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Abstract

Nowadays, protecting the sensitive information is becoming more important. Many applications are

subject to the flow of secret data that need to be kept hidden. In this context, quantitative analysis

of information flow is a promising technique to reason about security aspects of these systems. Various

information theory properties can be verified using probabilistic analysis. In this report, we present a

formal verification of the Data Processing Inequality (DPI) and the Jensen’s Inequality in the higher-

order logic theorem prover HOL4. While the DPI property states that no clever manipulation of a

given data can improve the inferences that can be made from the data, Jensen’s inequality in its general

definition is a relation between the value of a convex function of the integral and the integral of a convex

function. Due to its generality, Jensen’s inequality has many applications in the information theory.

1 Introduction

Quantitative analysis of information flow is a very important technique in order to determine
the security and the robustness of a communication system. The quantitative analysis is
mostly conducted using probability theory and its related properties in order to reason
about the information flow properties.

In Information theory, the mutual information [4] captures the quantity of information
that a random variable has about another random variable. It is measured usually in units
of bits and can be considered as the reduction in uncertainty about a random variable given
the knowledge of another random variable. Let X and Y be random variables, the mutual
information I(X;Y ) for the discrete case is defined to be:∑

x,y
PXY (x, y).log PXY (x,y)

PX(x).PY (y)
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where PXY (x, y) is the joint distribution of X and Y , PX(x) and PY (y) are the marginal
distributions of X and Y , respectively.

In order to better understand the notion of mutual information, we should first introduce
the Shannon entropy. Informally, entropy represents the average amount of an information
an information flow within a communication system; but formally, it is the measure of
uncertainty of a random variable. The higher the entropy is, the more uncertain we are
about the random variable. The entropy H(X) of a random variable X for the discrete
probability space is defined as:

−∑
x
PX(x).logPX(x)

The entropy can be naturally extended to the notion of conditional entropy, H(X|Y ), which is
the average uncertainty about a random variable X after observing another random variable
Y . From the notions described above, we can derive numerous information flow properties.
The Data Processing Inequality (DPI) is a very useful property in many applications in the
case of any three random variables X, Y and Z such that the conditional distribution of Z
depends only on Y and is conditionally independent of X. We say that X, Y and Z in this
order satisfy the Markov property if and only if X and Z are conditionally independent given
Y , i.e., p(x, z|y) = p(x|y).p(z|y), where p(x) is the usual abbreviation of PX(X = x). In this
case we say that X, Y and Z form a Markov chain, X → Y → Z. The Markov property will
play a key role in the formalization of the DPI as it will be described in the next sections.
Jensen’s inequality relates the value of a convex function of the integral to the integral of a
convex function. Jensen’s inequality is a very general property that can be applied in many
fields of information theory. In this report, we will investigate the formalization of both
notions. In this context, we propose to use the formalized probability theory in higher-order
logic theorem prover HOL4 [1] in order to formally verify the DPI and Jensen’s inequality.

2 Probability and Information Theories

Probability and information theories provide mathematical models to evaluate the uncer-
tainty of random phenomena. These concepts are commonly used in different fields of
engineering and computer science, such as signal processing, data compression and data
communication, to quantify the information. Recently, the probability and information the-
ories have been widely used for cryptographic and information flow analysis [12]. Some
foundational notions of these formalizations are described below.
Let X and Y denote discrete random variables, with x and y, and X and Y denoting their
specific values and set of all possible values, respectively. Similarly, the probability of X and
Y being equal to x and y is denoted by p(x) and p(y), respectively.

• Probability Space: a measure space such that the measure of the state space is 1

• Independent Events: Two events X and Y are independent iff p(X ∩ Y ) = p(X)p(Y ).

• Random Variable: X : Ω → R is a random variable iff X is (F,B(R)) measurable
where F denotes the set of events and B is the Borel sigma algebra.

• Joint Probability: A probabilistic measure where the likelihood of two events occurring
together and at the same point in time is calculated. Joint probability is the probability
of event Y occurring at the same time event X occurs. It is mathematically expressed
as p(X ∩ Y ) or p(X, Y ).
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• Conditional Probability: A probabilistic measure where an event X will occur, given

that one or more other events Y have occurred. Mathematically p(X|Y ) or p(X∩Y )
p(X) .

