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Stochastic computing allows a drastic reduction in hardware complexity using serial processing of bit streams.

While the induced high computing latency can be overcome using integrated optics technology, the design

of realistic optical stochastic computing architectures calls for energy efficient switching devices. Photonics

Crystal (PhC) nanocavities are μm2 scale devices offering 100fJ switching operation under picoseconds-scale

switching speed. Fabrication process allows controlling the Quality factor of each nanocavity resonance, lead-

ing to opportunities to implement architectures involving cascaded gates and multi-wavelength signaling. In

this paper, we investigate the design of cascaded gates architecture using nanocavities in the context of sto-

chastic computing. We propose a transmission model considering key nanocavity device parameters, such as

Quality factors, resonance wavelength, and switching efficiency. The model is calibrated with experimental

measurements. We propose the design of XOR gate and multiplexer. We illustrate the use of the gates to de-

sign an edge detection filter. System-level exploration of laser power, bit-stream length and bit-error rate is

carried out for the processing of gray-scale images. The results show that the proposed architecture leads to

8.5nJ/pixel energy consumption and 512ns/pixel processing time.
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1 INTRODUCTION

Stochastic computing trades off computing accuracy with energy consumption. The probabilis-
tic presentation of the data and the serial processing of bit streams allow for reduced hardware
complexity and high energy efficient design [1]. Stochastic computing is suitable for error tolerant
applications, such as image processing [2]. It is also resilient to soft and transient errors since it
does not involve weighted binary numbers [3], i.e., the weight of all bits in a stochastic bit stream is
the same. However, the intrinsic high latency, induced by the serial computation, is the main limi-
tation of this approach. On a technological side, integrated optics technology, which provides high
speed signal propagation and high bandwidth [4], has been widely used to accelerate computing
architectures such as optical neural networks [5] and reconfigurable optical processors [6].

Silicon photonics devices such as Mach-Zehnder interferometer (MZI) and microring res-

onators (MRR) have been widely investigated in the design of optical computing architectures [7,
8]. In these approaches, optical signals are modulated by electrical signals, which calls for costly
electronics-to-optical and optical-to-electronics (EO/OE) converters for the design of large-
scale architectures. To cope with this limitation, the design of all-optical gates using MRR has been
investigated in [9]. The switching operation is obtained by applying a high power (typically few
mW) optical control signal in order to modulate a lower power optical data signal (typically few
100s μW). In MRRs, this is achieved by injecting control and data signals on different resonant
wavelength: the wavelength detuning obtained from the control signal will modify the transmis-
sion of the data signal. The difference in transmission between optical signals representing data ‘1’
and ‘0’ is called Extinction Ratio (ER). This way, the data signals remain in the optical domain
during their processing from the inputs to the outputs, which prevent the need for EO/OE convert-
ers. Therefore, all-optical architectures have the potential to operate at higher speeds compared to
optical architectures involving electrically controlled devices. However, to trigger non-linear ef-
fects needed for the all-optical computing, one has to take into account the wavelength detuning
achievable in the MRR, which mostly depends on the Quality factor (Q factor). Since the Q factor
is intrinsically the same for all resonances, the modulation obtained on the data signal is neces-
sarily limited by the shift triggered by the control signal. Photonic Crystal (PhC) nanocavities
do not share this limitation since each resonance can show a different Q factor. Hence, using such
a device can lead to extinction ratio unreachable with MRR, which is essential for the design of
computing architectures involving cascaded gates. Furthermore, PhC demonstrate 10ps switching
speed, 100fJ switching energy consumption and 10× compactness compared to MRRs [10], which
make the devices an ideal candidate for all-optical computing architectures.

The design of all-optical gates is necessary to implement all-optical computing architectures. In
the context of stochastic computing, the design of all-optical XOR gate and multiplexer is essential
since they represent an absolute value subtractor and an adder, respectively. The implementation
of an architecture that involves cascaded gates, such as stochastic edge detection with cascaded
multiplexers, in optical domain is challenging. It requires a device with different Q factors and
wavelength detuning to transmit a group of signals propagating at multiple wavelengths. The
design of such architecture involves a large design space to explore at both device and system
levels, such as Q factors, resonance wavelength, and wavelength detuning.
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In this paper, we investigate the use of PhC nanocavities to design all-optical cascaded gates
for stochastic computing architectures. For this purpose, we develop all-optical XOR gate and 2-1
MUX (2 inputs - 1 output multiplexer) using nanocavities. We propose a transmission model of the
nanocavities taking into account Q factors and resonance wavelengths, which allows to explore the
design space. As a case study, we implement a Sobel edge detection filter, which involves cascaded
XOR gate and 2-1 MUX for absolute value subtraction and addition. The design of the cavities is
explored to trade off power consumption, computing accuracy, and processing time. System-level
evaluation is carried out through the processing of images under various Bit Stream Lengths

(BSL) and laser powers.
The rest of the paper is organized as follows: Section 2 presents an overview of image processing

filters implemented using stochastic computing and introduces existing optical computing archi-
tectures. In Section 3, we introduce the design of NOT gate, XOR gate, and 2-1 MUX using PhC
nanocavity, and present the proposed transmission model of the device. Section 4 illustrates the
design of a stochastic edge detection filter-based architecture using Sobel operators. The analyt-
ical model used to estimate the required lasers powers and evaluate the computing accuracy is
introduced in Section 5. In Section 6, the simulation results are presented. Finally, we conclude the
paper and present future work.

2 BACKGROUND AND RELATED WORK

2.1 Stochastic Computing

Computations in stochastic computing are performed on probabilities instead of weighted binary
numbers. A Stochastic Number Generator (SNG) generates bit streams, where the ratio of the
number of 1’s to the BSL indicates the probability [1]. Therefore, the result is approximated, and
the accuracy is enhanced by increasing the BSL. Stochastic computing is characterized by reduced
hardware complexity. For example, an addition can be implemented using a multiplexer.

Different architectures were proposed to perform stochastic computations. The reconfigurable
architecture in [11], can execute any arbitrary single input function. It relies on transforming
the targeted function to its equivalent Bernstein polynomial function. In [12], the architecture is
designed to implement high accuracy FIR filters by proposing non-scaled stochastic adder. The
design of Low-Density Parity Check (LDPC) decoding [13] in communication domain can be
implemented using stochastic circuits to perform parity checking and equality checking [3].

In the context of neural network, a deep neural network (DNN) relying on the approximation
of any real number using an integer stochastic stream is proposed in [14]. It results in 45% and 62%
reduction in area and latency, respectively, compared to the state-of-the-art stochastic architecture.
A convolutional neural network (CNN) relying on hybrid bit stream-binary is proposed in [15].
The design of the first layer is based on low-discrepancy deterministic bit streams for accurate and
fast computing. The results show 19× area reduction and 16× power saving, compared to the non-
pipelined fixed point binary design.

