconfiguration.
Thereafter, we explain their main characteristics and components that enable them to build an
adaptive design in more detail.

Field Programmable Gate Arrays: FPGA devices conceptually consist of [46]: (i) hardware
logic (functional) layer, which includes flip-flops, lookup tables (LUTs), block random-access

memory (BRAM), digital signal processing (DSP) blocks, routing resources and switch boxes
to connect the hardware components; and (ii) configuration memory, which stores the FPGA con-
figuration information through a binary file called configuration file or bitstream (BIT). Changing
the content of the bitstream file allows us to change the functionality of the hardware logic layer.
Xilinx and Intel (formerly Altera) are the main manufacturing companies for FPGA devices, which
are used to implement algorithms and systems that would be difficult to efficiently realize in soft-
ware. Due to the hardware available for implementation, in this work, we use the VC707 evaluation
board from Xilinx, which provides a hardware environment for developing and evaluating designs
targeting the Virtex-7 XC7VX485T-2FFG1761C FPGA [47].

Dynamic and Partial Reconfiguration: PR is the ability to modify portions of the mod-
ern FPGA logic by downloading partial bitstream files, while the remaining portions are not
altered [48]. PR is a hierarchical and bottom-up approach and is an important enabler for
implementing adaptive systems. It can be static or dynamic, where the reconfiguration can occur
while the FPGA logic is in the reset state or running state, respectively [46].

DPR process consists of two main phases: (i) fetching and storing the required bitstream files
in the flash memory, which is not time-critical; and (ii) loading bitstreams into the reconfigurable
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Fig. 1. Principle of dynamic partial reconfiguration.

region through a controller, i.e., internal configuration access port (ICAP). Thus, DPR is valu-
able for devices that operate in a mission-critical environment that cannot be disrupted while
some subsystems are being redefined. Implementing a partially reconfigurable FPGA design is
similar to implementing multiple non-partial reconfiguration designs that share a common logic.
Reconfigurable architectures are becoming increasingly popular due to their ability to adapt the
architecture of the application [46]. Since the device is switching tasks in hardware, it has the
benefit of both flexibility of a software implementation and the performance of a hardware imple-
mentation. However, it is not very widely employed in commercial applications yet compared to
academia [48].

Benefits of Partial Reconfiguration: Adapting PR in FPGA design increases the effective logic
density by time-multiplexing of hardware resources. A small bitstream file reduces the reconfigu-
ration time as well as the external memory footprint, since PR files are smaller than the full config-
uration ones [46]. Therefore, real-time requirements can be met by using PR. Moreover, adaptive
hardware systems, where computations can adapt to changing environments, can utilize PR. Thus,
the benefits of “Partial Reconfiguration” match the requirements of “Approximate Computing.” There-
fore, our adaptive approximate accelerator with constraints on size, cost, and power consumption
will rely on dynamic partial reconfiguration to satisfy these requirements.

Partial Reconfiguration Basic Model: Logically, the part that will host the reconfigurable
modules is the dynamic partial reconfigurable region (PRR) that is shared among various mod-
ules at runtime through multiplexing, as shown in Figure 1. The shown model has a single PRR
with three possible partially reconfigurable modules (PRM). For FPGA full reconfiguration,
all functional blocks should coexist while partial reconfiguration loads a single functional block
at a time into the reconfigurable module. During PR, a portion of the FPGA needs to keep exe-
cuting the required tasks including the reconfiguration process. This part of the FPGA is known
as the static region, which is configured only once at the boot-time with a full bitstream. This re-
gion will also host static parts of the system, such as I/O ports as they can never be physically
moved.