• Expected Value: E[X] of a random variable X is its Lebesgue integral with respect to
the probability measure. The following properties of the expected value have been verified
in HOL4 [10]:

1. E[X + Y ] = E[X] + E[Y ]

2. E[aX] = aE[X]

3. E[a] = a

4. X ≤ Y then E[X] ≤ E[Y ]

5. X and Y are independent then E[XY ] = E[X]E[Y ]

• Variance and Covariance: Variance and covariance have been formalized in HOL4 using
the formalization of expectation. The following properties have been verified [10]:

1. V ar(X) = E[X2]− E[X]2

2. Cov(X, Y ) = E[XY ]− E[X]E[Y ]

3. V ar(X) ≥ 0

4. ∀a ∈ R, V ar(aX) = a2V ar(X)

5. V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X, Y )

The above-mentioned definitions and properties have been utilized to formalize the founda-
tions of information theory in HOL4 [10]. The widely used information theoretic measures
can be defined as:

• The Shannon Entropy: It measures the uncertainty of a random variable

H(X) = −
∑
x∈X

p(x)log p(x)

• The Conditional Entropy: It measures the amount of uncertainty of X when Y is known

H(X|Y ) = −
∑
y∈Y

p(y)
∑
x∈X

p(x|y)log p(x|y)

• The Mutual Information: It represents the amount of information that has been leaked

I(X;Y ) = I(Y ;X) = H(X)−H(X|Y )

• The Relative Entropy or Kullback Leiber Distance: It measures the inaccuracy or in-
formation divergence of assuming that the distribution is q when the true distribution
is p

D(p‖q) =
∑
x∈X

p(x)log
p(x)

q(x)

• The Guessing Entropy: It measures the expected number of tries required to guess the
value of X optimally
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G(X) =
∑

1≤i≤n
ip(xi)

• The Rényi Entropy: It is related to the difficulty of guessing the value of X

Hα(X) = 1
1−α log (

∑
x∈X

P [X = x]α)

Among the measures listed above, Mhamdi [8] and Coble [3] formalized the Entropy, Condi-
tional Entropy, Relative Entropy and Mutual Information in HOL4 and Hölzl [6] formalized
similar concepts in Isabelle/HOL.

3 Shannon Based Information Flow

In this section, we review the formalization of the most common measures to quantify infor-
mation flow, such as Shannon entropy, relative entropy and mutual information [11]. These
measures will be then used to formally verify the Data Processing Inequality as well as
Jensen’s Inequality properties.

3.1 Shannon Entropy

Shannon entropy measures are considered the most common measures of information theory.
These measures have been formalized in [10] using the formalized foundations of measure,
Lebesgue integral and probability theories [9]. In order to formalize the relative entropy, the
Radon Nikodym derivative has been defined and the related properties have been verified in
HOL4. The Shannon entropy measures the uncertainty of a random variable and is defined
as follows

Definition 1 (Shannon Entropy).
The entropy H of a random variable X with alphabet X and probability mass function p is
defined by

H(X) = −
∑
x∈X

p(x).log (p(x))

which is equivalent to the following expectation-based definition

H(X) = E[−log(p(X))]

The corresponding formalization in higher-order logic is

` entropy b p X = - SIGMA (λx. pmf p X x * logr b (pmf p X {x})) (IMAGE X

(p space p))

Many related properties have been formally verified, such as the Asymptotic Equipartition
Property (AEP) which is the equivalent of the Weak Law of Large Numbers (WLLN) [16].

3.2 Relative Entropy

The Kullback Leibler (KL) divergence, also called relative entropy, measures the distance
between two distributions p and q.

Definition 2 (Relative Entropy).
The relative entropy of two distributions p and q is
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D(p||q) = −
∫
X log

dp
dqdq

where dp
dq is the Radon Nikodym derivative of p with respect to q. The Kullback Leibler

divergence is formalized in HIOL4 as

` KL divergence b p q = - fn integral p (λx. logr b ((RN deriv p q) x))

3.3 Mutual Information

The mutual information measures the dependance between the two random variables. It
describes the uncertainty about one of them such that the other is known. Mutual infor-
mation is considered as a measure of information leakage. In [8], it is formalized as the KL
divergence between the joint distribution and the product of marginal distributions.