In [16], the design of stochastic edge detection filter is proposed. It is based on Robert’s cross
operator, shown in Figure 1, where two 2 × 2 filters are applied to an image in order to find the
gradient vector at each pixel. The filters rely on absolute value subtraction and addition that are
implemented using XOR gate and multiplexer, respectively, as detailed in the following:

• Absolute value subtractor: Figure 2(a) illustrates an XOR gate implementing a subtractor.
This operation requires positively correlated bit streams with maximum overlap between
1s and 0s [17]. In the example, bit streams A = 01010110 and B = 01110110 are positively
correlated with probability pA = 4/8 and pB = 5/8, respectively, which leads to pY = 1/8.
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Fig. 1. Stochastic implementation of edge detection filter using Robert’s cross operator [16] with XOR as an
absolute value subtractor and 2-1 MUX as a scaled-adder.

Fig. 2. (a) XOR gate as absolute value subtractor and (b) 2-1 MUX as scaled-adder.

In general, the output of the XOR gate can be written as:

pY =

{
pA − pB : pA > pB

pB − pA : pB > pA

which can be expressed as:

pY = ��pA − pB
��

• Scaled-adder: This operation can be implemented using 2-1 MUX, as shown in Figure 2(b).
The selection line has a probability of 1/2, which allows to downscale the output in order
to keep the probability in the range [0,1]. While the bit streams to be added can be either
uncorrelated [1] or correlated, the selection line needs to be uncorrelated with the inputs.
The output of the multiplexer is given as:

pY = (1 − pSel ) pA + pSelpB

since pSel = 1/2, the equation can be written as:

pY =
1

2
(pA + pB )

The main drawback of this implementation is the reduced accuracy of the output due to the
downscaling of the results by half. This can be overcome by doubling the bit stream length, which,
however, increases the latency. The design proposed in this work relies on cascaded multiplexers,
which induce precision loss but allow to maintain a low hardware complexity. The impact of the
precision loss on the application accuracy is evaluated, which allows to choose the most suitable
BSL.

A common issue in stochastic computing architectures is the overhead induced by SNGs. To
overcome this issue, a scaled-adder allowing to reduce the number of LFSRs has been proposed
in [18]. The selection line of the 2-1 MUX is connected to the Least Significant Bit (LSB) of
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the LFSR used to generate the 2-1 MUX data inputs. The optical adder we propose relies on this
efficient design. Since the same LFSR is used to generate correlated inputs [16], our design contains
only a single LFSR to generate the bit streams for the XOR inputs and the selection lines of the
MUXs.

2.2 Optical Computing Architectures

Integrated optics devices have proven their efficiency in the computing domain. Among these de-
vices are MZI, MRR and PhC devices. For instance, in [5], MZIs are used to design a fully optical
neural network, which demonstrates 2 order of magnitude speedup, i.e., photodetection rate of
100GHz, compared to electronics implementation. In [19], MZI is used to design a reconfigurable
mesh required to enable different functionalities in the architecture of microwave processors, such
as FIR filters. In [20], MRR is introduced in the design of optical lookup tables (OLUT), where
Wavelength Division Multiplexing (WDM) allows executing multiple functions simultane-
ously. A Reconfigurable Directed Logic (RDL) architecture is designed using MRRs [8]. It cal-
culates the sum of products for a given function in two steps. First, the products are evaluated, then
the sum of products is calculated. A 2-bit delayed XOR task is implemented on a 4× 4 swirl reser-
voir topology designed using nonlinear MRRs [21]. The results show that the design can reach 2.5×
10−4 error rate. In [22], the design of photonic hardware accelerator is proposed that can perform
parallel matrix vector multiplication operations at a rate of several Tera Multiply-Accumulate

per second (TMAC/s), to process image using convolution filters. In [23], PhC cavity is pro-
posed in the design of all-optical RAM, where writing, storage, reading, and erasing operations
are demonstrated. In [24], nanocavity is used in the implementation of all-optical logic gates using
Kerr effect, such as NAND, XOR, and XNOR. An All-Optical-Gate (AOG) is designed in [25] us-
ing PhC nanocavity, where light is used to control the transmission of light. Therefore, AOGs are
essential in all-optical signal processing, where it is used to achieve all-optical sampling on chip.

We investigated the combination of stochastic computing and integrated optics in [26]. We pro-
posed the use of silicon photonics devices, namely MZI, MRR, and all-optical add-drop filter, to
implement an optical version of ReSC architecture [11]. The design can execute any arbitrary sin-
gle input polynomial function and, in [27], we studied the impact of the BSL (stochastic computing
domain) and BER (optical domain) on the application-level accuracy.

In this paper, we aim to use PhC nanocavities to design an all-optical stochastic architecture.
We propose a transmission model to estimate the lasers power consumption and evaluate the
computing accuracy. We investigate the design of XOR gate and MUX using nanocavities. We
explore the device and system-level parameters in the design of cascaded gate architecture by
implementing edge detection filter that relies on the proposed gates.

3 PHOTONIC CRYSTAL NANOCAVITY

In this section, we introduce the PhC nanocavity device used to implement all optical logic gates.
The physical properties of the device and the implementation of an inverter are first detailed. Then,
the design of XOR gate and MUX are presented. Finally, a transmission model of the nanocavity
is proposed.

3.1 Nanocavity Device Overview

In this work, we use PhC nanocavity to implement all-optical logic gates. The structure is made
of III-V semiconductor bonded on top of a silicon waveguide, as illustrated in Figure 3(a). The
PhC cavity itself consists of a waveguide drilled with holes (Figure 3(b)). PhC nanocavity is a
resonator that can act as a filter allowing only the resonant optical frequency to pass through. The
implementation of fully optical gates using such cavity involves the triggering of nonlinear effect.
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Fig. 3. Photographs of the studied PhC nanocavity. a) The device is composed of a III-V semiconductor PhC
cavity bonded on top of a silicon waveguide. b) Scanning electronic microscope top view photographies of
III-V PhC cavities.

This can be achieved using a high power optical signal to control the transmission of lower power
optical signals. It has been shown that a fast (10ps) nonlinear response is possible with only about
100fJ of energy [28], substantially outperforming MRRs [29].

3.2 All-optical NOT Gate

As previously mentioned, the design of all-optical logic gates using nanocavity involves triggering
nonlinear effects. We illustrate this principle using the implementation of all-optical NOT gate. As
shown in Figure 4(a), the NOT gate has an input In, which corresponds to the pump signal injected
into the nanocavity. The value of In is given by its optical power P[NOT] (i.e., low power means ‘0’
and high power means‘1’). Therefore, input signal In controls the value of the output signal Out,
which corresponds to the output Out of the NOT gate. The design of the nanocavity allows two (or

more) resonances separated by Free Spectral Range (FSR). One resonance, in this case λ̂P[NOT],
is used to effectively inject a pump signal at λP, which induces the spectral shift of the other

resonances, i.e., λ̂S[NOT]. This modifies the transmission of the output signal at λS. The signal at λS

is always injected into the cavity as ‘1’, as shown in Figure 4(a). The operation of all-optical NOT
gate is explained as follows:

• In = ‘0’ corresponds to P[NOT] = ‘Low’ (Figure 4(b)): in this case, the nanocavity is off-

resonance, i.e., λ̂S[NOT] � λS. Thus, the transmission of the signal at λS to the output is
maximized, which leads to Out = ‘1’.

• In = ‘1’ corresponds to P[NOT] = ‘High’ (Figure 4(c)): The pump power detunes the resonance
of the nanocavity by Δλ[NOT]. The resonance of the cavity is then aligned to the output signal

wavelength at λS, i.e., λ̂S[NOT] = λS. This leads to a strong attenuation of the signal and hence
Out = ‘0’.