Xilinx Partial Reconfiguration Controller (PRC): It provides management functions for self-
controlling partially reconfigurable designs [49]. It is designed for enclosed systems where all of the
reconfigurable modules are known to the controller. The Xilinx PRC consists of multiple virtual

socket (VS) managers, which connect to a single fetch path. The VS refers to a re-configurable

partition (RP) with any supporting logic that exists in the static design. Each VS can contain up
to 128 re-configurable modules (RMs) and up to 512 software and hardware triggers. In this
work, our proposed design includes a single VS with 21 RMs each with a specific trigger. The
mapping from a specific trigger, i.e., hardware or software, to a given RM is configurable during
core configuration and at runtime. The PRC is not directly tied to any particular storage device
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where it fetches the bitstream data from an AXI4 bus [49], which allows the controller to access
bitstreams no matter where they are stored.

Initially, the partial bitstreams are stored in a configuration library, i.e., bitstream database, as
shown in Figure 1. When a hardware (signals) or a software (register write) trigger event occurs,
the PRC fetches/pulls partial bitstreams from the memory/database through the AXI bus and de-
livers them to a configuration port, e.g., ICAP. For the PRC to quickly access the bitstreams, all of
them should be available in a contiguous region of memory and indexed properly to allow locating
the start address of an arbitrary bitstream efficiently without performing multiple look-ups.

High-speed Reconfiguration Controller: For Xilinx SRAM-based FPGAs, the ICAP is the basic
component of any dynamic partial reconfigurable system [50]. The ICAP controller, which is flexi-
ble with high reconfiguration throughput, is responsible for executing all commands to access and
modify the configuration memory [46]. The speed of configuration is directly related to the size of
the partial bitstream file and the bandwidth of the configuration port. For ICAP, the data width is
32 bits and the bandwidth is 3.2 Gb/s. The maximum operational frequency of ICAP suggested by
the vendor is 100 MHz, i.e., ICAP32@100 [51]. The ICAP enables DPR from within an FPGA chip,
leading to the possibility of fully autonomous FPGA-based systems.

4 PROPOSED METHODOLOGY FOR FPGA-BASED ADAPTIVE

APPROXIMATE SYSTEM

Performance enhancement of existing computing architectures is gradually saturating due to
power and speed bottlenecks. Approximate computing is one of the promising techniques to enable
new architectures. The preliminary results of AC show several orders of magnitude improvement
for different metrics such as energy and area efficiency. However, the proposed approximate sys-
tems are of static nature despite their dynamically changing inputs, i.e., the output quality does
not fluctuate and thus significantly violate the allowed error threshold for some inputs.

Figure 2 presents an overview of our novel generic design methodology that targets to resolve
various challenges related to managing output quality of approximate computing [52], including:
(i) minimizing the approximate results with large error magnitudes; (ii) selecting the approximate
designs based on the input data as well as the user requirements; and (iii) continuously monitoring
the output quality and compensating the error where monitoring all the inputs is not a feasible so-
lution. Therefore, we propose a lightweight design selector based on computationally inexpensive
ML-models, which are implementable in FPGAs [53]. The proposed methodology utilizes a deci-

sion trees (DT) algorithm to build an input-aware model, i.e., AC quality manager, to identify the
most suitable approximate design based on the input data. Generally, DT-based models are known
for their easy interpretation, where they use Boolean logic to construct a set of learning decision
rules from the training data [54]. Moreover, decision trees are much smaller and easier to read and
understand than other ML-based models, and they can easily be exported as a code that can be
loaded into embedded systems [55].

Without loss of generality, we consider an adaptive approximate design with two knobs, i.e.,
K1 and K2, that take values from the finite sets s1 and s2, respectively, where s1 represents the
type of the approximate block used to build the approximate design, and s2 is the approximation
degree/level of the design. For example, we designed a set of energy-efficient approximate multi-
pliers based on three design decisions [11]: (1) the type of the full adders (FAs) used to construct
the multiplier where we used 11 different types; (2) the architecture, i.e., array or tree; and (3) the
approximation degree (how much of the results to be approximated), where we have used two
options: (i) all FAs are approximate (fully approximate design); and (ii) FAs that contribute to the
least significant 50% of the resultant bits are approximated. Based on the obtained results, for this
work, we have selected the most energy-efficient designs to be elements within the approximate
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Fig. 2. Machine learning-based methodology for adaptive design to control the quality of approximate

computing.