Definition 3 (Mutual Information).

I(X, Y ) = D(p(x, y)||p(x)p(y)) = sum(x,y)p(x, y)log p(x,y)
p(x)p(y)

This definition is then formalized in HOL4 as follows

`mutual information b p s1 s2 X Y =

let prod space =

prod measure space (space s1, subsets s1, distribution p X)

(space s2, subsets s2, distribution p Y) in

KL divergence b (p space prod space, events prod space)

(joint distribution p X Y) (prob prod space)

The detailed formalization of the quantities described above and their related properties
is provided in [8].

4 Data Processing Inequality

Our formalization builds on top of the work done by Liu [7] and Mhamdi [14] who formal-
ized the DTMC and probability theory, respectively. We start our formalization by defining
the Markov property in HOL4. It is a direct consequence of the definition of the Markov
property in [7]:

Definition 4 (Markov Chain).

` mc p X Y Z = (∀x y z. joint distribution3 p X Y Z (x,y,z) =

distribution p X x * (conditional distribution p Y X y x) *

(conditional distribution p Z Y z y))

The motivation behind this definition relies on the fact that if the random variables X, Y
and Z in this order satisfy the Markov property, then the joint distribution p(x, y, z) is equal
to p(x).p(y|x).p(z|y). Indeed, using the conditional distribution we have:

p(x, y, z) = p(x).p(y, z|x) = p(x).p(y|x).p(z|x, y)
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and using the Markov property [7], p(z|x, y) = p(z|y) holds. The difinitions of distribution,
joint distribution3 and conditional distribution are straightforward and can be found
in [2]. For instance, joint distribution3 refers to the joint distribution of 3 random
variables, i.e., P (X, Y, Z). These definitions can be also useful for any other probabilistic
analysis. They are also a part of the latest HOL4 distribution [2].

Next, we give the definition of the mutual information I(X;Y ) between the random
variables X and Y :

Definition 5 (Mutual Information).

` mutual information b p s1 s2 X Y = (let prod space =

prod measure space (space s1, subsets s1, distribution p X)

(space s2, subsets s2, distribution p Y) in

KL divergence b (p space prod space, events prod space)

(joint distribution p X Y) (prob prod space))

The formalization of the Kullback-Leibler Divergence, KL divergence, DKL(PX ||PY ), of
the difference between the probability distributions X and Y over the probability spaces s1

and s2, respectively, can be found in [13]. In order to prove the DPI, we first have to prove
a number of intermediate lemmas. A first result is to rewrite the mutual information as a
sum of distributions which is formalized in HOL as follows:

Theorem 1 (Mutual Information as a Sum of Distributions).

` ∀b p X Y Z.(POW (p space p) = events p) ∧
random variable X p (IMAGE X (p space p), POW (IMAGE X (p space p))) ∧
random variable Y p (IMAGE Y (p space p), POW (IMAGE Y (p space p))) ∧
random variable Z p (IMAGE Z (p space p), POW (IMAGE Z (p space p))) ∧
FINITE (p space p) ⇒

mutual information b p (IMAGE X (p space p), POW (IMAGE X (p space p)))

(IMAGE Y (p space p) × IMAGE Z (p space p),

POW (IMAGE Y (p space p) × IMAGE Z (p space p))) X (λ x.(Y x,Z x)) =

Normal (SIGMA (λ(x,(y,z)).(joint distribution p X (λx.(Y x,Z x)) (x,(y,z)))

* logr b ((joint distribution p X (λ x.(Y x,Z x)) (x,(y,z)))/

((distribution p X x) * (distribution p (λ x.(Y x,Z x)) (y,z)))))

IMAGE X (p space p) × (IMAGE Y (p space p) × IMAGE Z (p space p)))

where POW is the power set function and IMAGE f s refers to the image of a set s with the
function f .
The above statement is the formalization of the property reducing the mutual information
to a sum of distributions, mathematically this property is defined as follow:

