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Abstract

Approximate computing is a nascent energy-efficient computing paradigm
suitable for error-tolerant applications. However, the value of approximation
error depends on the applied inputs where individual output error may reach in-
tolerable level while the average output error is acceptable. Thus, it is critical to
show the response of approximate design for various applied inputs where under-
standing the interdependence between the inputs and the approximation error
could be utilized to control the output quality. In this report, we exhaustively
analyze the accuracy of 20 different designs of 8-bit approximate array multipli-
ers. We designed these multipliers based on various configurations including the
type of approximable component and how much of the result to approximate,
i.e., approximation degree. Accuracy analysis shows a strong correlation between
the applied inputs and the magnitude of the observed error, i.e., error distance,
normalized error distance and peak-to-signal-noise ration. We may utilize this
input-dependency of approximation error, in controlling the quality of approxi-
mate computing by eliminating large magnitude errors and improving the quality
of the final results.

Keywords— Approximate Computing, Approximate Multiplier, Accuracy Analysis,
Input Dependency, Approximation Error
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1 Introduction

Approximate Computing (AxC) known as best-effort, inexact and tolerable computing
is gaining a great attention due to the unprecedented benefits. This emerging comput-
ing paradigm is suitable for processing the gigantic data produced in the era of “IoT”,
where the world produces 2.5 quintillion bytes of data per day [1]. Many modern ap-
plications including web searching, image processing, machine learning, and computer
vision show a tendency to accept imperfect results. Approximate computing is a viable
method of exploiting error tolerance in such applications to trade accuracy for energy
savings and performance improvements.

Multiple approximation techniques have been proposed at different abstraction lay-
ers of the computing stack [2]. At the software layer, techniques like loop unrolling and
code approximation are commonly employed while, at the hardware layer, techniques
like approximation of the functional units, e.g., adders [3], dividers [4] and multipli-
ers [5], are commonly used. A detailed description of approximation techniques and
their computing layers can be found in [6].

In [7], we designed a set of 8-bit and 16-bit approximate multipliers with acceptable
average output quality and reduced area, delay and power consumption. These mul-
tipliers are designed based on three design settings: (1) the type of approximate full
adder (FA) used to construct the multiplier; (2) the architecture of the multiplier, i.e.,
array or tree; and (3) the placement of sub-modules of approximate and exact multi-
pliers in the target multiplier module. We were able to design approximate multipliers,
which are suitable to applications with intrinsic error resiliency. We used these designs
in an image processing application and obtained interesting results, thus they are appli-
cable to other domains. However, utilizing a specific approximate design for the whole
range of the applied inputs could introduce a large magnitude error for specific inputs
where such error is undesirable. In this report, we investigate the relationship between
the range of design input values and their associated approximation errors in order to
identify the individual inputs which cause a large approximation error. For that, we
rely on a library of approximate multipliers which encompasses 20 different designs of
8-bit approximate array multipliers. We were able to clearly show the dependency of
various approximation metrics on the input data.

The rest of this report is organized as follows: Section 2 describes our library of
approximate multipliers with 20 designs. The analysis of various error metrics of the
approximate designs is explained in Section 3. Finally, some conclusions are drawn in
Section 4.

2 Library of Approximate Multipliers

Aiming to design 8-bit and 16-bit approximate multipliers, in [7] we investigated
five approximate mirror adders (AMA) [8], named AMA1–AMA5, three approximate
XOR/XNOR based full adders (AXA) [9], named AXA1–AXA3 and three inexact
adders (InXA) [10], named InXA1–InXA3. These FAs constitute the basic building
blocks to design array multipliers. Moreover, we utilized these 11 approximate FAs to
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Table 1: Library of approximate multipliers with 20 configurations based on Degree
and Type knobs

Approximate
Design

Degree
D1 D2 D3 D4

Type

AMA1 Design1 Design2 Design3 Design4
AMA2 Design5 Design6 Design7 Design8
AMA3 Design9 Design10 Design11 Design12
AMA4 Design13 Design14 Design15 Design16
AMA5 Design17 Design18 Design19 Design20

construct approximate compressors, i.e., 4-to-3, 5-to-3, 6-to-3, 7-to-3 and 8-to-4, which
are the basic blocks for tree multipliers. The approximable building blocks, i.e., FAs
and compressors, were used to construct approximate multipliers, i.e., array or tree
architecture, where the final result has a variable number of approximable bits, i.e.,
7-bits, 8-bits, 9-bits and 16-bits.