Table 1. Library of 20 Static Approximate Designs

Based on Degree and Type Knobs [11]

Approximate

Design

Degree

D1 D2 D3 D4

Type

AMA1 Design1 Design2 Design3 Design4
AMA2 Design5 Design6 Design7 Design8
AMA3 Design9 Design10 Design11 Design12
AMA4 Design13 Design14 Design15 Design16
AMA5 Design17 Design18 Design19 Design20

library, that are: (1) utilizing five types of full adders that are called approximate mirror adders,
i.e., Type = s1 = {AMA1,AMA2,AMA3,AMA4,AMA5}, chosen from the low power approximate
FAs [27], (2) its architecture is array, (3) the approximation degree has 4 options, i.e., Degree = s2 =
{D1,D2,D3,D4}, where D1 has 7 bits approximated out of the 16-bit result, while D2, D3, and D4
have 8, 9, and 16 approximate bits, respectively. Table 1 shows our library of approximate designs
based on Degree and Type knobs, i.e., ApprxMul = {Desiдn1, .....,Desiдn20}. Also, the library in-
cludes the exact design to be used whenever the required TOQ cannot be satisfied. The proposed
design flow is adaptable, i.e., applicable to approximate functional units other than multipliers, e.g.,
approximate multiply-accumulate units [56] and approximate meta-functions [57].

As depicted in Figure 2, our proposed methodology encompasses two phases: (1) an offline phase
(executed once), where the training inputs are applied to the library of approximate designs to gen-
erate the training data that is performed off-FPGAs, then we build an on-FPGA machine learning-
based design selector; (2) an online phase, where the design selector continuously accepts the input
data. Then, accordingly selects the most suitable design to match the required TOQ for the given
inputs. Overall, the proposed methodology encompasses of the following main steps:

(1) Designing a Library of Approximate Arithmetic Modules: The first step is to design
a library of approximate modules, e.g., approximate adder, multiplier, divider, square-root, and
multiply-accumulate unit, which are suitable to be integrated as approximate accelerators. An ap-
proximate design with two knobs, i.e., K1, and K2, will have |K1|x|K2| different design settings
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that constitute our library. For the example of an 8-bit approximate array multiplier, as shown in
Table 1, we have |K1| x |K2| = 5 × 4 = 20 different settings with reduced power consumption, area,
and execution time compared to the exact design. The error analysis of these design is available in
Reference [58]. Moreover, using other state-of-the-art designs, such as Reference [59], is orthog-
onal to our approach and they can be included in a suitable way by implementing the necessary
modifications in the library of approximate designs.

(2) Collecting of Training Data: For an approximate design withm inputs, each of n-bit width,
and values ranging from 0 to 2n-1, we apply j inputs to the approximate design to generate the
training data, where j ≤ m. For example, for an 8-bit approximate multiplier with n = 8, and to
maximize models accuracy, we apply the inputs exhaustively where j = m = 2 and n = 8. Thus,
we have 65,536 different input combinations. For 16 and 32-bit multipliers, the size of the input
combinations is 4.29 × 109 and 1.86 × 1019, respectively. Thus, rather a sampling of training data
could be used due to the significantly large design space. For instance, in addition to the 8-bit ver-
sion, we also apply an exhaustive simulation for 16-bit multipliers. Then, we pre-process (reduce)
the training data based on designs characteristics, i.e., area, delay and power consumption [60].