The fabrication process allows to control numerous parameters, such as Q factors and reso-
nance wavelengths. The design allows defining different Q factors for each resonance as shown in
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Fig. 4. An all-optical NOT gate implemented using nanocavity: (a) logic gate and the equivalent nanocavity
device representation, (b) gate transmission for logic input ‘0’, and (c) gate transmission for logic input ‘1’.

Figure 4. Since we assume one pump and one output signal, it is possible to define Q factors QP[NOT]

and QS[NOT] at resonances λ̂P [N OT ] and λ̂S[N OT ], respectively. We define the ratio between QS[NOT]

and QP[NOT] as the figure of Merit (M[NOT]) of the cavity (M[NOT] = QS[NOT]/QP[NOT]). A nanocav-
ity with a large figure of merits would allow to maintain efficient coupling of the pump signal
power into the device, while significantly changing the transmission around the output signal
wavelength. This would result in a large gap between the cavity transmission for data ‘1’ (i.e.,
no pump is applied) and data ‘0’ (i.e., a pump signal is applied), i.e., high ER. The impact of the
figure of merits is further discussed in Section 3.4. In the sequel, we propose the implementation
of all-optical XOR gate and MUX, which we use for the design of edge detection filter.

3.3 Design of All-optical XOR Gate and 2-1 MUX

The design of an edge detection circuit requires XOR gate and 2-1 MUX. In the rest of the paper,
we refer to 2-1 MUX as MUX for simplicity. The following introduces their implementation using
nanocavity devices.

• 2-input XOR gate: The gate is implemented using two cascaded nanocavities, as illustrated
in Figure 5(a). They are equal in Q factors but different in the FSR. Nanocavities marked 1©

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 1, Article 16. Pub. date: October 2021.



16:8 H. El-Derhalli et al.

Fig. 5. Nanocavity operating as (a) a 2-input XOR gate implemented using two cascaded nanocavities.
(b), (c), and (d) are the gate transmissions for different inputs scenarios.

Fig. 6. Nanocavity operating as (a) a 2-1 MUX. (b) and (c) MUX transmission.

and 2© resonate at λ̂S[X 1] and λ̂S[X 2] , respectively. Inputs In1 and In2, common for both
cavities, are injected as pump signals into the cavities. The pump signals propagating at
λP[1] and λP[2] are close in values to achieve the desired detuning. The signal at λS is always

‘1’. It is tuned to match the resonance wavelength of the nanocavity marked 1© (λ̂S[X 1] = λS)
and hence initially, when no pump signal is injected (In1 = In2 = 0), the signal is attenuated
leading to Out= ‘0’, as shown in Figure 5(b). When one of the pump signals is high (i.e., In1 �
In2), the resonance wavelengths of both cavities are shifted by Δλ[XOR]≈ 1

2 (λ̂S[X 2] − λ̂S[X 1]).
Since none of the resonance wavelengths is aligned with λS, this leads to the transmission of
the signal at λS with maximized power, i.e., Out = ‘1’, as shown in Figure 5(c). When the two
pump signals are high (In1 = In2 = ‘1’), as shown in Figure 5(d), the resonance wavelengths

of both cavities are detuned by Δλ[XOR] = λ̂S[X 2] − λ̂S[X 1]. Therefore, resonance wavelength

λ̂S[X 2] is tuned to λS. Since λ̂S[X 1] � λS, this leads to the transmission of the signal at λS by
the first device marked 1© and to its attenuation by the second device marked 2©, hence
Out = ‘0’.

• 2-1 MUX: The multiplexer is composed of a nanocavity resonating at λ̂S[MU X ] and con-
trolled by the pump signal Sel, as illustrated in Figure 6(a). The pump signal allows
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Table 1. Device Parameters

Parameter Description Unit

λ̂P[gate]
Resonance wavelength around pump signal

(when no pump power is injected)
nm

λ̂S[gate]
Resonance wavelength around input signal

(when no pump power is injected)
nm

FSR Free Spectral Range (FSR = λ̂P[gate] − λ̂S[gate]) nm

QP[gate] Quality factor around λ̂P[gate] –

QS[gate] Quality factor around λ̂S[gate] –

M[gate] Figure of merit (M[gate] = QS[gate]/QP[gate]) –

OTE[gate]
Optical Tuning Efficiency (the detuning of the

nanocavity according to the applied pump power)
–

selecting the input signal (i.e., In1 or In2) to be transmitted to the output Out. The selec-
tion is achieved by detuning the resonance of the nanocavity away from the required input
signal. For this purpose, when no pump signal is injected (Sel = ‘0’), the resonance wave-
length of the nanocavity is aligned with λS[1], i.e., the wavelength of In1, hence signal In1 is
attenuated and signal In2 is transmitted to the output, as shown in Figure 6(b), i.e., Out =

In2. When a pump signal is injected (Sel = ‘1’), the nanocavity is detuned to λS[2] (Δλ[MUX] =

λS[1] − λS[2]), thus leading to Out = In1, as illustrated in Figure 6(c).

The MUXs operate on multiple signals at different wavelengths and with multiple spacing. The
nanocavities implementing MUXs thus need to be carefully defined, taking into account the reso-
nant wavelength, the transmission bandwidth (i.e., Q factor), and the detuning.

In the following, we propose a model estimating the wavelength detuning and the transmission
of a nanocavity, taking into account key device parameters and the applied pump power.

3.4 Nanocavity Model

We propose a model allowing to design nanocavity based logic gates. The model allows
(i) estimating the wavelength detuning (Δλ[gate]) according to the applied pump power (P[gate])
and (ii) the calculation of signal transmission (T[gate]). Table 1 summarizes the device parameters,
where [gate] indicates the logic gate that is implemented using nanocavity, i.e., NOT, XOR, MUX,
etc. Our model does not consider any calibration needed to compensate process and thermal vari-
ations [30], which is outside the scope of this work.

Inputs device parameters λ̂P [дate] and FSR, shown in Figure 7, allow to evaluate λ̂S[дate] (mark
1©), when no pump power is applied. QP[gate] (mark 2©) is obtained from QS[gate] and M[gate], which

depend on the fabrication process and the cavity layout (e.g., width and length). The Optical Tun-

ing Efficiency (OTE [gate]) is obtained through device characterizations (mark 3©) and through
linear extrapolation to a polynomial function (mark 4©), which requires the targeted device pa-
rameters. The detuning (mark 5©) is calculated by taking into account QP[gate], the applied pump
power (P[gate]), and the OTE[gate]. Finally, the transmission of the nanocavity is evaluated using
Lorentzian approximation (mark 6©) [31].

We illustrate in Figure 8 two scenarios using our model: (i) different QS[gate]/same M[gate] and
(ii) same QS[gate]/different M[gate].

