
Formal Error Analysis and Verification of the Frequency

Domain Equalizer

Anis Souari1, Amjad Gawanmeh2, and Sofiène Tahar1

1Department of Electrical and Computer Engineering,

Concordia University, Montreal, Canada
2Department of Electrical and Computer Eningeering

Khalifa University of Science Technology and Research, Sharjah, UAE

Email: {asouari, amjad, tahar}@ece.concordia.ca

February 2012

1



Contents

1 Introduction and Motivation 4
1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Frequency Domain Equalizer 6
2.1 Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 The Fast LMS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Error Analysis In HOL Theorem Prover 9
3.1 HOL general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Formalizing the Fast LMS Algorithm for the Frequency Domain Equalizer in HOL 11

3.4.1 Real Number Domain Modeling . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4.2 Floating-point Domain Modeling . . . . . . . . . . . . . . . . . . . . . . . 13
3.4.3 Fixed-point Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 Formal Error Analysis in HOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Conclusion and Future Work 18

Appendices 21

A Real to Floating-point Error Analysis 21

B Real to Fixed-point Error Analysis 22

C Floating-point to Fixed-point Error Analysis 23

D Single Theorem for the whole Frequency Domain Equalizer Error Analysis 24

List of Figures

1 Frequency Domain Equalizer Design using the Fast LMS algorithm [6] . . . . . . 8
2 Fast LMS algorithm in Simulink [14] . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Error Analysis Verification Methodology in HOL . . . . . . . . . . . . . . . . . . 11
4 Structure of HOL Theorems for the Equalizer . . . . . . . . . . . . . . . . . . . . 16

List of Tables

1 HOL Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2



Abstract

In this work we provide formal verification of a frequency domain equalizer using theorem
proving techniques in Higher Order Logic framework. We perform formal error analysis to
verify an implementation of the equalizer based on the Fast LMS algorithm. The formal
error analysis is performed at the floating-point, fixed-point, and real numbers domains.
The expressiveness of HOL allows us to model the equalizer in all the three number domains.
The errors generated by approximating the floating-point and the fixed-point designs to the
real domain were used to complete the error analysis of the frequency domain equalizer by
deducting the error between the floating-point and fixed-point formalizations of the design.
This application shows the efficiency of formal methods in verifying complex system such
as the frequency domain equalizer.
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1 Introduction and Motivation

With the recent technological growth, electronic devices have invaded all aspects of our life.
These devices are getting more and more compact and consequently more complex. The price
of this complexity is the challenge of delivering error-free devices, which requires thorough testing
and verification at all stages of the design flow. On the other hand, a faulty design can lead to
delays for time-to-market. Therefore, design verification is necessary to avoid such situations
and is considered a bottleneck in the design process. In order to verify that an implementation
meets its specification, simulation is the most widely used technique in the industry, because
it is straightforward and does not need any expertise. It is a functional verification based on
test patterns generation, and therefore, it does not provide full coverage for the system under
test. On the other hand, formal verification techniques [15] are considered complementary to
simulation as they can provide full coverage for the system under test, and in addition, they can
catch corner cases bugs in the design.

Equalization is one of the applications of adaptive filtering. Its role consists of eliminating
the inter-symbol interference caused by the noise in the transmission environment. To get an
output matching as much as possible to the desired response, uncountable adaptive algorithms
are used to regulate the filter or the equalizer coefficients. To decrease the filtering complexity,
the equalizer can be implemented in the frequency domain where time convolution is replaced
by frequency multiplication, this method offers low complexity growth in comparison with the
time domain approach. This technique requires the use of the Fast Fourier Transform (FFT)
modules. One possible implementation for the equalizer is based on the Fast LMS algorithm.

However, data processing and filtering in the frequency domain requires dealing with data at
different domains: real numbers, floating point numbers, and fixed point numbers domains. This
conversion generates and accumulates errors because of the different level of accuracy provided
by each number domain. Therefore, a frequency domain multiplication based system must be
tested thoroughly and error analysis must be conducted to be sure about the correctness of its
operation.

Verifying the correctness of the equalizer is very challenging because of many reasons. First
the equalizer implementation is based on an iterative algorithm, second, it contains multiple FFT
and IFFT blocks, Finally, it contains multiple mathematical operator using several number
domains. For these reasons, errors are naturally generated during data conversion between
different domains, and can accumulate while performing various algorithmic iterations, FFT,
and IFFT operations. Therefore, an implementation of such system must be verified in order
to be sure that error accumulation is within acceptable limits. Traditionally, this is achieved
using simulation. Simulink framework can be used in order to develop and simulate a model for
the system under test. The generated error is estimated in in every step of the simulation for
certain number of iterations. To achieve a certain level of assurance, specifically, in safety critical
applications, simulation becomes inadequate, since the method is based on estimating the error.
In addition, simulation time becomes tremendous. To overcome these verification problems in
simulation based verification, we will use theorem proving based verification in order to provide
formal error analysis of the Fast LMS algorithm.

Higher-order-logic (HOL) theorem proving [8] is a formal method that is used to conduct
precise analysis of various systems. It is based on a system of deduction with a precise semantics
and is expressive enough to be used for the precise specification of systems such as the frequency
domain equalizer.

In this work we will use HOL theorem proving technique in order to provide error analysis
for an implementation of the Frequency domain equalizer based on Fast LMS algorithm. This
analysis is required to show that the error generated in the implementation of the Fast LMS
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algorithm conforms with the required accuracy of conversion in the Equalizer design to operate
properly. The formal analysis of the algorithm intends to show that, when converting from
one number domain to another, the algorithm produces the same values with an accepted
error margin caused by the round-off error accumulation. We will use the DSP verification
methodology developed by Akbarpour [2].

1.1 Related Work

In this section we go through literature work on formalizing error analysis using formal methods.
John Harisson [1] leads this research topic as he was using the HOL-Light theorem prover to
approximate floating-point algorithms to their mathematical counterparts. He mainly proved
that the floating-point exponential function has a correct overflow behavior and when this over-
flow is absent, the result is linked to a precise error value. The error analysis done by Harisson
is similar to the work performing error analysis for DSP algorithms where statistical methods
and square error analysis for DSP algorithms are used. In this latter type of error analysis, the
error, represented as an independent random variable, is calculated depending on the arithmetic
type and the rounding mode. Finally, the mean square error is given after performing the error
analysis.