I(X, (Y, Z)) =
∑

(x,(y,z)) P (X, (Y, Z)) . logb (P (X, (Y, Z)))
P (x) . P (Y, Z)

This theorem can be found under finite mutual information reduce2 in [15]. Since the
KL divergence is defined over the extended reals [13], it is of type extreal and therefore
the mutual information has the same type. We therefore use the function Normal [13] which
converts an object from type real to object of type extreal. Having the mutual information,
the next step in our formalization is the conditional mutual information I(X;Y |Z) of X and
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Y given Z, which is defined as I(X;Y ×Z)− I(X;Z), where Y ×Z is the random variable
λx.(Y (x), Z(x)):

Definition 6 (Conditional Mutual Information).

` conditional mutual information b p s1 s2 s3 X Y Z =

let prod space =

prod measure space (space s2, subsets s2, distribution p Y)

(space s3, subsets s3, distribution p Z) in

mutual information b p s1 (p space prod space, events prod space) X

(λ x.(Y x, Z x)) - mutual information b p s1 s3 X Z

Using the commutativity of the distribution function which says that PY×Z((y, z)) = PZ×Y ((z, y)),
we have the following equality: I(X;Y ×Z) = I(X;Z×Y ). Therefore, we have the equality:

I(X;Y |Z) + I(X;Z) = I(X;Y × Z) = I(X;Z × Y ) = I(X;Z|Y ) + I(X;Y )

which is formalized as follows:

Theorem 2 (I(X;Y |Z) + I(X;Z) = I(X;Z|X) + I(X;Y )).

` ∀b p X Y Z.(POW (p space p) = events p) ∧ prob space p ∧
(s1 = (IMAGE X (p space p),

POW (IMAGE X (p space p)))) ∧
(s2 = (IMAGE Y (p space p), POW (IMAGE Y (p space p)))) ∧
(s3 = (IMAGE Z (p space p), POW (IMAGE Z (p space p)))) ∧
(s23 = (IMAGE (λ x.(Y x, Z x)) (p space p),

POW (IMAGE (λ x.(Y x, Z x)) (p space p)))) ∧
(s32 = (IMAGE (λ x.(Z x, Y x)) (p space p),

POW (IMAGE (λ x.(Z x, Y x)) (p space p)))) ∧
random variable X p s1 ∧ random variable Y p s2 ∧ random variable Z p s3 ∧
random variable (λ x.(Y x, Z x)) p s23 ∧
random variable (λ x.(Z x, Y x)) p s32 ∧ FINITE (p space p) ∧
mutual information b p s1 s2 X Y 6= -∞ ∧
mutual information b p s1 s2 X Y 6= +∞ ∧
mutual information b p s1 s3 X Z 6= -∞ ∧
mutual information b p s1 s3 X Z 6= +∞ ⇒

conditional mutual information b p s1 s3 s2 X Z Y +

mutual information b p s1 s2 X Y =

conditional mutual information b p s1 s2 s3 X Y Z +

mutual information b p s1 s3 X Z

The proof of the above theorem relies on the proof the following property(Theorem 3).
It holds because of the associativity of the join distribution, namely PX×Y×Z(x, (y, z)) =
PX×Z×Y (x, (z, y)) and the symmetry of the additivity:

Theorem 3 (Symmetry of the Additivity).

` ∀ x y z.((joint distribution p X (λ x.(Z x,Y x)) (x,z,y) =

joint distribution p X (λ x.(Y x,Z x)) (x,y,z)) ∧
distribution p (λ x.(Y x,Z x)) (y,z) = distribution p (λ x.(Z x,Y x)) (z,y))
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⇒
SIGMA (λ (x,z,y).joint distribution p X (λ x.(Z x,Y x)) (x,z,y) *

logr b (joint distribution p X (λ x.(Z x,Y x)) (x,z,y) /

(distribution p X x * distribution p (λ x.(Z x,Y x)) (z,y))))

(IMAGE X (m space p) × (IMAGE Z (m space p) × IMAGE Y (m space p)))

=

SIGMA (λ (x,y,z).joint distribution p X (λ x.(Y x,Z x)) (x,y,z) *

logr b (joint distribution p X (λ x.(Y x,Z x)) (x,y,z) /

(distribution p X x * distribution p (λ x.(Y x,Z x)) (y,z))))

(IMAGE X (m space p) × (IMAGE Y (m space p) × IMAGE Z (m space p)))

Furthermore, we proved the more general case:

Theorem 4 (Symmetry of the Additivity (General)).