• M[gate] = 1 leads to the same Q factor at pump and input signals resonances, as il-
lustrated in Figure 8(a) for QP[gate] = QS[gate] = 700, 1500, and 4000. The corresponding
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Fig. 7. Proposed nanocavity model.

detuning (Δλ[gate]) of the cavity is plotted for pump power ranging from 0 to 300μW, as
shown in Figure 8(b). As it can be observed, the higher QP[gate], the smaller the maximum
detuning Δλ[gate]_max, which is due to the reduced coupling of the pump with the cavity. The
transmission of the input signal at λS according to the applied power is shown in Figure 8(c).
While 70% signal transmission can be obtained for all Qs[gate], the use of high QP[gate] can
lead to pump power reduction since the maximum transmission is reached earlier (50μW
and 270μW for Qs[gate] = 4000 and QS[gate] = 700, respectively).

• M[gate] � 1 leads to QP[gate] = 700 and QP[gate] = 2100 for M[gate] = 1.5 and M[gate] = 0.5,
respectively, assuming QS[gate] = 1050 (Figure 8(d)). As it can be seen in Figure 8(f), the max-
imum signal transmission reaches 0.3 and 0.8 for M[gate] = 0.5 and M[gate] = 1.5, respectively.
Reaching high ER of the input signal is thus possible for high M[gate] figures, thus leading
to opportunities to reduce the data signal power.

4 EDGE DETECTION FILTER ARCHITECTURE

In this section, we investigate the design of a stochastic filter application using photonic nanocav-
ities. Detecting edges in an image can be implemented using first derivatives by sliding two di-
mensional filters over the pixels. The application of the filters involves subtracting and adding
the input pixels with each other. In stochastic computing, absolute value subtraction and addition
can be implemented using XOR gates and MUXs, respectively. The implementation of the gates in
the optical domain has been discussed in the previous section. We then discuss the main design
challenges related to computing accuracy and energy consumption.
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Fig. 8. (a) and (d) Transmission of nanocavity devices of (QS[gate] = 700, 1500, 4000, M[gate] = 1) and
(QS[gate] = 1050, M[gate] = 1.5, 1, 0.5). (b) and (e) the corresponding wavelength detuning (Δλ[gate]) of (a)
and (d), respectively. (c) and (f) the corresponding transmission of input signal according to the applied
pump power.

4.1 Architecture Overview

The architecture we propose is generic and characterized by a size N. It is composed of one stage of
2N XOR gates (for the subtraction) followed by N MUX stages (for the addition). Each MUX stage
is composed of 2N/2n MUXs, where n is the stage position in the addition tree (1 ≤ n ≤ N).

4.1.1 Design Patterns. The architecture involves the following design patterns:

• Two XOR gates followed by a MUX allow implementing a sub-sum function. As illustrated
in Figure 9(a), two input signals at λS[i] and λS[i+1] are injected into XOR[i] and XOR[i+1],
respectively (mark 1© in the figure), where i is the position of the XOR in the range 1 ≤
i ≤ 2N. For each gate, the transmission of the input signal to the output is controlled by a
pump signal (mark 2©) generated by an SNG (mark 3©), as detailed later. The multiplexer
MUX[j1,1] receives the signals transmitted through the XORs (mark 4©), where [j1,1] is the
MUX at position j1 in stage n= 1 and 1 ≤ j1 ≤ 2N/2. Depending on the pump signal generated
from SNG5 (mark 5©), the multiplexer either transmits the signal at λS[i] or λS[i+1].

• Three MUXs allow implementing a sum function as shown in Figure 9(b). The aim of the
MUXs is to sum signals propagating at several wavelengths: an MUX at stage n receives two
sets of 2n/2 signals ( 6© and 7©) and outputs a single set of 2n signals. For example, each input
of the MUX at n = 3 is composed of 4 signals wavelengths and its output is composed of 8
wavelengths. In this design, only one signal will propagate to the output, other signals will
be filtered through the MUXs. However, the number of wavelengths that can potentially
carry the signal increases with the MUX stage. This calls for a MUX design taking into
account the number of signals to process and the distance between the wavelengths.

4.1.2 Sobel Filter Architecture Example. Figure 9(c) illustrates the design of a Sobel filter, where
a 3 × 3 window slides over the entire image to compute the gradient vector of the image. As
shown in the figure, the design patterns are repeated through the entire architecture (see the blue
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Fig. 9. The optical architecture to compute edge detection filters: (a) proposed design pattern to implement
subtraction and addition using XOR gates and MUXs; (b) design pattern to implement a tree scaled-adder;
(c) architecture for the 3× 3 Sobel operator example, (d) SNGs to generate stochastic numbers in the optical
domain, and (e) the transmission of two XOR gates and one MUX per stage.

and green dashed boxes). Each XOR receives two input pixels as pump signals, thus leading to a
subtraction. The resulting signals propagate to the MUXs (that implement a scaled-adder tree) and
the output signal is transmitted to the photodetector. In order to keep the architecture symmetrical,
we duplicate the input pixels for which coefficients 2 and −2 are applied in the Sobel filter. For
instance, XOR[7] and XOR[8] are duplicated from XOR[5] and XOR[6], respectively. In optical domain,
the design of the architecture requires i) eight lasers (i.e., one per XOR gate) emitting input signals
at different wavelengths and ii) 23 pump lasers (i.e., two per XOR gate and one per MUX).

4.1.3 Stochastic Number Generator (SNG). The cavities are controlled by pump signals corre-
sponding to stochastic numbers. As illustrated in Figure 9(d), we assume an electrical SNG that
controls a modulator, where a single shared LFSR is used in the SNG of all gates. The design of the
SNG for the XOR gates and the MUXs is different as detailed in the following:

• The XOR gates require electrical SNGs converting an input pixel (av) into a stochastic bit
stream (zv). For each XOR gate, av is compared to the value generated by a LFSR: ‘1’ is gen-
erated if the LFSR value is less than av; ‘0’ is generated otherwise. The comparator controls
a modulator, thus leading to the modulation of a signal continuously emitted by a laser at
λP[x]. Bit ‘0’ leads to a destructive interference in the modulator, hence a low pump signal is
generated. Otherwise, a constructive interference in the modulator causes high pump signal
(P[XOR,i]) to be injected into the gate, thus allowing to implement the XOR function. In order
to avoid crosstalk, each pump signal uses a dedicated wavelength. To generate correlated
inputs, the same LFSR is used to generate the bit streams inputs for all XOR gates.

• The selection line of the MUX only requires the generation of bit streams with the same
number of zeros and ones (probability of 0.5) to generate P[MU X , jn,n] values. For this pur-
pose, a modulator is directly controlled by a bit in the LFSR. In order to reduce the area and
power overhead, the same LFSR (used for the XOR gates) is used to control several MUXs.
This can be achieved without loss of accuracy by selecting bits at different positions.
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4.1.4 Transmission Spectrum and Device Characteristics. As previously explained, the number
of signals crossing the cavities increases with the stages. Figure 9(e) illustrates transmission ex-
amples corresponding to the architecture in Figure 9(c): eight signals propagate using eight wave-
lengths. As detailed in the following, (i) the distance between the wavelengths and (ii) the Q factor
are key design parameters as they directly impact crosstalk and switching energy:

• WLSn corresponds to the wavelength spacing at stage n of the MUX. The wavelengths are
then regularly spaced following a hierarchy that suits the MUX tree. In the example, WLS1 is
the distance between two consecutive signals in the first MUX stage, e.g., between λS[1] and
λS[2], λS[3] and λS[4], etc. WLS2 is the distance between two consecutive sets of wavelengths
in the second stage, e.g., between {λS[1], λS[2]} and {λS[3], λS[4]}, {λS[5], λS[6]} and {λS[7], λS[8]},
etc.