Akbarpour [2] continued the work of [1] and proposed an error analysis framework based
on theorem proving and dedicated specially to DSP algorithms. The methodology is based on
the idea of representing the system in the three domains; the real, the floating-point and the
fixed-point. Then, he calculated the error in the transitions from real to floating-point and real
to fixed-point. Finally, the error in the transition from floating-point to fixed-point is driven by
doing a subtraction between the two types of error calculated before. To valorize his work and to
show the feasibility of his methodology, Akbarpour applied his technique on digital filters [3] as
well as on a 16 point radix 2 FFT [4]. Abu Nasser [5] adopted the methodology of Akbarpour to
study the error analysis of an FFT-IFFT which is a combination of a 64 point radix 4 FFT and
IFFT blocks. Abu Nasser proves that the approach in [2] is scalable and his work is considered
as big case study of the work of Akbarpour. Our Work is also considered as an application of
the formal verification framework developed in [2] since it is dealing with the error analysis of a
frequency domain equalizer.

The application we verify in this work is considered more complex and error prone than
the design in [5], where there is only a single combination FFT and IFFT blocks, whereas our
system is composed of three FFTs and two IFFTs. In addition, the Equalizer is based on more
arithmetic operations that use complex numbers of type real, floating-point and fixed-point
numbers. Hence, the formalization of error expressions and error analysis we intend to perform
on the design is based on a theorem for complex numbers of the above different types. Finally,
error analysis for the equalizer requires formalizing input vectors to be able to store various
symbols in each iteration of the Fast LMS algorithm.

The rest of the report is organized as follows. Section 2 provides a theoretical description
of the FFT and the frequency domain equalizer along with its implementation based on the
Fast LMS algorithms. Section 3 introduces HOL theorem proving and definitions of the main
theorems leading to perform the error analysis in HOL. In section 4, the error analysis of the
frequency domain equalizer is formalized in HOL. Finally, Section 5 concludes the report and
presents hints for future work directions.
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2 Frequency Domain Equalizer

Data alteration between the frequency domain and the time domain requires the use of some
tools ensuring the preservation of data during this transition. The most useful tool enabling
representing a signal in the frequency domain is the discrete transform that helps to decrease
the computational complexity related to signal processing just like convolution. One of the
most efficient transforms allowing the transition between the two domains is the Fast Fourier
Transform (FFT).

2.1 Discrete Fourier Transform

The Discrete Fourier Transform is one of the structures of the Fourier Transforms allowing the
conversion of a discrete signal from the time domain to the frequency domain. The expression
below represents the equation calculating the Discrete Fourier Transform.

X(k) =

N−1∑
n=0

x(nT )e−jkwnT (1)

It is obvious that this expression is similar to the equation calculating the Fourier Transform
for continuous signals in time domain. The DFT has two important properties which are:

• Summetry

That means that the two elements X(k) and X(k+N) resulting by applying the Discrete Fourier
Transform on the signal x are the same. As a result, it can be deduced that there is a periodicity
with period N.

• Convolution

The circular convolution as well as the linear convolution can be deduced by the use of the
Discrete Fourier Transform. The time convolution theorem declares that a convolution in time
domain is transformed into a simple multiplication in the frequency domain. This is summarized
by the following expression.

x(n) = x1(m) ∗ x2(n) = F−1X1(k)X2(k) (2)

where x, x1 and x2 are finite periodic signals having the same length and * expresses circu-
lar convolution. F−1 expresses the Inverse Discrete Fourier Transform. This property of the
Discrete Fourier Transform has great importance for this project because instead of using convo-
lution in time domain which can increase the computational cost, we can use the multiplication
in the frequency domain and as a result we can get the same results with less complexity by
just applying the DFT.

2.2 Fast Fourier Transform

One of the most useful and efficient algorithms used to put in work the Discrete Fourier Trans-
form is the Fast Fourier Transform (FFT). Its role consists in transforming a vector x expressed
in time domain to its equivalent X in the frequency domain. To reduce the computational cost
and to make the algorithm more efficient, The FFT is based on the principle of the built in
redundancy used by the DFT. Besides the FFT permitting the transformation of a signal from
the time domain to the frequency domain, another algorithm allowing the conversion of a signal
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in the other direction that means from the frequency domain to the time domain; it is the
Inverse Fourier Transform (IFFT).

The computational complexity for the Discrete Fourier Transform is equal to N2 complex
multiplies, but when we are talking about the FFT this number is decreased and its complexity
is equal to (N/2) log2 (2N) complex multiplies + N complex adds. To get much better results,
the block length N must be an integer power of 2. By doing this, we enhance the performance of
the FFT algorithm. The FFT block length must be the same as the input signal block length.

2.3 The Fast LMS Algorithm

The implementation of the frequency domain equalizer [6, 7] is based on an adaptive frequency
domain algorithm called Fast LMS. This version of Fast LMS algorithm is based on the overlap-
save convolution algorithm. Updating the equalizer coefficients in the frequency domain using
the Fast LMS algorithm is similar to the process in the time domain using the LMS algorithm
[6]. One difference between the two procedures in terms of updating coefficients consists in that
the Fast LMS algorithm updates the coefficients block by block not sample by sample. Figure
1 below illustrates the principle of the Fast LMS algorithm.

The Fast LMS algorithm is described as follows:

1. The FFT is applied to a 2N input block obtained from the input signal.

U(k) = FFT{u(n)} (3)

2. Multiplying U(k) by the filter coefficients gives the equalizer output in the frequency
domain. The coefficients are adjusted before.

Y (k) = U(k).W (k) (4)

Then an IFFT is applied to Y(K) to get the result in the time domain.

y(n) = IFFT{Y (k)} (5)

Because of the circular convolution, only the last N samples must be kept and they will
represent the output of the equalizer.

y(n) = y(N + 1 → 2N) (6)

3. Next, a subtraction between the desired signal and the current equalizer output must be
calculated to calculate the error signal.

e(n) = d(n)− y(n) (7)

where e(n) is the error and d(n) is the desired signal. After that the error must be trans-
formed to the frequency domain, that is why an FFT is applied to e(n) after adding N
zeros to its start.

E(k) = FFT{zeros, e(n)} (8)

4. After calculating the conjugate of the U(k), it is multiplied by the error in the frequency
domain. Then, an IFFT is applied to the result. Only the first N samples of this result
are kept because of the circular convolution.

g(n) = IFFT{E(k).U ′(k)} (9)

g(n) = g(1 → N) (10)
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Figure 1: Frequency Domain Equalizer Design using the Fast LMS algorithm [6]

5. A 2N point FFT is now applied on g(n) after adding N zeros to its end then the result is
multiplied by the step size parameter µ.

g(n) = g(n) followed by N zeros (11)

W1(k) = µ.FFT{g(n)} (12)

The obtained result consists in the update factor for the equalizer coefficients, that is why
it is added to the previous value of the filter coefficients.