∀f s1 s2 s3. FINITE s1 ∧ FINITE s2 ∧ FINITE s3

⇒
(SIGMA (λ(x,y,z).f (x,y,z)) (s1 × (s2 × s3)) =

SIGMA (λ(x,z,y).f (x,y,z)) (s1 × (s3 × s2)));

In order to verify the main goal of our work, namely the DPI which says that if
X → Y → Z, then I(X;Z) ≤ I(X;Y ), we have to verify the following two properties:
Properties.

• P1: For all random variables X and Y , the mutual information between X and Y is
non-negative, i.e., ∀X, Y. I(X;Y ) ≥ 0

• P2:If X → Y → Z, then I(X;Z|Y ) = 0

Applying the above two properties to the equality

I(X;Y |Z) + I(X;Z) = I(X;Z|Y ) + I(X;Y )

proves the DPI: I(X;Z) ≤ I(X;Y ). The first property (P1) is formalized in HOL4 as
follows:

Theorem 5 (Positive Mutual Information).

` ∀b p X Y.(1 ≤ b) ∧ (POW (p space p) = events p) ∧
random variable X p (IMAGE X (p space p), POW (IMAGE X (p space p))) ∧
random variable Y p (IMAGE Y (p space p), POW (IMAGE Y (p space p))) ∧
FINITE (p space p) ⇒

0 ≤ (mutual information b p (IMAGE X (p space p), POW (IMAGE X (p space p)))

(IMAGE Y (p space p), POW (IMAGE Y (p space p))) X Y)

The second statement (P2) is considered as a key lemma in the proof and it is formalized
as follows:

Theorem 6.

∀ X Y Z. prob space p ∧ POW (p space p) = events p ∧
∀x.(distribution p X x 6= 0) ∧
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∀z y. conditional distribution p Z Y z y 6= 0 ∧
∀b. joint distribution3 lambda def b p X Z Y ∧
∀x z y.joint distribution3 p X Z Y (x,z,y) 6= 0 ∧
joint distribution3 lambda b p X Z Y ∧
IMAGE X (p space p) × IMAGE (λ x.(Z x,Y x)) (p space p) =

{(a,b,c)|(a ∈ IMAGE X (p space p) ∧ b ∈ IMAGE Z (p space p) ∧
c ∈ IMAGE Y (p space p))} ∧

s1 = (IMAGE X (p space p), POW (IMAGE X (p space p))) ∧
s2 = (IMAGE Y (p space p), POW (IMAGE Y (p space p))) ∧
s3 = (IMAGE Z (p space p), POW (IMAGE Z (p space p))) ∧
random variable X p s1 ∧ random variable Y p s2 ∧ random variable Z p s3 ∧
FINITE (p space p) ∧ mc p X Y Z ∧ FINITE (IMAGE X (p space p)) ∧
FINITE (IMAGE Y (p space p)) ∧ FINITE (IMAGE Z (p space p)) ∧
(p space (prod measure space (space s3,subsets s3,distribution p Z)

(space s2,subsets s2,distribution p Y)) =

IMAGE (λ x.(Z x, Y x)) (p space p)) ∧
(events (prod measure space (space s3,subsets s3,distribution p Z)

(space s2,subsets s2,distribution p Y)) =

POW (IMAGE (λ x.(Z x, Y x)) (p space p))) ∧
random variable (λ x.(Z x, Y x)) p (IMAGE (λ x.(Z x, Y x)) (p space p),

POW (IMAGE (λ x.(Z x, Y x)) (p space p))) ∧ (sigma2to3 p X Y Z b) ∧
(∀x y.joint cond p X Y x y) ∧ (∀y z.joint cond p Y Z y z)) ⇒

conditional mutual information b p s1 s3 s2 X Z Y = 0

After several rewritings, the lemma is reduced to the following statement:

Theorem 7. (Theorem 6, contd.)