(3) Clustering/Quantizing of Training Data: The accuracy of the proposed approximate
library has been discussed in Reference [58]. Evaluating the design accuracy for a single input
can provide the error distance (ED) metric only. Therefore, clustering of the training data is
indispensable to evaluate the design accuracy over a range of consecutive inputs that belong to the
same cluster. Thus, the mean error metrics, including mean square error (MSE) and normalized

mean error distance (NMED), are evaluated for each cluster. In this work, we consider the Peak

Signal-to-Noise Ratio (PSNR), which is a fidelity metric used to measure the quality of the output
images, as given in Equation (1), as our TOQ. Clearly, PSNR depends on MSE, which is defined as
the average of the squared ED values, as given in Equation (2) [61]. The model could be trained
for various error metrics of approximate design such as ED and MSE. However, image statistical
parameters such as entropy, mutual information, and edge preservation cannot be used in model
building, since they are specific to images not to approximate designs (approximate multiplier in
this work).

PSNR = 10 × loд10

(
MAX 2

MSE

)
(1)

MSE =
1

22n

22n∑
i=1

|Pi − P ′
i
|
2
=

1

22n

22n∑
i=1

|EDi |
2 (2)

For an 8-bit approximate multiplier, where each design has 65, 536 possible input combinations,
we propose to cluster every 16 consecutive input values. Thus, each input encompasses 16 clustered
inputs rather than 256. Therefore, the total number of possible input combinations per design is
reduced to 256, and for the library of 8-bit approximate multiplier, we have a total number of
5 × 4 × 162 = 5, 120 training instances.

(4) Pre-processing/Reducing of Training Data: Data pre-processing is an often neglected but
a major step in the data mining process [62]. However, in the proposed methodology with 8-bit
designs, this step is not required as it is more applicable to designs with large training data. For
the library of 16-bit approximate multipliers, we eliminate training instances that have a high
Area-Power-Delay-Product (APDP) [63].

(5) Building an ML-based Design Selector: The design selector enables design adaptation for
changing inputs to match the required TOQ where the error distribution is input-dependent [64].
ML-based algorithms find solutions by learning through a training data [53]. In supervised learn-
ing, a map between a set of input attributes and an output variable is used to predict the unseen
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data. The DT algorithm uses a flowchart-like tree structure to partition a set of data into various
predefined classes, thereby providing the description, categorization, and generalization of the
given datasets [63, 65]. We assume that only testing, as opposed to training, of a DT is done on an
FPGA.

For 8-bit designs, we implemented the design selector utilizing the C5.0 function [66] in the
statistical and computing R language [67]. The data was divided into two groups: the training-
testing dataset and the validation dataset. 70% of the original dataset were selected randomly for
model training using repeated 5-fold cross-validation. The most accurate model was selected for
the testing stage based on 15% for the dataset. Finally, we validated the model using the remaining
15% for the dataset. The obtained accuracy depends on the settings of the different parameters,
where the parameters of the most accurate DT-based models in R are as follows: (i) the maximum
depth of any node of the tree (maxdepth) is 30; (ii) the minimum number of observations that
must exist in a node for a split to be attempted (minsplit) is 20; and (iii) the minimum number of
observations in any terminal node (minbucket) is 7. The implementation overhead, i.e., power, area,
delay, and energy, for the DT-based model is negligible compared to the approximate accelerator,
since it is a simple nesting of if-else statements. Moreover, for 16-bit designs, we use MATLAB’s
Classification Learner Toolbox [68] to build a decision tree-based model with an accuracy of 77.8%.
Then, based on MATLAB’s HDL Coder toolbox [69], we generate a portable and synthesizable
VHDL code from MATLAB.

We utilized DTs and NNs to build an input-aware model, i.e., design selector, to pick the most
suitable approximate design based on the input data. We implemented both the DT and NN-based
model on FPGA, and evaluated their dynamic power consumption, slice LUTs, occupied slices,
operating frequency, and consumed energy. These values are insignificant when compared to the
characteristics of approximate multipliers, where these multipliers are used for 16,384 inputs. How-
ever, the NN-based model has an execution time that is 1.31× higher than the DT, while its average
accuracy is almost 0.98× of the accuracy of the DT-based model. Moreover, the power, occupied
slices, and energy of the NN-based model are 8.6×, 11.74×, and 13.6×, consecutively, compared
with the DT-based model. Accordingly, we discarded the NN-based design selector due to the ab-
sence of advantages over DT.