• QS[gate,n] corresponds to the cavity Q factor at stage n. Indeed, assuming the same Q factor
for all cavities in a stage allows using the same laser power per stage. Moreover, we as-
sume both XOR gates and the MUXs in the first stage to have the same Q factor. We define
QS[XOR], without n, as the Q factor of the XOR gate around the input signal. Moreover, as
the wavelength distance between signals to be multiplexed increases, the bandwidth of the
cavity increases (i.e., QS [MUX,n] > QS[MUX,n+1]).

To summarize, the design of the proposed architecture involves exploring numerous parameters,
such as laser powers, wavelength distances and Q factors. In the following, we further discuss their
optimization according to computing accuracy and power consumption purposes.

4.2 Design Challenges

The design of such an architecture involves the optimization of computing accuracy, power con-
sumption, and processing time. The following summarizes key technological and system-level
parameters we consider for the optimization of the architecture:

• BSL and BER: computing accuracy depends on BSL (stochastic domain specific) and BER

(optical domain specific). While both techniques result in power consumption, a reduction
in the BER should be preferred, since it can be achieved without impacting the processing
time.

• Input signal power: the architecture is composed of cascaded gates, which results in signal
attenuation. In order to ensure a proper operation of the design, an input signal should be
injected with a high enough optical power (typically 3 μW to 10μW).

• Pump signal power: it controls the wavelength detuning of the nanocavity and ranges
from 100μW to 10mW scale. To prevent the input signal from detuning the cavity, we as-
sume that its power should not exceed 10% of the pump power.

• Wavelength spacing: it impacts the power consumption as follows: small WLS increases
crosstalk and hence results in high BER. This requires high lasers power for the input signals
to overcome the crosstalk. On the contrary, larger WLS contributes to a reduction in input
signal power but calls for higher pump power to cover the larger wavelength detuning.

In the following, we present models allowing to explore these parameters.

5 IMPLEMENTATION AND MODEL

In this section, we present an analytical model to evaluate the error induced from the stochastic
computing technique and the optical transmission. Moreover, we develop a transmission model for
the edge detection filter to estimate the power consumption. We also define the required design
parameters and an exploration methodology.
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5.1 Error Evaluation

Two types of errors are considered: i) errors related to stochastic computing domain and ii) errors
related to optical domain as discussed in the following:

• EDBSL: an error distance induced by the approximation when generating stochastic bit
streams. This error is defined as:

EDBSL = |Ỳ − Y | (1)

where Y is the error free result and Ỳ is the approximated result for a given BSL. This error
can be reduced by increasing the BSL. However, this negatively impacts the processing
time.

• EDTrans: an error distance induced by the optical transmission and occurs at the photode-
tector side. It is indicated by the BER, i.e., the ratio of incorrectly transmitted bits. EDTrans is
given as:

EDT r ans = |Ỳ̀ − Ỳ | (2)

where Ỳ̀ is the approximated result considering a given BSL (related to Ỳ ) and BER. This
error can be enhanced using high laser power. As a result, the total error (worst-case error)
can be defined as:

EDT otal = EDBSL + EDT r ans (3)

We use Peak Signal to Noise Ratio (PSNR) as a metric to evaluate the computing accuracy when
processing an image as follows:

PSNRT otal = 10 × loд10
��

MAX 2
I

MSET otal

�� (4)

where MAXI is the maximum pixel in the error free image defined as 255 for 8-bit pixels. MSETotal

is the Mean Square Error given as:

MSET otal =
1

M × K

M∑
i=1

K∑
j=1

EDT otal (i, j )2 (5)

where M and K are the number of rows and columns in the image, respectively. EDTotal(i,j) is the
total error distance from processing a pixel at position (i,j) in the image.

5.2 Edge Detection Transmission Model

In order to estimate the BER of the architecture, we need to define the transmission of the signals.
As defined in Section 4, an edge detection architecture of size N is composed of 2N XOR gates,
where each gate is designed using two nanocavities connected in series. Each XOR gate transmits
one of 2N input signals through N MUXs. The transmission (T[i]) of input signal i, propagating at
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λS[i] through two nanocavities of the XOR gate and N MUXs is given as:

T[i] =

T[X 1]

(
λS[i], λ̂S[X 1,i], P {1,2}[X OR,i]

)
︸��������������������������������������︷︷��������������������������������������︸

Transmission through the
first cavity in XOR gate

×T[X 2]

(
λS[i], λ̂S[X 2,i], P {1,2}[X OR,i]

)
︸��������������������������������������︷︷��������������������������������������︸

Transmission through the
second cavity in XOR gate

×
N∏

n=1

T[MU X ]

(
λS[i], λ̂S[MU X , jn,n], P[MU X , jn,n]

)
︸������������������������������������������������������︷︷������������������������������������������������������︸

Transmission through N MUXs

(6)

where jn = � i
2n
� is the MUX position in stage n and 1 ≤ jn ≤ 2N/2n.

From the signal transmission, SNR is calculated as follows:

SNR = OLPInput ×
R

I
×

�����
T[i] −

M∑
k=1
k�i

T[k]

�			�
(7)

where OLPInput is the laser power of input signal at λS[i] injected into the XOR gate. R and I are the
photodetector responsivity and internal noise, respectively. T[i], in this case, is the transmission of
signal i as ‘1’, while the other crosstalk signals k are transmitted as ‘0’. T[k] is the transmission of
the crosstalk signals k as ‘1’ while signal i is transmitted as ‘0’, where M = 2N. The BER assuming
ON/OFF Key (OOK) modulation of the input signals is given by:

BER =
1

2
er f c

(
SNR

2
√

2

)
(8)

5.3 Nanocavity Design Parameters

The evaluation of T[i] depends on λS[i], λ̂S[gate], and P[gate] parameters, which we define according
to the methodology detailed in the following:

• Signal Wavelengths, Cavity Resonances, and Spacing: As previously explained, WLSn

corresponds to the shifting distance of the cavities located in stage n. Based on Figure 9(e),
we assume WLS3 > WLS2 > WLS1. In the XOR stage, each gate will operate on a signal
propagating at λS[i], where i is the row input number (1 ≤ i ≤ 2N). We set to 1542nm the
baseline wavelength λS[1] (i.e., the first input signal in Figure 9(c)). The subsequent signal
wavelengths are assigned as follows:

λS[i] = λS[1] −
N∑

n=1

(⌊ i − 1

2n−1

⌋
mod2

)
×WLSn (9)

For each XOR gate, we set the first and second resonance (i.e., λ̂S[X 1,i] and λ̂S[X 2,i] ) accord-
ing to the signal wavelength λS[i] and the assumed detuning Δλ[XOR]:

λ̂S[X 1,i] = λS[i] (10)

λ̂S[X 2,i] = λ̂S[X 1,i] + Δλ[X OR] (11)

The resonance at rest of each MUX is defined by the mean wavelength of the first set of
input signals:

λ̂S[MU X , jn,n] =
λS[2n (i−1)+1] + λS[2n (i−1)+2n−1]

2
(12)

where jn = � i
2n
� is the MUX position in stage n.
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• Pump Power: We assume the same pump lasers power (OLPP) injected into the cavities
located in the same stage. The pump powers received by XOR gates are defined by:

P {1,2}[X OR,i] =

{
OLPP [X OR] × IL, zv = 1
OLPP [X OR] × IL × ER, zv = 0

(13)

where IL is the Insertion Loss, ER is the Extinction Ratio, zv is the bit streams of the
input pixels for XOR gate, and the pump powers received by the MUXs are given as:

P[MU X , jn,n] =

{
OLPP [MU X ,n] × IL, LFSR bitn−1 = 1
OLPP [MU X ,n] × IL × ER, LFSR bitn−1 = 0

(14)

To ensure that the input power signal does not contribute to the detuning of the nanocavity,
we set the maximum power of the input signal to 10% of the cavity pump power.