W1(k + 1) = W (k) +W1(k) (13)

6. The updated equalizer coefficients are set and ready to be used with the next input block.
From one iteration to another the error is decreasing since the coefficients are updated
progressively.
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The implementation of the Equalizer based on the Fast LMS algorithm was tested using
simulation in Simulink environment [14]. The simulation was based on error estimation for the
4-tap frequency domain equalizer converges after almost 200 symbols to reach the value of -40
dB. On the other hand, an FPGA based implementation is simulated for a 2-tap equalizer on the
one million gate Spartan 3 FPGA board. The results obtained from the Simulink model were
better than those obtained from the System Generator model because symbol were described
using floating point in Simulink fixed point in System Generator. Figure 2 below shows the
Simulink model for the Fast LMS algorithm.

Figure 2: Fast LMS algorithm in Simulink [14]

Testing based verification for the Fast LMS algorithm in the above cases was based on
estimating the error generated in every step. The accuracy of the verification process was
affected thoughtfully by the method used in the framework to model numbers, be it floating
point or fixed point. In addition, the verification process was based on applying a specific number
of iterations, therefore in order to get more assurance about generated error, more simulation
is required. For a certain level of assurance, specifically, in safety critical applications, this
becomes infeasible, since simulation time becomes tremendous.

To overcome these verification problems in simulation based verification, we will use theorem
proving based verification in order to provide formal error analysis of the Fast LMS algorithm.

3 Error Analysis In HOL Theorem Prover

3.1 HOL general description

The HOL [9] theorem prover is an interactive tool dedicated to conduct proofs in higher-order
logic. The most common notations used in HOL are presented in Table 1. There are only four
types of terms in HOL: variables, constants, function application and lambda terms. The main
core of HOL consists of five axioms and eight inference rules. All the theories existing in HOL
are built on the top of them. All the theories should be proved before they are added to HOL
inference system.

3.2 Preliminaries

To formalize the error due to the floating-point rounding in HOL, we refer to the following
theorem. This latter is considered as the most fundamental theorem dealing with the floating-
point rounding error.
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Table 1: HOL Notation

Standard Notation HOL Notation Description
⊤ T True
⊥ F False

And ∧ Logical And
Or ∨ Logical Or
=⇒ ==> Implies That
∀ x ! x Forall x
∃ x ? x There Exists x

Theorem 1: If x is a real number within the floating-point range, then
xR = x(1 + δ), where|δ| ≤ 2−p

where p is the precision of the floating-point format. Looking at the theorem above, we
notice that in the floating-point domain the rounding error is introduced multiplicatively [10,
11]. Applying this theorem on arithmetic operations (addition, subtraction, multiplication and
division), leads to the following expression, where * refers to any type of arithmetic operation.

fl(x ∗ y) = (x ∗ y)(1 + δ), where|δ| ≤ 2−p (14)

Any floating-point operation is linked to its abstract mathematical counterpart by above the
theorem according to a precise error value. Concerning the fixed-point domain, the rounding
effect is presented additively. As it is shown in the fundamental error analysis theorem below,
the floating-point value xR is given by the addition of the error to the real number x.

Theorem 2: If x is a real number within the fixed-point range, then
xR = (x + ϵ), where|ϵ| ≤ 2−fracbits(X)

Similar to the floating-point domain, the application of the above theorem on the fixed-point
arithmetic operations is summarized in the following expression:

fl(x ∗ y) = (x ∗ y) + ϵ, where|ϵ| ≤ 2−fracbits(X) (15)

where * refers to all common operations.

3.3 Methodology

Our methodology, as depicted in Figure 3, is based on a formal model for numbers in three
different domains: fixed point, real, and floating point domain and a valuation procedure for
numbers conversion from the fixed point domain to real domain, and also from floating point
domain to the real domain, all for FFT operations. Based on this conversion, error analysis is
performed between the actual real values obtained from FFT and the converted ones from both
floating point and fixed point domains. Finally further analysis is performed to show the error
analysis between fixed point and floating point.

The rectangles in Figure 3 refer to the Fast LMS algorithm in a specific domain; real, floating-
point or fixed point. The hexagons are dedicated to represent the results of the different error
analysis that we have done.
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Figure 3: Error Analysis Verification Methodology in HOL

In this verification methodology, the Fast LMS algorithm should be formalized in the three
number domains exactly the same way as it is defined in section 2.3. Next, the valuation func-
tions should be used in order to return real approximations of the floating-point and fixed-point
algorithms. The error analysis consists, first, in extracting the rounding error by performing
the FXP to Real and FP to Real error analysis which are defined respectively as the difference
between the approximations of the fixed-point and the floating-point algorithms and the real
specification. Finally, we perform the FXP to FP error analysis by deducing the round-off error
between floating-point and fixed-point.

To perform the error analysis of the Fast LMS algorithm, we used the existing theories in
HOL and built on top of them the necessary theories to reason about error generation and
accumulation in the equalizer. First, the construction of complex numbers was necessary for the
implementation of the specification. Regarding the floating-point and the fixed-point modeling
of the design, we used, respectively, the formalization of IEEE 754 standard based floating-point
arithmetic [3] the fixed-point arithmetic formalization developed by Akbarpour et. al. [12].

3.4 Formalizing the Fast LMS Algorithm for the Frequency Domain
Equalizer in HOL

In order to model the error analysis of the frequency domain equalizer, many existing HOL
theories developed by Abdullah [5] were used. We also constructed complex numbers and many
other required functions like the complex sum in all three number domains. The error analysis
is finally formalized using the theorems and lemmas that we have developed.

The definitions that we used in this section, except those of the FFT and IFFT, were defined
in [5]. We modified most of them to be coherent with the theorems that we developed.

We defined an HOL theorem for every building block of the design, then, we defined one
comprehensive theorem for the whole design to show the validity of rounding and error accu-
mulation. These theorems theorems were all proved in HOL framework. In this section, we will
discuss the major theorems we defined for the design. The structure and relationship between
these algorithms is shown in Figure 4.
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3.4.1 Real Number Domain Modeling

Modeling the frequency domain equalizer using HOL in real domain requires formalizing complex
numbers. We defined complex as a new datatype based on a pair of real numbers as shown below:
complex = ⊢def complex of (real # real)

The real and imaginary part of a complex number are also formalized in HOL.
Re_def = ⊢def Re (complex (a,b)) = a

Im_def = ⊢def Im (complex (a,b)) = b

We also define properties on complex numbers that are needed to model the equalizer in
HOL. For instance, the conjugation which is formalized using this definition:
CNJ = ⊢def ∀ z. CNJ z = complex (Re z,¬ Im z)

Arithmetic operations on complex numbers such as addition, subtraction and multiplication
were also defined in HOL and properties about these operations were proved, such as complex
multiplication and complex addition commutativity.