(6) Integrating the Approximate Accelerator into Error Tolerant Application: The selected
approximate accelerator is adapted within an error-resilient application. For example, accelerators
based on 8-bit approximate multipliers are used in multiplication-intensive applications such as
image processing, i.e., blending and filtering. Moreover, 16-bit approximate designs are used for
audio blending. The online phase of the proposed methodology is implemented using Xilinx Vi-
vado 2019.2, which supports dynamic partial reconfiguration feature [70]. To have a full control
over each step of the design flow, we use TCL commands and scripts to manage design sources
and processes in Non-Project Mode as proposed by Reference [71].

5 RESULTS AND DISCUSSION

This section evaluates the effectiveness of the FPGA-based implementation of the fully automated
proposed system, including the approximate library and the DT-based design selector. We evalu-
ate the proposed methodology based on two applications of image processing: (1) Image blending,
where we use 55 examples; and (2) Image filtering, where we use two images, i.e., Lina and Cam-
eraman. Moreover, we evaluate an audio mixing application with 45 examples, based on 16-bit
models.

System Architecture: The proposed FPGA architecture contains a set of IP cores, e.g.,
AXI_EMC, JTAG_AXI, and ICAPE2, connected through a common bus interface. The developed
approximate accelerator core is with the capability of adjusting processing features as commanded
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Fig. 3. An accelerator with 16 identical approximate multipliers.

Fig. 4. The proposed self-adaptive approximate system utilizing decision tree model.

by the user to meet the given TOQ. Figure 3 shows the internal structure for the approximate ac-
celerator with 16 multipliers. Each input, i.e., Ai and Bi where 16 ≥ i ≥ 1, is 8-bit width. For the
parallel execution, we utilize the existing block RAM in Xilinx 7 series FPGAs, which have 1,030
blocks of 36 Kbits. Thus, we store the input data (image) in a distributed memory, e.g., store each
image of size 16 KBytes into 16 memory slots each of 1 KByte. Other configurations of the memory
are also possible and can be selected to match the performance of the processing elements within
the accelerator.

The proposed self-adaptive approximate accelerator system based on decision tree is presented
in Figure 4, where the annotated numbers show the flow of its execution. The target device is
xc7vx485tffg1761-2 and the evaluation kit is Xilinx Virtex-7 VC707 Platform [47]. The main com-
ponents are the reconfiguration engine, i.e., DT-based design selector, and the reconfigurable

core (RC), i.e., approximate accelerator. The RC is placed in a well-known partially reconfig-

urable region (PRR) within the programmable logic. The AXI-HWICAP controller establishes
communication with the ICAP.

We use MATLAB to read the images, re-size them to 128 × 128 pixels, convert them to grayscale,
and then write into coefficient (.COE) files. Such files contain the image pixels in a format that
the Xilinx Core Generator can read and load. We store the images in an FPGA block RAM

(BRAM) that is considered as a special memory module separated from the regular logic cells
in an FPGA [72]. The design evaluates the average of the pixels of each image retrieved from the
memory, then the hardware selector decides which reconfigurable module, i.e.,bitstream file, to load
into the reconfigurable region. The full bitstream is stored in flash memory to be booted up into
the FPGA at power-up. Moreover, the partial bitstreams are stored in well-known addresses of the
flash memory.