• Algorithm: the following summarizes the steps we follow to explore the design space:

(1) Define input parameters: figure of merits (M[gate]), wavelength of input signal (λS[1]), and
targeted BER at the photodetector.

(2) From the experimental results, use QS[gate], QP[gate], λ̂S[дate] and λ̂P [дate] to calibrate the
PhC nanocavity model. Validate that the transmissions model and measurements are well
correlated.

(3) For XOR gate design, explore Δλ[XOR] and Qs[XOR] to minimize laser power. This requires

setting the resonance wavelengths of the XOR gate; λ̂S[X 1,1] and λ̂S[X 2,1] according to
Equations (10) and (11), respectively.

(4) For the MUX design, iterate from stage 1 to N to:
a. Set the resonance wavelength of the MUX[1,1] to λS[1] (Equation (12)).
b. Explore WLS1 and Qs[MUX,1] to minimize BER at the output stage, and select the desired

BER. This allows defining λS[2] according to Equation (9) and the resonance wavelength
of XOR[2] and MUX[1,2] according to Equations (10) to (12).

c. Repeat step 4.b to explore WLS2 and Qs[MUX,2]. By selecting a BER, λS[3] and λS[4] are now
evaluated using the corresponding WLS2 (Equation (9)). Accordingly the resonance
wavelengths of XOR[3], XOR[4], and MUX[1,3] are defined (Equations (10) to (12)).

d. Repeat step 4.b for the next stage until stage N. At this point, all WLS are defined.
This allows calculating the wavelengths of the rest of input signals and the resonance
wavelengths of the remaining devices.

(5) According to the input lasers power and pump lasers power, estimate the energy per bit
(Equations (13) and (14)).

(6) Process an image and evaluate the application-level computing accuracy for a given BSL

and input lasers power (Equations (1) to (8)).

6 RESULTS

In this section, we target a NOT gate of a given Q factor and compare the transmission and detuning
using our proposed model and the experimental characteristics. We evaluate the lasers powers for
a NOT gate and present the valid range of wavelength detuning. We introduce the design of XOR
gate and MUX by exploring the design space in each stage. We process an image using the proposed
architecture and we evaluate the computing accuracy, energy consumption, and processing time.

6.1 Model Calibration

In the following, we detail the model calibration according to the experimental results for a
NOT gate. As it can be observed from the transmission results reported in Figure 10, the gate is
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Fig. 10. Characterization results and model calibration for a nanocavity transmission when no pump power
is applied.

characterized by resonance wavelengths at λ̂S[N OT ] = 1592.5nm (around input signal) and

λ̂P [N OT ] = 1568.8nm (around pump signal), which leads to FSR = 24nm. At λ̂S[N OT ] and λ̂P [N OT ]

resonances, the 3dB bandwidth of the nanocavity is 1.44nm and 0.65nm, respectively, which in-
duces M[NOT] = 0.5. We calibrate the model using these parameters and, as it can be seen in the
figure, a good correlation is obtained.

Figure 11(a) shows the measured nonlinear cavity detuning (Δλ[NOT]) corresponding to an off-
chip pump average power ranging from 0 to 250μW. This corresponds to an on-chip pump pulse
energy up to 800fJ, for a cavity Q factor = 700. These pulsed mode measurements could be ex-
trapolated to quasi CW excitation, which will be considered here assuming pulse duration is equal
to the carrier lifetime, about 10ps. Thus, the off-chip average pump level 250μW corresponds to
on-chip peak power roughly equals to 100mW. Depending on the Q factor and the material used,
these numbers might change. In fact, the resonator here has been designed for maximized speed,
hence low Q, trading off with energy efficiency. A different balance would target an order of mag-

nitude larger Q. Figure 11(b) illustrates the transmission of the cavity at λ̂S[N OT ] under a 78mW
on-chip peak power (178μW average pump power). This leads to around 1.6nm blue shift of the
resonance, which we observe for both measurement and model, thus validating the calibration.

In the following, we explore the impact of the signal detuning (Δλ[NOT] = λ̂S[NOT] − λS) on the

lasers powers, where λ̂S[N OT ] is the cavity resonance at rest. We consider a nanocavity with

Qs[NOT] = 2000, M[NOT] = 2 and λ̂S[N OT ] = 1542nm. In Figure 12(a), we assume transmission scenar-
ios for Δλ[NOT] = 0.05nm, 0.1nm, 0.19nm, and 0.35nm. Two optical signals are injected: OLPInput and
OLPP correspond to the optical power of input signal and pump signal, respectively. As illustrated
in Figure 12(a), Δλ[NOT] = 0.05 (mark 1©) requires the lowest OLPP value due to the small shift in
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Fig. 11. (a) wavelength detuning according to the average pump power, and (b) transmission when a pump
power is injected.

Fig. 12. For a nanocavity of QS[NOT] = 2000 and M[NOT] = 2: (a) The transmission assuming Δλ[NOT] = 0.05,
0.1, 0.19, and 0.35nm. (b) Lasers powers according to Δλ[NOT] ranges from 0 to 0.5nm.

the resonant wavelength. On the other hand, this results in a rather low 0.7dB ER, which is com-
pensated by using a high OLPInput value. Higher Δλ[NOT], such as 0.1nm (mark 2©), 0.19nm (mark
3©), and 0.35nm (mark 4©), leads to an increase in the ER = 1.7dB, 4.3dB, and 6.9dB, respectively.

This contributes to lower OLPInput but induces higher OLPP due to the larger wavelength detuning
distance.