The principal n-roots of unity, was defined in HOL using Euler’s identity as follows:
principal_root =

⊢def ∀ n k. principal_root n k =

complex (cos n * k * Π/¬2,sin n * k * Π/¬ 2)

In addition, a required complex constant was defined as
complex_4_def = ⊢def complex_4 = complex (1 / 4,0)

One of the most important functions is complex summation; used specially to define FFT and
IFFT. It is defined recursively as follows:
rec_sum_def =

⊢def rec_sum (n,0) f =

complex (0,0) ∧ rec_sum (n,SUC m) f =

rec_sum (n,m) f + f (n + m)

where n and 0 are upper and lower indices, respectively, and f is a function. Based on the above
necessary definitions, we can define both FFT and IFFT in HOL as follows:
real_FFT_def =

⊢def ∀ x k. real_FFT x k =

rec_sum (0,3) (\n. principal_root n k * EL n x)

real_IFFT_def =

⊢def ∀ L k. real_FFT x k =

complex_4 * rec_sum (0,3) (\n. principal_root n k * EL n L)

These definitions are based on complex summation and the principal n-roots functions, that
were defined above. In addition, we adopted the function EL from the pairTheory in order to
extract the nth element of a complex list L. The term \n in the real FFT def and real IFFT def
theorems is a lambda-abstraction which means that the sum is a function of n.
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3.4.2 Floating-point Domain Modeling

Complex numbers modeling in this domain is similar to the real domain except that here the
complex numbers are represented as pair of floats.

complex = ⊢def complex of (float # float)

The definitions of real and imaginary parts, float Re and float Im respectively, are defined in the
same way as the definitions presented above. The arithmetic operations on complex numbers
of type float and the principal n-roots of unity in floating-point domain, float principal root, are
defined in a straightforward way. The definitions are not given here since they are similar to
the aforementioned definition. Floating-point complex summation is defined using as follows:
float_complex_sum_def =

⊢def float_complex_sum (n,0) f =

float_complex (float (0,0,0),float (0,0,0)) ∧
float_complex_sum (n,SUC m) f = float_complex_sum (n,m) f + f (n + m)

John Harrison tackles in [1] the IEEE floating-point formalization as well as the rounding prob-
lem of floating-point numbers. This latter issue consists in linking a real number to its nearest
floating-point one. There are three ways to do the rounding which are either towards zero or
towards negative or positive infinity. In this work, we defined the function float complex round
which returns the rounding value of a floating-point complex number. This function uses the
predefined round function which has three parameters; float format dedicated for the floating-
point precision, To nearest indicating the rounding format, and finally Re z or Im z representing
the real number that we want to round. The floating-point complex rounding function is given
by the definition below:
float_complex_round_def =

⊢def ∀ z. float_complex_round z =

float_complex (float (round float_format To_nearest (Re z))

,float (round float_format To_nearest (Im z)))

The inverse function of rounding is called valuation, it gives the equivalent real of any floating-
point number. It is defined in HOL as Val. For the valuation of the complex numbers of type
float we define the function float complex val.
float_complex_val_def =

⊢def ∀ z. float_complex_val z =

complex (Val (float_Re z),Val (float_Im z))

A detailed definition and description of the valuation function is given by John Harrison in [1].
The functions used to define Val such as valof and defloat can be found in the floatTheory [8]
of HOL.

The FFT and IFFT blocks in the floating-point domain are formalized as follows:
float_FFT_def =

⊢def ∀ x k. float_FFT x k =

float_complex_sum (0,3) (\n. float_principal_root n k * EL n x)

float_IFFT_def =

⊢def ∀ L k. float_IFFT x k =

float_complex_4 * float_complex_sum (0,3)

(\n. float_principal_root_1 n k * EL n L)
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We used the functions float principal root and float principal root 1 to define float FFT and
float IFFT, respectively. These two former functions were the rounding result of the two func-
tions principal root and principal root 1 defined in the previous section.

3.4.3 Fixed-point Modeling

The formalization of the Fast LMS algorithm in HOL in the fixed-point domain is different from
the formalization in the other two domains. This is due to the use of the primitive parameters
for arbitrary attributes related to fixed-point numbers. We used fxp to define complex numbers
in the fixed point domain. Retrieving the real and imaginary parts of a complex number of type
fxp is achieved using fxp Re and fxp Im, respectively. Complex addition, complex subtraction
and complex multiplication are defined using functions fxp complex add, fxp complex sub and
fxp complex mul, respectively. As we mentioned the definition of the complex summation for
the fixed-point domain is given as:
fxp_complex_sum_def =

⊢def fxp_complex_sum (n,0) X f =

fxp_complex (fxp (WORD (REPLICATE (streamlength (X)) F),X),

fxp (WORD (REPLICATE (streamlength (X)) F),X)) ∧
fxp_complex_sum (n,SUC m) X f =

fxp_complex_add X (fxp_complex_sum (n,m) X f) (f (n + m))

The function Fxp round converts a real number into its fixed-point equivalent number. To per-
form rounding of a complex number of type fxp, we defined the function fxp complex round def
as follows:
fxp_complex_round_def =

⊢def ∀ X z. fxp_complex_round X z =

fxp_complex (Fxp_round X Re(z), Fxp_round X Im (z))

To obtain the real value of a fixed-point number, we use the function value that is defined in
the fxpTheory in HOL. The function fxp complex value is defined to perform the valuation of
fixed-point complex numbers is defined as:
fxp_complex_value =

⊢def ∀ z. fxp_complex_value z =

complex (value fxp_Re (z), value fxp_Im (z))

Using the above definitions,we formalize the FFT and IFFT blocks in the fixed-point domain
as follows:
fxp_FFT_def =

⊢def ∀ X x k. fxp_FFT X x k =

fxp_complex_sum (0,3) X (\n. (fxp_complex_mul X

(fxp_principal_root X n k) (EL n x) ))

fxp_IFFT_def =

⊢def ∀ X L k. fxp_IFFT X L k =

fxp_complex_mul X (fxp_complex_4 X) (fxp_complex_sum (0,3) X

(\n.(fxp_complex_mul X (fxp_principal_root_1 X n k) (EL n L) )))

where fxp complex 4 X refers to the term 1/N in the IFFT equation. It is a constant complex
number which its value is equal to 1/4 since the number of taps, N , adopted for our design is
equal to 4.
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3.5 Formal Error Analysis in HOL

After modeling the basic components of the frequency domain equalizer in HOL in the three
number domains, we can proceed with error analysis of the equalizer. We formalize errors
in the floating-point and fixed-point domains for the designs using the following two lemmas;
float complex val and fxp complex value, which are defined as follows:
float_complex_val =

⊢lemma ∀ z. float_complex_val z =

complex (Val (float_Re z),Val (float_Im z))

fxp_complex_value =

⊢lemma ∀ z. fxp_complex_value z =

complex (value (fxp_Re z), value (fxp_Im z))

The effect of these functions on the arithmetic operations is inherited from the effect of the
function Val and value. The function Val is used to define the rounding error due to the
valuation of the floating-point in real number. The effect of the Val function on arithmetic
operations is defined as:

1. ∀ a b.∃ e.V al(a+ b) = (V al a+ V al b) ∗ (1 + e)

2. ∀ a b.∃ e.V al(a− b) = (V al a− V al b) ∗ (1 + e)

3. ∀ a b.∃ e.V al(a ∗ b) = (V al a ∗ V al b) ∗ (1 + e)

where a and b be two floating-point numbers and e a real number. e in the above lemmas
defines the error caused by the valuation of the fixed-point in real number.