` SIGMA (λ(x,y).joint distribution p X (λx.(Z x,Y x)) (x,y) *

logr b (joint distribution p X (λx.(Z x,Y x)) (x,y) /

(distribution p X x * distribution p (λx.(Z x,Y x)) y)))

{IMAGE X (p space p) × IMAGE Z (p space p) × IMAGE Y (p space p)

=

SIGMA (λ(x,y).joint distribution p X Y (x,y) *

logr b (joint distribution p X Y (x,y) /

(distribution p X x * distribution p Y y)))

IMAGE X (p space p) × IMAGE Y (p space p)

In Theorems 6 and 7, the Markov property plays its crucial role. Therefore, the left-hand
side of the equality formalized in Theorem 7 can be simplified as follows:

logb
p(x,y,z)
p(x).p(z,y) = logb

p(x).p(y|x).p(z|y)
p(x).p(z,y) = logb

p(y|x).p(z|y)
p(z,y) = logb

p(y|x).p(z|y)
p(y).p(z|y) = logb

p(y|x)
p(y)

The right-hand side of the equality of the same theorem can be rewritten as follows:

logb
p(x,y).p(x)

p(y) = logb
p(x).p(y|x)
p(x).p(y) = logb

p(y|x)
p(y)
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In HOL4 we formalize this lemma as follows:

Theorem 8. (Intermediate Result for Theorem 6)

` ∀ X Y Z x y z b. mc X Y Z ⇒
logr b (joint distribution p X (λx.(Z x,Y x)) (x,y,z) /

(distribution p X x * distribution p (λx.(Z x,Y x)) (z,y))))

=

logr b (joint distribution p X Y (x,y) /

(distribution p X x * distribution p Y y)))

Using the property above, our main lemma reduces to a more general theorem. Thanks
to the Markov property, we substitute both logarithms in the equality with a function f(x, y):

Theorem 9. (Subgoal of Theorem 6)

` ∀p X Y Z f. prob space p ∧ FINITE (p space p) ∧
(events p = POW (p space p)) ∧
FINITE (IMAGE X (p space p) × IMAGE Y (p space p)) ⇒

(SIGMA (λ((x,y),z).joint distribution p (λx.(X x,Y x)) Z ((x,y),z) * f(x,y))

IMAGE X (p space p) × IMAGE Y (p space p) × IMAGE Z (p space p) =

SIGMA (λ(x,y).distribution p (λx.(X x,Y x)) (x,y) * f(x,y) )

IMAGE X (p space p) × IMAGE Y (p space p))

5 Jensen’s Inequality

Jensen’s inequality has applications in many fields of applied mathematics and specifically in
information theory. For example, it plays a key role in the proof of the Information inequality,
0 ≤ D(p||q) [4]. We proved Jensen’s inequality in its measure theoretic form. We start with
the definition of the convex function. If f is a continuous function and x1 < x2 < x3, then
f is called convex iff:

f(x2)−f(x1)
x2−x1 = f(x3)−f(x2)

x3−x2

In HOL4 we define the convex function as follows:

Definition 7 (Convex function).

` conv func f =

∀ x y z:real. (x<y ∧ y<z) ⇒ ((f(y)-f(x))/(y-x) ≤ (f(z)-f(y))/(z-y))

Now, let Ω be a probability space, µ is a measure funcion on Ω, g and f be an arbitrary
and a convex functions on real numbers, respectively. The following statement is known as
Jensen’s inequality: ∫

Ω
f(g(x)) dµ ≥ f(

∫
Ω
g(x) dµ)
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The most challenging part of the proof of Jensen’s inequality is to prove the existence of
sub-derivatives a and b of f , such that for all x, a.x+ b ≤ f(x), where for x0 =

∫
Ω
g(x) dµ we

reach the equality a.x0 + b = f(x0). This follows from the following two facts:

• according to the Mean value theorem, there exists ν such that if x < ν < ξ, then:

f(x)−f(ξ)
x−ξ = f ′(ν)

• since f is convex, then its derivative increases, i.e., f ′(ν) ≤ f ′(ξ)

Having a and b, the proof of Jensen’s inequality is straightforward:

∫
Ω
f(g(x)) dµ ≥

∫
Ω
(a.g(x) + b) dµ = a.