To further explore the design space, we investigate the design power consumption by consid-
ering lasers powers, i.e., OLPInput and OLPP. We assume BER = 10−1 and Δλ[NOT] ranging from 0
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Fig. 13. Total lasers power of XOR gate assuming BER = 10−1 and nanocavities with M[XOR] = 2 and:
(a) QS[XOR] = 2000, 3500, 5000, and 8000. (b) QS[XOR] ranges from 1 to 10000.

to 0.5nm. We define the valid range when OLPInput accounts for 10% or less of OLPP. As it can be
seen in Figure 12(b), the power consumption is dominated by OLPInput for Δλ[NOT] < 0.1nm. At
Δλ[NOT] = 0.05nm (mark 1©), we obtain OLPP = 2.9μW and OLPInput = 19.1μW (for a total power of
22μW). This implies an input signal power (injected by OPLInput) exceeding 10% of the pump signal
power (injected by OPLP). Therefore, Δλ[NOT] = 0.05nm is an invalid option. Although Δλ[NOT] =

0.1nm (mark 2©) leads to optimal total power consumption, it is not a valid design option, since the
OLPInput accounts for 39% of the total power received by the cavity. From Δλ[NOT] = 0.19nm (mark
3©) to Δλ[NOT]_max = 1.13nm, the design becomes valid but leads to power overhead. Hence, the

power is dominated by OLPP due to the large wavelength distance needed to reach the input signal.
For example, Δλ[NOT] = 0.35nm (mark 4©) involves OLPP = 33.9μW and OLPInput = 0.7μW, which
increases the power consumption by 2.7× compared to the optimal Δλ[NOT]. Each nanocavity of a
given QS[NOT] has a unique range of wavelength detuning that varies between 0 and Δλ[NOT]_max.
However, the minimum detuning is specified according to the ratio of the injected input power to
the pump power signals. In the sequel, we explore the power consumption in the design of XOR
gates considering nanocavities of different Q factors.

6.2 Design of XOR Gate

As previously defined, an XOR gate is composed of two cascaded nanocavities with the same Q

factor but with resonances separated by Δλ[XOR]. We assume M[XOR] = 2 and QS[XOR] = [2000; 3500;
5000; 8000]. Figure 13(a) illustrates the total power consumption for Δλ[XOR] ranging from 0 to 1nm
and for a targeted BER = 10−1. As it can be seen in the figure, QS[XOR] = 8000 and 2000 lead to a
valid Δλ[XOR] range of [0.17–0.28]nm and [0.45–1.13]nm, respectively, and involve a total power
consumption ranging from 39μW to 94μW and 104μW to 276μW, respectively. Hence, the lower
QS[XOR], the larger the valid range of Δλ[XOR] and the more increases the power overhead. As also
can be observed from the figure, a total power = 82.5μW can be obtained for QS[XOR] = 8000, 5000,
and 3500 under Δλ[XOR] = 0.27nm, 0.335nm, and 0.365nm, respectively (see 1©). This demonstrates
that the same power efficiency can be obtained for different cavities (QS) and wavelength detuning
(Δλ[XOR]).

In the following, we explore QS[XOR] and Δλ[XOR] with the aim to find design parameters that
minimize the XOR power consumption. The results are reported in Figure 13(b). For the sake of
clarity, the design parameters corresponding to cavities detailed in Figure 13(a) are highlighted in
Figure 13(b) (mark 1©). As a first observation, we note that the higher QS[XOR] and the lower Δλ[XOR],
the lower the power consumption, which is due to the reduced amount of energy needed to shift
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Fig. 14. Achievable BER at each stage for nanocavities with M[MUX] = 2: (a) Stage n = 1 with 1 < QS[MUX,1] <

10000 and 0 <WLS1 < 1.2nm. (b) Stage n = 2 with 1 < QS[MUX,2] < 10000 and 0 <WLS2 < 1.2nm, assuming:
QS[MUX,1] = 10000, WLS1 = 0.215nm, and BER[MUX,1] = 10−4 from stage n = 1 (c) Stage n = 3 with 1 <
QS[MUX,3] < 1000 and 3 < WLS3 < 10nm, assuming: QS[MUX,2] = 1900, WLS2 = 1.19nm, and BER[MUX,2] =

10−2 from stage n = 2. (d) The transmission of the MUXs at different stages.

the cavity. Overall, the cavities laser power consumption ranges from 34.7μW (at Δλ[XOR] = 0.14nm
and QS[XOR] = 10000) to 398.2μW (at Δλ[XOR] = 1nm and QS[XOR] = 2000). As discussed earlier, we
use the same parameters for the cavities located in the XOR stage and the first MUX stage. In the
following, we explore the remaining design parameter for MUX stages.

6.3 Design of MUXs

In the following, we explore the MUX design parameters. For this purpose, we target a BER = 5 ×
10−1 at the photodetector, which corresponds to BER at stage n = 3 of the MUX (BER[MUX,3]), and
we explore the design space from the first stage to the last stage, by defining the inter-stage BER

to be reached. We use the corresponding parameters (QS[MUX,n], WLSn) from stage n to explore the
design space of stage n+1.

• Stage n = 1: we assume 3μW input signals powers (OLPInput) injected in the XOR gates,
we also assume the following ranges for Q factors and WLS1: 1 < QS[MUX,1] < 10000 and
0 < WLS1 < 1.2nm. As shown in Figure 14(a), the exploration results in BER[MUX,1] ranges
between 10−4 and 5 × 10−1. As can be seen, a high QS[MUX,1] leads to more accurate designs.
For example, QS[MUX,1] = 10000 and 5000 result in BER[MUX,1] = [10−4 −4 × 10−4] and [4 ×
10−4 −5 × 10−2], respectively. Moreover, the higher WLS1, the lower BER[MUX,1], which is
due to the reduced crosstalk. We choose QS[MUX,1] = 10000 and WLS1 = 0.215nm, which
lead to the lowest possible BER for the covered design space (BER[MUX,1] = 10−4). The
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corresponding transmission is plotted in the caption of Figure 14(a). The data signals
propagate at λS[1] = 1542nm (i.e., baseline wavelength obtained through experimental
results) and λS[2] = 1541.785nm (i.e., baseline wavelength minus the 0.215nm spacing). The
detuning of the cavity to λS[2] is obtained with a 32μW pump power. The selected signal is
transmitted to the MUX output with a power of 1.2μW.

• Stage n = 2: We assume the parameters defined in stage n = 1 (i.e., QS[MUX,1] = 10000
and WLS1 = 0.215nm) and we explore the same ranges of values for QS[MUX,2] and WLS2.
Figure 14(b) shows the resulting BER at stage n = 2 (BER[MUX,2]), which is overall higher
than BER[MUX,1] due to: i) the higher crosstalk induced by additional input signals to process
(2 and 4 input signals at n = 1 and n = 2, respectively) and ii) the lower received data signal
power (3μW and 1.2μW at n = 1 and n = 2, respectively). We target 10−2 for BER[MUX,2],
which we obtain with QS[MUX,2] = 1900 and WLS2 = 1.19nm (for a 210μW pump power). The
resulting transmission is shown in the caption. In addition to the input signals at λS[1] and
λS[2], we inject signals at λS[3] = 1540.81nm and λS[4] = 1540.595nm: the distance between
λS[3] and λS[4] is 0.215nm and the distance between {λS[1], λS[2]} and {λS[3], λS[4]} is 1.19nm.

• Stage n = 3: The design of the MUX at stage n = 3 (MUX[1,3]) is explored assuming
QS[MUX,2] = 1900 and WLS2 = 1.19nm from stage n = 2. As reported in Figure 14(c),
QS[MUX,3] = 500 and WLS3 = 4.35nm lead to the targeted 5 × 10−1 BER. The eight signals
received by MUX[1,3] and the corresponding cavity transmission are illustrated in the
caption. The selected value for WLS3 leads to λS[5] = 1537.65nm, λS[6] = 1537.435nm, λS[7] =

1536.46nm, and λS[8] = 1536.245nm. The selection of signals λS[4-8] is achieved by applying
a 670μW pump power.