We evaluate the effectiveness of the proposed methodology for an FPGA-based adaptive
approximate design utilizing DPR. For that, we select an image blending application due to its
computationally intensive nature and its amenability to approximation. As a first step, to prove
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Fig. 5. Obtained output quality (PSNR) for static image blending.

the validity of the proposed design adaptation methodology, we evaluate a design without the
DPR feature, utilizing the exact accelerator as well as 20 approximate accelerators that exist
simultaneously, based on the proposed methodology. Thus, a 21 different accelerators evaluate
the outputs. Next, based on the inputs and the given TOQ, the design selector choose the output
of a specific design, which have been selected based on the DT-model. Finally, the selected result
will be forwarded as the final result of the accelerator. The evaluated area and power consumption
of such design is 15× and 24× greater than the exact implementation, respectively.

Accuracy Analysis of a Static Design: For any approximate design, the obtained output qual-
ity depends on the value of the applied inputs [73]. Thus, for a static approximate accelerator, we
apply image blending for different input data (images), where, accordingly, we obtain a variable
PSNR. Figure 5 shows the maximum and the minimum of the PSNR that is obtained by applying
different input images for a specific static design. The obtained PSNR fluctuates by 15.4%, 13.7%,
15.2%, 9.6%, and 9.8% for Design3, Design7, Design11, Design15, and Design19, respectively. Thus,
for any design, the PSNR fluctuates for different images due to the dependency of the output quality
on the inputs. Therefore, such high input-dependent achieved quality requires design adaptation
to keep it minimal.

Accuracy Analysis of the Adaptive Design: We evaluate the accuracy of the proposed design
over 55 examples of image blending. For each example, our TOQ (PSNR) ranges from 15dB to 63dB.
The images we use are from the database of “8 Scene Categories Dataset” [74], which is download-
able from Reference [75]. It contains eight outdoor scene categories: coast, mountain, forest, open
country, street, inside city, tall buildings, and highways. Figure 6 shows the minimum, maximum,
and average curves of the obtained output quality, each evaluated over 55 examples. Generally,
for image processing applications, the quality is typically considered acceptable if PSNR ≥ 30dB,
and otherwise unacceptable [76]. Based on that, the design adaptation methodology has been exe-
cuted 1,870 times while the TOQ has been satisfied 1,530 times. Thus, the accuracy of our obtained
results in Figure 6 is 81.82%.

Area Analysis of the Adaptive Design: Table 2 shows the main resources of the XC7VX485T-
2FFG1761 FPGA [77]. Moreover, it shows the resources required for the image blending application
utilizing an approximate accelerator, both static and adaptive implementation. Design checkpoint
files (.DCP) is a snapshot of a design at a specific point in the flow, which includes current netlist,
any optimizations made during implementation, design constraints, and implementation results.
For the static implementation the .dcp file is 430 KBytes only, while for the dynamic implemen-
tation it is 17,411 KBytes. This increase in the file size is due to the logic that has been added
to enable dynamic partial reconfiguration, as well as the 20 different implementations for the
reconfigurable module (RM). Moreover, the overhead of such logic is shown in the increased
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Fig. 6. Obtained output quality (PSNR) for FPGA-based adaptive image blending.

Table 2. Area/Size of Static and Adaptive Approximate Accelerator

Design .DCP File Slice LUTs Slice Registers RAMB36 RAMB18 Bonded IOB DSPs Bitsream size

XC7VX485T-2FFG1761 FPGA — 303,600 607,200 1,030 2,060 700 2,800 —

Static Design 430 KBytes 1,472 357 235 51 65 0 19,799 KBytes
Adaptive - Top 17,411 KBytes 12,876 15,549 235 51 65 0 19,799 KBytes
Adaptive - Exact RM 770 KBytes 1,287 0 0 0 0 0 692 KBytes
Adaptive - Max Approx RM 647 KBytes 800 0 0 0 0 0 692 KBytes
Adaptive - Min Approx RM 458 KBytes 176 0 0 0 0 0 692 KBytes

number of the occupied Slice LUTs and Slice registers. However, both static and dynamic imple-
mentations have the same size of bitstream file (692 KBytes), which is to be downloaded into the
FPGA. DPR enables downloading the partial bitstream into the FPGA rather than the full bitstream.
Thus, downloading 692 KBytes rather than 19,799 KBytes would be 28.6× faster. Since different
variable-size reconfigurable modules will be assigned to the same reconfigurable region, it must
be large enough to fit the biggest one, i.e., exact accelerator in our methodology.