The effect of the value function on arithmetic operations is given as:

1. ∀ a b X.∃ e.value(FxpAdd X a b) = value a+ value b+ e

2. ∀ a b X.∃ e.value(FxpSub X a b) = value a− value b+ e

3. ∀ a b X.∃ e.value(FxpMul X a b) = value a ∗ value b+ e

These lemmas are dedicated to complete the error analysis for rounding numbers between dif-
ferent domains. In order to perform complete error analysis for the whole design, each block
of the Fast LMS algorithm described above in Figure 1 must be formalized in HOL. Figure 4
below shows the structure of HOL theorems that were defined and proved for every block in the
equalizer.

For illustrated purposes, we present below the steps of the error analysis applied on one of
the blocks of the equalizer which is the FFT. First, the floating-point FFT is valuated using the
float complex val lemma. The FPReal FFT is given as:

(((((float_complex_val((float_principal_root 0 k)* (EL 0 x1)) *

complex ((1 + e3) , 0)) +

float_complex_val ((float_principal_root 1 k) * (EL 1 x1))) *

complex ((1 + e2) , 0)) +

float_complex_val((float_principal_root 2 k) * (EL 2 x1))) *

complex ((1 + e1) , 0))

where complex((1 + e1) , 0)), complex((1 + e2) , 0)) and complex((1 + e3) , 0)) are the
errors generated because of the valuation.
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Figure 4: Structure of HOL Theorems for the Equalizer

Next theorem deals with error analysis between the real and the floating-point representa-
tions of the FFT block. It consists of a simple subtraction between the FP-Real FFT and the
Real FFT. The theorem is defined as:
FFT_REAL_TO_FP_ERROR =

⊢thm ∀ x x1 k. ∃e1 e2 e3.

FFT_REAL_TO_FP_ERROR x x1 k =

(((((float_complex_val

((float_principal_root 0 k)* (EL 0 x1)) * complex ((1 + e3) , 0))

+ float_complex_val ((float_principal_root 1 k) * (EL 1 x1)))

* complex ((1 + e2) , 0)) + float_complex_val

((float_principal_root 2 k) * (EL 2 x1))) * complex ((1 + e1) , 0))

- (rec_sum (0,3) (\n.((principal_root n k)* (EL n x)))))

The function fxp complex value is defined in order to perform error analysis between the real
and the fixed-point representations of the FFT block. On the other hand, the fixed-point FFT
is valuated using the fxp complex value and an approximation of the FFT in real domain. The
valuated FFT is given by:
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(((((fxp_complex_value ((fxp_complex_mul X (fxp_principal_root X 0 k)

(EL 0 x1))) + complex (e3 , e3)) + fxp_complex_value (fxp_complex_mul

X (fxp_principal_root X 1 k) (EL 1 x1))) + complex (e2 , e2))

+ fxp_complex_value (fxp_complex_mul X (fxp_principal_root X 2 k)

(EL 2 x1))) + complex (e1, e1))

where complex(e1, e1), complex(e2, e2) and complex(e3, e3) are the errors generated because
of the valuation.

The real to fixed-point error analysis of the FFT is established by proving that the produced
error is is equivalent to subtraction between the valuated fixed-point FFT expression and the
real one. The theorem below is used to formalize this error:
FFT_REAL_TO_FXP_ERROR =

⊢thm ∀ x x1 X k.∃e1 e2 e3.

FFT_REAL_TO_FXP_ERROR x x1 X k =

(((((fxp_complex_value ((fxp_complex_mul X (fxp_principal_root X 0 k)

(EL 0 x1))) + complex (e3 , e3)) + fxp_complex_value (fxp_complex_mul

X (fxp_principal_root X 1 k) (EL 1 x1))) + complex (e2 , e2))

+ fxp_complex_value (fxp_complex_mul X (fxp_principal_root X 2 k)

(EL 2 x1))) + complex (e1, e1)) - (rec_sum (0,3) (\(n:num).

((principal_root n k) * (EL n x)))))

Once the real to fixed-point error analysis is achieved, the fixed-point to floating-point error
analysis of the FFT block is obtained by deducting the results of the real to floating-point and
the real to fixed-point error expressions as given in Figure 3 above. The following theorem is
defined in order to establish the fixed-point to floating-point error analysis of the FFT:
FFT_FP_TO_FXP_ERROR =

⊢thm ∀ x xp xf X k. ∃ e1 e2 e3 e4 e5 e6.

FFT_FP_TO_FXP_ERROR x xp xf X k =

(((((fxp_complex_value ((fxp_complex_mul X (fxp_principal_root X 0 k)

(EL 0 xf))) + complex (e3 , e3)) + fxp_complex_value (fxp_complex_mul X

(fxp_principal_root X 1 k) (EL 1 xf))) + complex (e2, e2))

+ fxp_complex_value (fxp_complex_mul X (fxp_principal_root X 2 k)

(EL 2 xf))) + complex (e1, e1)) - (((((float_complex_val

((float_principal_root 0 k) * (EL 0 xp)) * complex ((1 + e6) , 0))

+ float_complex_val ((float_principal_root 1 k) * (EL 1 xp)))

* complex ((1 + e5) , 0)) + float_complex_val((float_principal_root 2 k)

Having an HOL theorem defined and proved for every building block of the design, we then
need to define one comprehensive theorem for the whole design. This algorithm combines all of
the algorithms that defines the block of the design together. Theorem FAST LMS FP TO FXP ERROR,
given in the Appendix, is used to obtain the rounding error from each block and accumulate it
together with the error produced by the successor block in the design as depicted in Figure 4.
Eventually, the rounding error is obtained for the whole design and validated for the algorithm.
This theorem is proved in HOL deduction system, which verifies that the rounding and accu-
mulated error produced by steps of the algorithm are within the accepted range given in the
specification of the design.