In this report, in order to investigate the relationship between the applied inputs
to an approximate design and the associated error, we select 8-bit approximate ar-
ray multiplier designs based on the five approximate mirror adders (AMA1, AMA2,
AMA3, AMA4 and AMA5), where the final result has 7-bits, 8-bits, 9-bits and 16-bits
of the results being approximated. We call such designs our “Library Approximate
Multipliers”.

Generally, an approximate design with N knobs, i.e., K1, K2,..., and KN, will have
|K1|x|K2|x...x|KN | different design settings. The 8-bit approximate multipliers of our
library have two knobs; K1 which represents the type of the approximate block used
to build the approximate design, and K2 which is the approximation degree of the
design. Thus, K1= {AMA1, AMA2, AMA3, AMA4, AMA5}, i.e., chosen from the
low power approximate full adders [8] and K2={D1, D2, D3, D4}, where D1 has 7 bits
approximated out of 16-bit result, while D2, D3, and D4 have 8, 9, and 16 approximate
bits, respectively. We have |K1|x|K2|=5x4=20 different settings (as shown in Table 1)
with enhanced design characteristics, i.e., reduced power consumption and execution
time, compared to the exact design [7].

3 Error Analysis

In this section, we are going to analyze the accuracy of the approximate library, i.e.,
20 designs of 8-bit approximate multipliers, based on various error metrics. Then, the
accuracy of the approximate designs is analyzed to verify its input-dependency which
is an essential consideration in approximate computing. Based on that, we identify the
accuracy metrics that are the most suitable to be used in different situations/applica-
tions.
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3.1 Accuracy Metrics

Approximation introduced accuracy as a new design metric for digital designs. There
are several application dependent error metrics used in AxC to quantify approximation
errors and evaluate design accuracy [10]. For example, considering an approximate
design with two inputs, i.e., X and Y , of n-bit each, where the exact result is (P ) and
the approximate result is (P ′), these error metrics include:

• Error Rate (ER): Also called error probability, is the percentage of erroneous
outputs among all outputs.

• Error Distance (ED): The arithmetic difference between the exact output and
the approximate output for a given input. ED can be given by:

ED = |P − P ′| (1)

• Mean Error Distance (MED): The average of ED values for a set of outputs
obtained by applying a set of inputs. MED is an effective metric for measuring
the implementation accuracy of a multiple-bit circuit design, which is obtained
as:

MED =
1

22n

22n∑
i=1

|EDi| (2)

• Normalized Error Distance (NED): The normalization of MED by the maximum
result that an exact design can have (Pmax). NED is an invariant metric inde-
pendent of the size of the circuit, therefore, it is used for comparing circuits of
different sizes, and it is expressed as:

NED =
MED

Pmax

(3)

• Relative Error Distance (RED): The ratio of ED to the accurate output, given
by:

RED =
ED

P
=
|P − P ′|

P
(4)

• Mean Relative Error Distance (MRED): The average value of all possible relative
error distances (RED):

MRED =
1

22n

22n∑
i=1

|REDi| (5)

• Mean Square Error (MSE): It is defined as the average of the squared ED values:

MSE =
1

22n

22n∑
i=1

|Pi − P ′
i |
2

=
1

22n

22n∑
i=1

|EDi|2 (6)
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• Peak Signal-to-Noise Ratio (PSNR): The peak signal-to-noise ratio is a fidelity
metric used to measure the quality of the output images, and given by:

PSNR = 10 ∗ log10(
2552

MSE
) (7)