As it has been observed, the design space considerably shrinks from a stage to another, which
is mostly due to the increasing number of signals to process as shown in Figure 14(d). This calls
for increasing wavelength spacing and thus reducing QS[gate]. As a matter of fact, we found that
the highest possible Q factor should be preferred for the design of the XOR gates. Regarding the
error rate, which inevitably increases as signals propagate through the stages, it can be overcome
by increasing the power laser and the BSL, as discussed in the sequel. Overall, the optimization
of the architecture would benefit from heuristics to explore the design space, which is out of the
scope of the paper, but we plan to investigate this in our future work.

6.4 Application-level Design Comparison

In the following, we evaluate the application-level computing accuracy by processing 512 × 512
pixels images using the proposed architecture. For this purpose, we assume injected input power
signals at 3μW, 4μW, and 5μW and BSL ranging from 26 to 211. The resulting 18 images are shown in
Figure 15. As can be seen, the computing accuracy can be enhanced by modifying any of the input
parameters, i.e., OLPInput and BSL. For example, three combinations of parameters allow enhancing
the accuracy from PSNRTotal = 20 (Figure 15(a)-(3)) to PSNRTotal = 26.4: (i) only increase the BSL from
256 to 1024 (Figure 15(a)-(5)); (ii) only increase the OLPInput from 3μW to 5μW (Figure 15(c)-(3));
(ii) and increase both the BSL and OLPInput to 512 and 4μW (Figure 15(b)-(4)), respectively. This
leads to opportunities to explore power and processing time tradeoffs.

In order to illustrate the impact of the parameters on energy consumption and processing time,
we select images reaching PSNRTotal = 26.4. This results in designs A, B, and C with targeted BER =
5 × 10−1, 10−1, and 5 × 10−2, respectively, for which the Q factors and wavelength spacings are
reported in Table 2. We evaluate the energy per computed pixel assuming 10ps pump pulse width
under 1GHz repetition rate and 20% lasing efficiency. As reported in Table 2, Design C results in
31% energy saving and 4× reduction in processing time than Design A. This indicates that for
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Fig. 15. Processed image: (a) OLPInput = 3μW, (b) OLPInput = 4μW, and (c) OLPInput = 5μW assuming BSL =

64 to 2048.

Table 2. Device/system-level Parameters and Performance of Three
Designs Targeting PSNRTotal = 26.4

the assumed set of device parameters, BSL has a higher negative impact on energy consumption
compared to BER due to the higher static energy. Therefore, a small BSL is preferred for higher
energy efficiency and faster processing architecture. Furthermore, while a higher injected input
signal power contributes to a reduction in the BER, it also significantly reduces the design space
due to higher crosstalk. This calls for cavities with a higher figure of merits (M[gate]), as discussed
in the following.

7 DISCUSSION AND FUTURE WORK

In this work, we have provided a quantitative analysis of our optical stochastic computing based
on consolidated photonic technologies. We have introduced a novel photonic device, which
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allows implementing all-optical NOT gate, XOR gate, and MUX. We have also demonstrated the
design of all-optical cascaded gates using nanocavities. In order to reduce the energy consump-
tion, nanocavities of higher Q factors are required. As seen from the results, the use of high Q

nanocavities implies a limited wavelength detuning, which drastically reduce the design space.
This calls for nanocavities with high figure of merits (i.e., M[gate] > 2), which we plan to fabricate
to demonstrate their full potential in large scale designs. Indeed, while M[gate] > 1 is generally ob-
served in PhC resonators as the modes are differently spatially confined, larger M[gate] should rely
on a tailor-made conception of the PhCs structures allowing two modes with a large difference of
Q factors. This will be achieved, for instance, by optimizing the coupling strength of each of these
modes to the waveguide. In order to accurately control the operating wavelength of each gate,
micro-heaters [32] will be implemented on the nanocavities, which will be taken into account in
our energy model. At system level, the exploration of figure of merits will considerably increase
the design space to explore, which calls for heuristic algorithms we will develop to efficiently op-
timize architectures. It is worth mentioning that we assume a relatively low modulation speed
of 1GHz, which was used for the measurement, leading to an efficient response of the photode-
tector [33]. Moreover, our design is symmetrical, which means that all paths from the input to
the photodetector have the same number of devices. In our future work, we will consider higher
modulation speeds of 10GHz and above, which will allow increasing the processing throughput
but will require careful synchronization signals. We also plan to take into account the process and
thermal variations, and study their impact on computing accuracy and energy efficiency. For this
purpose, additional device characterization results are required, where our model can be used to
explore the design space and hence optimize the energy consumption.

Our future work aims to design fully optical stochastic computing architectures. This will al-
low conducting a comprehensive comparison with binary conventional and stochastic computing
CMOS-based architectures [34, 35]. For this purpose, the design of all-optical SNG will be in-
vestigated. An all-optical implementation of the SNG would greatly improve the perspectives of
our approach since they would allow to avoid the use of LFSR, comparators and modulators. An
all-optical SNG could be based on the chaotic dynamics of semiconductor diode laser [36]. The
statistical qualities of these sources have been validated against a variety of statistical tests such
as NIST [37]. They generated random streams of data at a rate of 10 GHz or more [38]. The en-
ergy consumed by chaotic lasers could be reduced by replacing them with integrated lasers [39]
or recently demonstrated nanolasers [40]. Furthermore, they are readily integrated on a silicon
photonic chip, similar to the optical gates described here, with typical electric power threshold for
lasing below 1mW. As reported in [41], preliminary studies involving physical-level simulations
have validated the randomness of the signals emitted by nanolasers. All-optical stochastic com-
puting architectures will be used to design complex accelerators. We will first design architectures
with larger filter patterns and we will then address the design of FIR and IIR filters. Eventually,
we plan to develop a tool allowing to synthesize and optimize optical stochastic accelerators from
high level descriptions of combinational applications.

8 CONCLUSION

In this paper, we investigated the use of PhC nanocavity to design a stochastic computing ar-
chitecture. We proposed a generic transmission model for the nanocavity, which showed a good
correlation with experimental measurements for a NOT gate of QP[NOT] = 2400 and M[NOT] = 0.5,
hence validating the proposed model. The results showed that we can reach an ER = 6.9dB for
Δλ[NOT] = 0.35nm when 34.7μW power is injected. We used the model to design XOR gate and
MUX of different device parameters. We showed that an XOR gate of QS[XOR] = 10000 and wave-
length detuning equals to 0.14nm leads to 34.7μW power consumption. We designed an edge
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detection filter that relies on the proposed nanocavities-based XOR gate and MUX. We showed
that it is possible to implement the filter using a design of Q factors = 7700 for XOR gates and
7700, 1600, and 200 for MUXs. At the application-level, images were processed for various lasers
power and BSL. The results showed that the assumed set of device parameters, BSL has a higher
negative effect on the energy consumption compared to BER. The resulting architecture showed
8.5nJ/pixel energy consumption and 512ns/pixel processing time. All these observations raised the
need to fabricate nanocavities with a higher figure of merits (M[gate]) to increase the design space of
the gates, which we plan to investigate in our future work. Other perspectives include the design
of optical SNG and de-randomizer circuits, which will allow us to show the potential of integrated
optics in accelerating stochastic computing architectures.
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