Theorems for error analysis of the blocks of the frequency domain equalizer that were for-
malized and proved in HOL are presented in the Appendix.
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3.6 Discussion

Many existing theories in HOL, e.g., arithmeticTheory, realTheory, listTheory, pairTheory, re-
alLib, numLib, floatTheory, fxpTheory, ieeeTheory, . . . , were used to derive the rounding error
analysis of the frequency domain equalizer. The definitions of the Fast LMS algorithm were
formalized and proved based on these theories. All the definitions we formalized first in the
real domain, and then all the arithmetic operators were overload to build the design in the
floating-point and fixed-point domains using floatTheory and fxpTheory, respectively.

In order to complete the error analysis of the Fast LMS algorithm, quantification over func-
tions, variables and objects was required. That is why, all the definitions were defined in higher
order logic. Now, coming to the proof steps, HOL provides many tactics and tacticals. In most
cases, it was difficult to prove some theorems in one shot, so we split them into many subgoals
that were proved one by one and then were combined together.

The equalizer application shows that formal error analysis is applicable on larger scale sys-
tems such as the one we have analyzed, which is traditionally analyzed with paper and pencil
or simulation based techniques based on estimating the error. Formal analysis proves that the
implementation meets its specification with 100% coverage, something that is not feasible in
simulation. In addition compared to the classical analytical technique, this method is comput-
erized and has been conducted using an interactive tool, and, the theorems can be efficiently
reused to verify other designs that make use of the same algorithm.

Some specific error analysis theorems that were used in this work were defined and proven
by Akbarpour [2] and Abdullah [5]. However, we had to build our own theorems on top of these
in order to formalize and verify every block of the Fast LMS algorithm, and consequently define
one single theorem for the whole design. This shows that relevant theorems that are proven in
HOL can be reused efficiently in order to verify complex systems of similar properties. In fact,
scalability of HOL theorems is one of its best features, since wee designed proven theorems can
be reused efficiently to verify other designs, which reduces time and effort, in particular while
using the interactive HOL framework environment.

4 Conclusion and Future Work

In this work we apply theorem proving technique to provide formal error analysis for the fre-
quency domain equalizer. The equalizer can be implemented using the Fast LMS algorithm
where a number of mathematical operations are performed on numbers in three different do-
mains: floating-point, fixed-point and real numbers. This requirers data to be converted between
these domains, which in turn produces errors that can accumulate during the several iterations of
the algorithm. This application is an ideal candidate for the error analysis framework developed
by Akbarpour [2], where we can perform formal error analysis between real and floating-point
numbers, and also between real and fixed-point numbers, and consequently the error analysis
between fixed-point and floating-point is conducted. However, to perform this analysis, basic
formal definitions and theorems were required in order to handle iterative nature of the algorithm
and the multiple FFT and IFFT blocks in the equalizer.

Formal error analysis is used to show that errors in the equalizer algorithm occurring while
converting from one number domain to the another are within the accepted range based on the
deign specification of the equalizer. However, this was not a straightforward task and required
building on top of existing HOL theorems for error analysis. In addition, derivation of new
expressions for the accumulation of round-off error in the algorithm was necessary to obtain
the correct formal model for rounding error. We developed an HOL theorem for every building
block of the design, then, we defined one comprehensive theorem for the whole design to show
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the validity of rounding and error accumulation. These theorems theorems were all proved in
HOL framework. This application shows that formal error analysis is applicable on larger scale
systems such as the one we have analyzed, which is traditionally analyzed with paper and pencil
or simulation based techniques based on estimating the error.

As future work, we plan to extend the current work and perform error analysis using the
GAPPA framework developed by Melquiond [13] 1. GAPPA is a tool dedicated to formally
proving programs dealing with floating-point and fixed-point arithmetics. The tool can return
a numerical error range when performing error analysis, and therefore, our design will represent
a challenge for this new theorem proving tool and it will be a good case study to compare the
results returned by GAPPA and HOL in terms of use easiness and efficiency. Another interesting
approach is to use first order theorem proving to verify properties about the functional behavior
of the equalizer.

1The idea was proposed during a discussion with Dr. Marc Daumas
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A Real to Floating-point Error Analysis

FFT_REAL_TO_FP_ERROR =

⊢thm ∀ x x1 k. ∃e1 e2 e3.

FFT_REAL_TO_FP_ERROR x x1 k =

(((((float_complex_val

((float_principal_root 0 k)* (EL 0 x1)) * complex ((1 + e3) , 0))

+ float_complex_val ((float_principal_root 1 k) * (EL 1 x1)))

* complex ((1 + e2) , 0)) + float_complex_val

((float_principal_root 2 k) * (EL 2 x1))) * complex ((1 + e1) , 0))

- (rec_sum (0,3) (\n.((principal_root n k)* (EL n x)))))

IFFT_REAL_TO_FP_ERROR =

⊢thm ∀ L L1 k.∃e1 e2 e3.

IFFT_REAL_TO_FP_ERROR L L1 k =

float_complex_val float_complex_4 * ((((((float_complex_val

((float_principal_root_1 0 k) * (EL 0 L1)) * complex ((1 + e3) , 0))

+ float_complex_val ((float_principal_root_1 1 k) * (EL 1 L1)))

* complex ((1 + e2) , 0)) + float_complex_val

((float_principal_root_1 2 k) * (EL 2 L1))) * complex ((1 + e1) , 0)))

* complex (1 + e,0) - (complex_4 * rec_sum (0,3)

(\n. ((principal_root_1 n k) * ((EL n L)))))

Y_product_REAL_TO_FP_ERROR =

⊢thm ∀ W1 u W1_1 u_1 Y1.∃e1.
Y_product_REAL_TO_FP_ERROR W1 u W1_1 u_1 Y1 =

MAP (\k. (float_complex_val (float_CNJ (float_FFT u_1 k)))

* (float_complex_val (EL k W1_1)) * complex (1 + e1,0)

- (CNJ (real_FFT u k) * EL k W1)) Y1

ERROR_REAL_TO_FP_ERROR =

⊢thm ∀ d d1 y y1 e.∃e1.
ERROR_REAL_TO_FP_ERROR d d1 y y1 e =

MAP (\k. (float_complex_val (EL k d1)

- float_complex_val (EL k y1)) * complex (1 + e1,0)

- (EL k d - EL k y)) e

FREQ_PRODUCT_REAL_TO_FP_ERROR =

⊢thm ∀ u e E u1 e1 E1 P.∃ e2.