∫
Ω
g(x) dµ+ b.

∫
Ω

1 dµ = a.x0 + b = f(x0) = f(
∫
Ω
g(x) dµ)

Since µ is a measure, it holds that µ(Ω) = 1. Therefore
∫
Ω

1 dµ = 1. Following the above

reasoning, the proof of Jensen’s inequality if conducted in HOL4 by dividing the main goal
to a number of key lemmas. The first lemma shows the monotonicity of the sub-derivatives:

Theorem 10 (Monotone Sub-derivatives).

` ∀(f:real→real) a b x x0 z z0. x < z ∧ z < z0 ∧ z0 < x0 ⇒
f(x)−f(z)

x−z ≤ f(x0)−f(z0)
x0−z0 ∧ limx→z

f(x)−f(z)
x−z = a ∧ limx0→z0

f(x0)−f(z0)
x0−z0 = b⇒ a≤b

The next theorem uses the monotonicity of the sub-derivatives and the Mean value the-
orem to prove the existence of the constants a and b provided that f is convex. This gives
the inequality f(x) ≥ a.x+ b :

Theorem 11 (Existence of a and b: f(x) ≤ a.x + b).

` ∀(f:real→real) x x0 z1.(x<z1 ∧ z1<x0 ∧ convex f ∧ f differentiable x0 ∧
(∀(z2:real). x < z2 ∧ z2 < x0 ⇒ f differentiable z2) ∧
(∀z3. x ≤ z3 ∧ z3 ≤ x0 ⇒ f contl z3) ∧
(∃l z. x<z ∧ z<x0 ∧ ((f diffl l) z) ∧ (f(x0)-f(x) = (x0-x)*l))

⇒
∃f0. (((f diffl f0) x0) ∧ ((f(x0)-f(x)) ≤ (x0-x)*f0)))

where diffl is the HOL4 definition of first derivative.

Finally, combining the results of Theorems 10 and 11, we formalize Jensen’s inequality
for the continuous case:
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Theorem 12 (Jensen’s inequality).

∀f g m. measure space m ∧ integrable m g ∧
(Normal b = integral m λy.(Normal b)) ∧

((Normal a)*(integral m λx.g(x)) + (Normal b) = f((integral m λx.g(x)))) ∧
(∀x.(Normal a)*x + (Normal b) ≤ f(x:extreal))

⇒
f (integral m λx.g(x)) ≤ integral m λx.(f(g(x)))

Since the integral that we use is a Lebesgue integral which is defined over the extended
reals, we have to convert our objects to the extreal type. This is done by the function
Normal [13].

6 Conclusion

In this report, we presented the formalizations of the Data Processing Inequality for the
discrete case and Jensen’s inequality for the continuous case. The former is built on top of
the formalizations of the Discrete Time Markov Chains and the probability and information
theory. The key lemma of the proof is to show that given a Markov chain X → Y → Z,
for the conditional mutual information it holds that I(X;Z|Y ) = 0. It is a big challenge
to prove the same statement for the continuous case. The difficulty comes from the fact
that the definition of the Kullback-Leibler Divergence is very complex. It relies on the
definition of the Lebesgue integral over the extended reals. Since the integral is defined as
a limit which is itself complex, all related properties should be proved in a way that all
definitions are unfolded. This eventually makes the goal extremely complex having the size
of several pages. The proof of Jensen’s inequality relies on the key proof of the monotonicity
of the first derivative of a convex function. It was proven in its measure theoretic form and
the HOL code can be found in [5]. A straightforward application of Jensen’s inequality is
Gibb’s inequality [17], which shows that the Kullback-Leibler divergence of the probability
distributions p and q, DKL(p||q), is non-negative.
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