Table 2: Accuracy metrics for the library of approximate multipliers

Approx
Degree

FA Type ER MED NED MRED MSE PSNR

D1

AMA1 0.931 102 0.0165 0.0380 1.69E+04 39.35
AMA2 0.978 101 0.0213 1.0447 1.44E+04 39.97
AMA3 0.996 200 0.0416 2.8055 4.76E+04 34.78
AMA4 0.932 51 0.0083 0.0189 4.11E+03 45.58
AMA5 0.870 44 0.0069 0.0148 3.14E+03 46.80

D2

AMA1 0.962 246 0.0366 0.0823 9.61E+04 32.10
AMA2 0.990 227 0.0515 2.1470 7.23E+04 33.26
AMA3 0.999 474 0.1077 7.0425 2.68E+05 27.65
AMA4 0.963 107 0.0164 0.0350 1.79E+04 39.15
AMA5 0.922 93 0.0138 0.0280 1.38E+04 40.32

D3

AMA1 0.977 538 0.0758 0.1679 4.53E+05 25.80
AMA2 0.996 464 0.0976 4.2929 2.97E+05 27.41
AMA3 1.000 1010 0.2280 13.4428 1.17E+06 21.75
AMA4 0.977 185 0.0286 0.0582 5.27E+04 34.30
AMA5 0.952 185 0.0261 0.0488 5.34E+04 34.56

D4

AMA1 0.9882 13162 1.1862 2.1 3.27E+08 5.54
AMA2 0.9998 16902 5.0033 272.6 4.00E+08 8.18
AMA3 0.9999 17211 3.9303 180.7 4.13E+08 7.36
AMA4 0.9882 6334 0.4705 0.6039 7.91E+07 10.38
AMA5 0.9825 8096 0.5309 0.6642 1.17E+08 8.85

Next, we present an error analysis for our library of approximate designs in order to
observe the dependency of approximation error on the applied inputs. Such observa-
tions could be leveraged to control approximation quality by designing an input-aware
adaptive approximate computing. Table 2 summarizes various error metrics, i.e., ER,
MED, NED, MRED and PSNR, that we obtained based on an exhaustive simulation
for 20 approximate designs. The shown values are averaged over the full range of pos-
sible inputs, and provide useful insights about the accuracy of designs. In the sequel,
we describe the ED, NED and PSNR error metrics one by one in detail.

3.2 Analysis of ED

Figure 1 shows the histogram distribution of the error distance (ED) for the approxi-
mate multipliers given in Table 1. The ED for the designs based on AMA1 with D1,
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Figure 1: Histogram distribution of error distance (ED) for the library of approximate
multipliers

D2, D3 and D4 have the average of 102, 246, 538 and 13162, respectively. While the
ED for the designs based on AMA2 with D1, D2, D3 and D4 have the average of 101,
227, 464 and 16902, respectively. Designs based on AMA3 with D1, D2, D3 and D4
have the average ED of 200, 474, 1010 and 17211, respectively. However, the designs
based on AMA4 with D1, D2, D3 and D4 have the average ED of 51, 107, 185 and
6334, respectively, which is quite low. AMA5 based designs with D1, D2, D3 and D4
have the lowest average of ED which is 44, 93, 185 and 8096, respectively.

We notice that the error distance varies for different inputs, for example, Design1
(top-left corner of Figure 1) shows that the ED varies from 0 to 518 with an average
of 102. If the value of ED was input-independent, then it would constant for all input
values. Such input-dependency is also present in the other designs, i.e., Design2–
Design20. Moreover, we notice that the variation in ED based on approximation degree
for a specific type (represented horizontally in Figure 1) is more evident than the
variation between different types for a specific degree (represented vertically in Figure
1), i.e., ED is correlated with the degree more than with the type. Clearly, the ED
increases (almost doubles) while increasing the approximation degree for any design
type. Ideally, for every input, there exist a specific design (among the 20 designs) with
a minimal error distance (ED) which is the most suitable to be used in error-tolerant
applications. However, changing the most suitable design for every input is impractical
due to the associated overhead.
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3.3 Analysis of NED

As explained previously in Equation 3, NED is an invariant metric, which is indepen-
dent of the size of the approximate design. Figures 2–6 show the NED for different
approximate multipliers, utilizing AMA1–AMA5 types, respectively. Each figure de-
picts a graphical representation for four approximation degrees, i.e., D1, D2, D3 and
D4. Since NED should be computed over a range of inputs rather than a single input,
we clustered every 16 consecutive inputs as a group to be able to compute the average
of NED over it.