Table 2 shows the main features for xilinx XC7VX485T-2FFG1761 device including the number
of slice LUTs, slice registers, and the number of block RAM. The total capacity of block RAM is
37,080 Kbits, which could be arranged as 1,030 blocks of size 36 Kbits each or 2,060 blocks of size
18 Kbits each. The reconfigurable module (RM) with exact implementation occupies 1,287 Slice
LUTs. However, the number of Slice LUTs occupied by the RM with approximate implementation
varies from 800 to 176 LUTs. Thus, the area of the approximate RM varies from 62.16% to 13.68%
of the area of the exact RM. Despite all of that, all the 21 RMs have the same bitstream size, which
is 692 KB.

Execution/Reconfiguration Time Analysis of the Adaptive Design: Current FPGA plat-
forms are increasingly being used as final products rather than just rapid prototyping systems.
However, the reconfiguration time for small bitstreams in partially reconfigurable FPGAs cannot
be neglected. For instance, the authors of Reference [78] analyzed the system factors that affect the
reconfiguration overhead. The total reconfiguration overhead depends on the system components,
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including the internal and external memory, the reconfiguration controller, the connections meth-
ods, the internal configuration port, and the FPGA configuration memory [78]. Modern FPGAs
need several milliseconds or even seconds, depending on the size of the bitstreams, the configura-
tion interface, and how these are stored and transferred [46].

The reconfiguration time of a partial bitstream is much smaller than the reconfiguration time of
a full bitstream file. Thus, an important decision in partial reconfiguration is determining the re-
configuration granularity, which specifies the amount of computation to perform before design
reconfiguration. In this work, design reconfiguration is done for each grayscale image of size
128 × 128 pixels, i.e., 16,384 pixels, where a single multiplication operation is done for each pixel.
In our proposed methodology, the dynamic region is reconfigured if the TOQ or the inputs change.

Reconf iдuration Time (RT ) =
Bitstream Size (BS)

Reconf iдuration Throuдhput (RTP)
(3)

According to Equation (3), the reconfiguration time for a partial bitstream is 1.73 ms, while the
reconfiguration time for the full bitstream is 49.5 ms. Moreover, the execution time for blending a
single image of size 128 × 128 pixels is 163.83 μs. Generally, we should have a low overhead time
compared to the execution time. Thus, as a future work, blending a video with 120 FPS (frames
per second) for one second would have an 8% time overhead. Similarly, blending a video with 240
FPS for one second would have an 4% time overhead.

Energy Analysis of the Adaptive Design: The library of the approximate designs given in
Table 1 has a reduced energy consumption [11]. The energy required to process an image is given
by the following equation:

Enerдy = Power × Delay × N , (4)

where Power and Delay are obtained from synthesizing the approximate multipliers, and N is the
number of multiplications required to process an image, which equals 128 × 128=16,384 pixels.
The energy consumption of the static design is 3,867 pj, while the energy consumption of the
approximate design varies from 22 pj to 2,970 pj. Thus, the lowest energy saving is 897 pj per
multiplication operation and 14.7 μj per image blending operation. Therefore, the overhead of
energy consumption due to design adaptation of 734 pj is almost negligible compared to 14.7 μj.

Now, after we explained the proposed system for image blending application, we evaluate
the accuracy of the proposed adaptive design for 16-bit audio blending and 8-bit image filtering
applications.