FREQ_PRODUCT_REAL_TO_FP_ERROR u e E u1 e1 E1 P =

MAP (\k. (float_complex_val (float_CNJ (float_FFT u1 k)))

* (float_complex_val (EL k (float_error_FFT e1 E1)))

* complex (1 + e2,0) - (CNJ (real_FFT u k) * ( EL k (error_FFT e E)))) P

PRODUCT_GRADIENT_REAL_TO_FP_ERROR =

⊢thm ∀ W2 W2_1 W3.∃e1.
PRODUCT_GRADIENT_REAL_TO_FP_ERROR W2 W2_1 W3 =

MAP (\k. (float_complex_val float_complex_2)

* (float_complex_val ( EL k W2_1)) * complex (1 + e1,0)
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- (complex_2 * ( EL k W2))) W3

COEF_UPDATE_REAL_TO_FP_ERROR =

⊢thm ∀ W1 W3 W1_1 W3_1 W2.∃e1.
COEF_UPDATE_REAL_TO_FP_ERROR W1 W3 W1_1 W3_1 W2 =

MAP (\k. ((float_complex_val (EL k W1_1))

+ (float_complex_val (EL k W3_1))) * complex (1 + e1,0)

- (EL k W1 + EL k W3)) W2

B Real to Fixed-point Error Analysis

FFT_REAL_TO_FXP_ERROR =

⊢thm ∀ x x1 X k.∃e1 e2 e3.

FFT_REAL_TO_FXP_ERROR x x1 X k =

(((((fxp_complex_value ((fxp_complex_mul X (fxp_principal_root X 0 k)

(EL 0 x1))) + complex (e3 , e3)) + fxp_complex_value (fxp_complex_mul

X (fxp_principal_root X 1 k) (EL 1 x1))) + complex (e2 , e2))

+ fxp_complex_value (fxp_complex_mul X (fxp_principal_root X 2 k)

(EL 2 x1))) + complex (e1, e1)) - (rec_sum (0,3) (\(n:num).

((principal_root n k) * (EL n x)))))

IFFT_REAL_TO_FXP_ERROR =

⊢thm ∀ L L1 k X.∃ e e1 e2 e3.

IFFT_REAL_TO_FXP_ERROR L L1 k X =

((fxp_complex_value (fxp_complex_4 X)) * (((((fxp_complex_value

((fxp_complex_mul X (fxp_principal_root_1 X 0 k) (EL 0 L1)))

+ complex (e3 , e3)) + fxp_complex_value (fxp_complex_mul X

(fxp_principal_root_1 X 1 k) (EL 1 L1))) + complex (e2 , e2))

+ fxp_complex_value (fxp_complex_mul X (fxp_principal_root_1 X 2 k)

(EL 2 L1))) + complex (e1, e1))) + complex (e , e)

- (complex_4 * rec_sum (0,3) (\n. ((principal_root_1 n k) * ((EL n L))))))

Y_product_REAL_TO_FXP_ERROR =

⊢thm ∀ W1_2 u W1_1 u_1 X Y1. ∃ e1.

Y_product_REAL_TO_FXP_ERROR W1_2 u W1_1 u_1 X Y1 =

MAP (\k. (fxp_complex_value (fxp_CNJ X (fxp_FFT X u_1 k)))

* (fxp_complex_value (EL k W1_1)) + complex (e1 , e1)

- (CNJ (real_FFT u k) * EL k W1_2)) Y1

ERROR_REAL_TO_FXP_ERROR =

⊢thm ∀ d d1 y y1 X e. ∃e1.
ERROR_REAL_TO_FXP_ERROR d d1 y y1 X e =

MAP (\k. (fxp_complex_value (EL k d1) - fxp_complex_value (EL k y1))

+ complex (e1,e1) - (EL k d - EL k y)) e

FREQ_PRODUCT_REAL_TO_FXP_ERROR =

⊢thm ∀ u e E u1 e1 E1 X P. ∃ e2.

FREQ_PRODUCT_REAL_TO_FXP_ERROR u e E u1 e1 E1 X P =
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MAP (\k.(fxp_complex_value (fxp_CNJ X (fxp_FFT X u1 k)))

* (fxp_complex_value ( EL k (fxp_error_FFT X e1 E1))) + complex (e2, e2)

- (CNJ (real_FFT u k) * ( EL k (error_FFT e E)))) P

PRODUCT_GRADIENT_REAL_TO_FXP_ERROR =

⊢thm ∀ W2 W2_1 X W3. ∃ e1.

PRODUCT_GRADIENT_REAL_TO_FXP_ERROR W2 W2_1 X W3 =

MAP (\k. (fxp_complex_value (fxp_complex_2 X)) * (fxp_complex_value

( EL k W2_1)) + complex (e1, e1) - (complex_2 * ( EL k W2))) W3

COEF_UPDATE_REAL_TO_FXP_ERROR =

⊢thm ∀ W11 W3 W1_1 W3_1 W2. ∃ e1.

COEF_UPDATE_REAL_TO_FXP_ERROR W11 W3 W1_1 W3_1 X W2 =

MAP (\k. (fxp_complex_value (EL k W1_1)) + (fxp_complex_value

(EL k W3_1)) + complex (e1, e1) - (EL k W11 + EL k W3)) W2

C Floating-point to Fixed-point Error Analysis

FFT_FP_TO_FXP_ERROR =

⊢thm ∀ x xp xf X k. ∃ e1 e2 e3 e4 e5 e6.

FFT_FP_TO_FXP_ERROR x xp xf X k =

(((((fxp_complex_value ((fxp_complex_mul X (fxp_principal_root X 0 k)

(EL 0 xf))) + complex (e3 , e3)) + fxp_complex_value (fxp_complex_mul X

(fxp_principal_root X 1 k) (EL 1 xf))) + complex (e2, e2))

+ fxp_complex_value (fxp_complex_mul X (fxp_principal_root X 2 k)

(EL 2 xf))) + complex (e1, e1)) - (((((float_complex_val

((float_principal_root 0 k) * (EL 0 xp)) * complex ((1 + e6) , 0))

+ float_complex_val ((float_principal_root 1 k) * (EL 1 xp)))

* complex ((1 + e5) , 0)) + float_complex_val((float_principal_root 2 k)

* (EL 2 xp))) * complex ((1 + e4) , 0)))

IFFT_FP_TO_FXP_ERROR =

⊢thm ∀ L Lp Lf X k. ∃ e1 e2 e3 e4 e5 e6 e7.