Each bar -from the 256 bars- in these figures represents the average error (NED) of
the approximate design based on 16 consecutive values of the first input, i.e., Input1,
and 16 consecutive values of the second input, i.e., Input2. A high error value, e.g.,
NED ≥ 20%, indicates an unacceptable error in most applications. These designs are
thus not selected. Now, for clarification purposes, we consider NED with a value of
≤ 100% as our threshold.

Figure 2 shows the NED for the designs based on AMA1, where the design based on
D1 has a NED average and maximum NED of 1.7% and 26.2%, respectively. Similarly,
the D2 based design has an average and maximum NED values of 3.7% and 51%,
respectively, while the D3 based design has an average of 7.6%. However, one out of
the 256 clusters has a value greater than our specified threshold, i.e., NED ≤ 100%.
Other clusters have values less than 71.6%. Whereas, for the D4 based design, 79
clusters out of 256 have a NED > 100%, with an average of 118.6%.

Figure 3 shows the NED for designs based on the AMA2 type. The design based
on D1 has an average of 2.1% with a maximum value of 68%, while the D2 based
design has an average of 5.1% with one cluster having a value of 164%, and the other
255 clusters have a maximum value of 87.8%. Similarly, the D3 based design has an
average of 9.8% with 4 clusters having a value ≥ 100%, and the remaining 252 clusters
have a maximum value of 70.3%.

The NED for designs based on AMA3 type are shown in Figure 4. The D1 based
design has an average of 4.1% with one cluster having a value of 128%, while the other
255 clusters have a maximum value of 49.3%. Similarly, the D2 based design has an
average of 10.8% with 3 clusters having a value > 100%, and the other 253 clusters
have a maximum value of 99%. The D3 based design has a large average of NED,
which is around 22.8% and many clusters have > 100% NED values. Moreover, the D4
based design has a large error for most of the inputs.

Figure 2: NED for approximate multiplier based on AMA1 type and D1, D2, D3 and
D4 approximation degrees
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Figure 3: NED for approximate Multiplier based on AMA2 type and D1, D2, D3 and
D4 approximation degrees

Figure 4: NED for approximate Multiplier based on AMA3 type and D1, D2, D3 and
D4 approximation degrees

Figure 5: NED for approximate Multiplier based on AMA4 type and D1, D2, D3 and
D4 approximation degrees

Figure 6: NED for approximate Multiplier based on AMA5 type and D1, D2, D3 and
D4 approximation degrees
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Figures 5 and 6 show the NED for designs based on AMA4 and AMA5, respectively.
As depicted graphically, all designs have a low value of NED. Figure 5 shows that the
maximum values of NED for AMA4 based designs are 12.5%, 23%, 37% and 91% for
D1–D4 based designs, respectively. Similarly, as shown in Figure 6, the maximum
values of NED for AMA5 based designs are 11%, 21%, 35% and 91% for D1–D4 based
designs, respectively. As we noticed, for a given error threshold, e.g., NED ≤ 100%,
the average is acceptable for most of the input clusters. However, there are some cases
where it has a large error value and such cases should be identified.