Accuracy Analysis of the Adaptive Design for 16-bit Audio Blending: For sounds, which
are propagating waves represented in a binary coding, we use the 16-bit depth format to be able
to cover a wide range of amplitudes with an enhanced quality. Here, we implement a set of audio
blending applications to evaluate the proposed design of adaptive approximation over 45 examples,
where the TOQ (PSNR) ranges between 15 dB and 70 dB. The used WAV sound files were obtained
from [79]. Figure 7 shows the obtained TOQ (PSNR) based on the adaptive design. The accuracy
of the “average obtained TOQ,” represented in a black curve, is 80.4%.

Accuracy Analysis of the Adaptive Design for 8-bit Image Filtering: Here, a Gaussian
smoothing low-pass filter is used for accuracy evaluation of the adaptive system. The low-pass
filter attenuates high frequency signals. Thus, image details are reduced. Gaussian smoothing in-
cludes convolving the image with a 2-D Gaussian function, according to Equation (5) [80]. Equa-
tion (6) shows the (3 × 3) kernel that we use, based on σ = 1.5, where the value of the central
pixels significantly contributes to the kernel average.

G(x ,y) =
1

2πσ 2
e−

x
2+y

2

2σ 2 (5)
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Fig. 7. Obtained output quality (PSNR) for FPGA-based adaptive audio blending.

Fig. 8. Cameraman and Lena benchmarks.

Kernel =
1

254

⎡⎢⎢⎢⎢⎣
24 30 24
30 38 30
24 30 24

⎤⎥⎥⎥⎥⎦
(6)

We used the benchmark images of Cameraman and lena, which are 8-bit gray-scale of size
(128× 128) pixels. The benchmark images are shown in Figure 8, where the Gaussian-noise added
and the noisy images filtered with the exact design. For TOQ (PSNR) varying between 17 dB and
63 dB, Figure 9 shows the obtained PSNR for the benchmarks (Cameraman and lena) of image
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Fig. 9. Obtained output quality (PSNR) for FPGA-based adaptive image filtering.

filtering based on the adaptive design. Clearly, we notice that the adaptive system is always able
to satisfy the TOQ for PSNR ≤ 53 dB, which is the best output quality obtained by static approx-
imate designs and cannot be surpassed by the adaptive design. For the obtained results of 8-bit
image blending and filtering, various characteristics can be evaluated, such as entropy and edge
preservation. However, we cannot compare them with a reference value to evaluate the accuracy
of the model. Thus, in this work, we only used PSNR. As future work, we could do the training at
the image level.

6 CONCLUSION

Design approximation at the hardware level, e.g., approximate multipliers, are suitable to in-
crease the energy-efficiency of FPGA-based error-tolerant applications including machine learning.
However, it is clear that the compelling principle of approximate computing can lead to large out-
put errors for dynamically changing inputs that are applied to static approximate systems. There-
fore, in this article, we proposed to adapt the architecture of the PPGA-based approximate accel-
erator using dynamic partial reconfiguration. The proposed design with low power, reduced area,
small delay, and high throughput is based on runtime adaptation for changing inputs. For this
purpose, we utilized a lightweight and energy-efficient design selector built based on decision tree
models. Such input-aware design selector determines the most suitable approximate architecture
that satisfies user-given quality constraints for specific inputs. Then, the partial bitstream file of
the selected design is downloaded into the FPGA. This allows the quick swapping of modules in
and out of the devices without having to reset the complete device. The obtained results for image
blending, audio blending, and image filtering applications show that the proposed adaptive design
is satisfying the user given TOQ for 81.82%, 80.4%, and 89.4% of the time, respectively, with a par-
tial bitstream file that is 28.6× smaller than the full bitstream. As future work, we plan to target
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approximate accelerators based on arithmetic units rather than multipliers. Moreover, other ma-
chine learning algorithms would be investigated for higher accuracy and lower implementation
overhead. For different error-resilient applications, we aim to reflect application-specific parame-
ters by mapping them into the most suitable corresponding accuracy metrics.
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