3.4 Analysis of PSNR

Figure 7: PSNR for approximate multiplier based on AMA1 type and D1, D2, D3 and
D4 approximation degrees

Figure 8: PSNR for approximate multiplier based on AMA2 type and D1, D2, D3 and
D4 approximation degrees

The Peak Signal-to-Noise Ratio (PSNR), as given in Equation 7, depends on the
Mean Square Error (MSE). Figures 7–11 show the PSNR for different approximate
multipliers utilizing AMA1–AMA5 types, respectively. For image processing applica-
tions, PSNR is an indication for image quality. Thus, it could be used as TOQ metric
while controlling the quality of approximate computing as we proposed in [11]. A low
value of PSNR indicates a low image quality associated with a large MSE. Similar
to [12], we consider PSNR ≥ 25 as our threshold for an “acceptable” quality.

Figure 7 shows the PSNR for designs based on the AMA1 type. The design based
on D1 has an average value of 39.4dB with a minimum value of 10.7dB. It has 19 out
of 256 input combinations with PSNR < 25dB. Similarly, the design based on D2 has
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Figure 9: PSNR for approximate multiplier based on AMA3 type and D1, D2, D3 and
D4 approximation degrees

Figure 10: PSNR for approximate multiplier based on AMA4 type and D1, D2, D3
and D4 approximation degrees

Figure 11: PSNR for approximate multiplier based on AMA5 type and D1, D2, D3
and D4 approximation degrees

an average of 32.1dB with a minimum value of 7.7dB, and 54 input combinations with
PSNR < 25dB. The D3 based design has an average of 25.8dB for the PSNR, with 115
clusters out of the 256 clusters having PSNR < 25dB. Regarding the D4 based design,
all clusters have a low output quality, with PSNR < 25dB and a maximum value of
11dB.

The PSNR for designs based on AMA2 are depicted in Figure 8, where the D1
based design has an average of 40dB with a minimum value of 7dB. It has 22 input
combinations with PSNR < 25dB. Similarly, the design based on D2 has an average of
33.2dB with 55 input combinations having PSNR < 25dB. The D3 based design has
an average of 27.4dB with 99 input combinations having a PSNR < 25dB. Regarding
the D4 based design, only 7 clusters have a PSNR > 25dB.
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Figure 9 depicts a graphical representation for the PSNR of designs based on AMA3.
The D1 based design has an average of 34.8dB with 46 input combinations having
PSNR < 25dB, while the D2 based design has an average of 27.7dB with 92 input
combinations having PSNR < 25dB. The D3 based design has 151 input combinations,
which violate the PSNR, i.e., PSNR < 25, while the D4 based design has only 6 clusters
with a PSNR > 25dB.

The PSNR for designs based on AMA4 are shown in Figure 10. The design based
on D1 has an average of 45.6dB with a minimum value of 15.5dB. It has only 6 input
combinations with PSNR < 25dB. Similarly, the D2 based design has an average
of 39.1dB with a minimum value of 9.7dB, and 18 input combinations with PSNR
< 25dB. The D3 based design has an average of 34.3dB for the PSNR, and 43 input
combinations with PSNR < 25dB. Regarding the D4 based design, 230 clusters have
a low output quality, with PSNR < 25dB and an average value of 10.4dB.

Figure 11 shows the PSNR for AMA5 based designs. The D1 based design has an
average of 46.8dB with a minimum value of 16.3dB, where it has 5 input combinations
with PSNR < 25dB. Similarly, the design based on D2 has an average of 40.3dB with a
minimum value of 10.4dB and 14 input combinations have PSNR < 25dB. The design
with D3 has an average of 34.6dB for the PSNR, and 33 input combinations have
PSNR < 25dB. Regarding the D4 based design, 239 clusters have a low output quality
with an average of 8.8dB.

Based on the above analysis for the PSNR of 20 different approximate designs,
we notice that every design has some input combinations that violate the specified
quality constraint, e.g., the PSNR should be at least 25dB. Thus, we should avoid such
input-dependent cases with low output quality when requiring a high quality result.

4 Conclusion

The emergence of approximate computing has led to the design of interesting designs
with low power dissipation, delays and high performance. However, this paradigm
requires paying attention to the quality of individual outputs although the average
output quality is being acceptable. With this concern, we investigated the relationship
between the full range of applicable inputs and their associated approximation errors,
where we noticed a strong correlation between them.
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