IFFT_FP_TO_FXP_ERROR L Lp Lf X k =

((fxp_complex_value (fxp_complex_4 X)) * (((((fxp_complex_value

((fxp_complex_mul X (fxp_principal_root_1 X 0 k) (EL 0 Lp)))

+ complex (e3 , e3)) + fxp_complex_value (fxp_complex_mul X

(fxp_principal_root_1 X 1 k) (EL 1 Lp)))+ complex (e2 , e2))

+ fxp_complex_value (fxp_complex_mul X (fxp_principal_root_1 X 2 k)

(EL 2 Lp))) + complex (e1, e1))) + complex (e , e)

- (float_complex_val float_complex_4 * ((((((float_complex_val

((float_principal_root_1 0 k) * (EL 0 Lf)) * complex ((1 + e7) , 0))

+ float_complex_val ((float_principal_root_1 1 k) * (EL 1 Lf)))

* complex ((1 + e6) , 0)) + float_complex_val ((float_principal_root_1 2 k)

* (EL 2 Lf))) * complex ((1 + e5) , 0))) * complex (1 + e4,0)))

Y_product_FP_TO_FXP_ERROR =

⊢thm ∀ Wr u W1_1 W1_2 u_2 u_1 X. ∃ e1 e2.
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Y_product_FP_TO_FXP_ERROR Wr u W1_1 W1_2 u_2 u_1 X =

MAP (\n. (fxp_complex_value (fxp_CNJ X (fxp_FFT X u_1 n)))

* (fxp_complex_value (EL n W1_1)) + complex (e1 , e1)

- (float_complex_val (float_CNJ (float_FFT u_2 n)))

* (float_complex_val (EL n W1_2)) * complex (1 + e2,0)) [0;1;2;3]

ERROR_FP_TO_FXP_ERROR =

⊢thm ∀ d d1 d2 y y1 y2 X. ∃ e1 e2.

ERROR_FP_TO_FXP_ERROR d d1 d2 y y1 y2 X =

MAP (\n. (fxp_complex_value (EL n d1) - fxp_complex_value (EL n y1))

+ complex (e1,e1) - (float_complex_val (EL n d2) -

float_complex_val (EL n y2)) * complex (1 + e2,0)) [0;1;2;3]

FREQ_PRODUCT_FP_TO_FXP_ERROR =

⊢thm ∀ u u1 u2 e6 e4 e5 E E1 E2 X. ∃ e1 e2.

FREQ_PRODUCT_FP_TO_FXP_ERROR u u1 u2 e6 e4 e5 E E1 E2 X =

MAP (\n. (fxp_complex_value (fxp_CNJ X (fxp_FFT X u1 n)))

* (fxp_complex_value (EL n (fxp_error_FFT X e4 E1)))

+ complex (e1, e1) - (float_complex_val (float_CNJ (float_FFT u2 n)))

* (float_complex_val (EL n (float_error_FFT e5 E2)))

* complex (1 + e2,0)) [0;1;2;3]

PRODUCT_GRADIENT_FP_TO_FXP_ERROR =

⊢thm ∀ W2 W2_1 W2_2 X. ∃ e1 e2.

PRODUCT_GRADIENT_FP_TO_FXP_ERROR W2 W2_1 W2_2 X =

MAP (\n. (fxp_complex_value (fxp_complex_2 X)) * (fxp_complex_value

( EL n W2_1)) + complex (e1, e1) - (float_complex_val float_complex_2)

* (float_complex_val (EL n W2_2))* complex (1 + e2,0)) [0;1;2;3]

COEF_UPDATE_FP_TO_FXP_ERROR =

⊢thm ∀ W11 W3 W1_1 W3_1 W1_2 W3_2 X. ∃ e1 e2.

COEF_UPDATE_FP_TO_FXP_ERROR W11 W3 W1_1 W3_1 W1_2 W3_2 X =

MAP (\n. (fxp_complex_value (EL n W1_1)) + (fxp_complex_value (EL n W3_1))

+ complex (e1, e1) - ((float_complex_val (EL n W1_2))

+ (float_complex_val (EL n W3_2))) * complex (1+ e2,0)) [0;1;2;3]

D Single Theorem for the whole Frequency Domain Equal-
izer Error Analysis

FAST_LMS_FP_TO_FXP_ERROR =

⊢thm ∀ ! x xp xf Wr u W1_1 W1_2 u_2 u_1 L Lp Lf d d1

d2 y y1 y2 x_1 xp_1 xf_1 u_0 u1 u2 e_1 e1 e2 E E1 E2 L_1 Lp_1 Lf_1 x_2 xp_2

xf_2 k W2 W2_1 W2_2 W11 W3 W1_11 W3_1 W1_21 W3_2 d d1 d2 y y1 y2 W11 W3 W1_11

W3_1 W1_21 W3_2 W2 W2_1 W2_2 k X.

∃ ? e46 e47 e44 e45 e16 e17 e18 e19 e20 e21 e30 e31 e32 e33 e34 e35 e36

e37 e42 e43 e10 e11 e12 e13 e14 e15 e40 e41 e22 e23 e24 e25 e26 e27 e28 e29

e38 e39 e7 e8 e9 e4 e5 e6.

(FAST_LMS_FP_TO_FXP_ERROR x xp xf Wr u W1_1 W1_2 u_2 u_1 L Lp Lf x_1 xp_1 xf_1
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u_0 u1 u2 e_1 e1 e2 E E1 E2 L_1 Lp_1 Lf_1 x_2 xp_2 xf_2 W11 W3 W1_11 W3_1 W1_21

W3_2 W2 W2_1 W2_2 d d1 d2 y y1 y2 k X) =

((MAP (\n. (fxp_complex_value (fxp_complex_mul X (fxp_principal_root X 0 k)

(EL 0 xf)) + complex (e9,e9) + fxp_complex_value (fxp_complex_mul X

(fxp_principal_root X 1 k) (EL 1 xf)) + complex (e8,e8) + fxp_complex_value

(fxp_complex_mul X (fxp_principal_root X 2 k) (EL 2 xf)) + complex (e7,e7) -

((float_complex_val (float_principal_root 0 k * EL 0 xp) * complex (1 + e6,0)

+ float_complex_val (float_principal_root 1 k * EL 1 xp)) * complex (1 + e5,0)

+ float_complex_val (float_principal_root 2 k * EL 2 xp)) * complex (1 + e4,0)))

[(0: num); 1; 2; 3]) +

(MAP (\n. (fxp_complex_value (fxp_CNJ X (fxp_FFT X u_1 (&n)))) *

(fxp_complex_value (EL n (W1_1: fxp_complex list))) + complex (e38 , e38)

- (float_complex_val (float_CNJ (float_FFT u_2 (&n)))) * (float_complex_val

(EL n (W1_2: float_complex list))) * complex (1 + e39,0)) [0;1;2;3]) +

(MAP (\n. (fxp_complex_value (fxp_complex_4 X) *

(fxp_complex_value (fxp_complex_mul X (fxp_principal_root_1 X 0 k)

(EL 0 Lp)) + complex (e25,e25) + fxp_complex_value (fxp_complex_mul X

(fxp_principal_root_1 X 1 k) (EL 1 Lp)) + complex (e24,e24) + fxp_complex_value

(fxp_complex_mul X (fxp_principal_root_1 X 2 k) (EL 2 Lp)) + complex (e23,e23))

+ complex (e22,e22) - float_complex_val float_complex_4 *

(((float_complex_val (float_principal_root_1 0 k * EL 0 Lf) * complex (1 + e29,0) +

float_complex_val (float_principal_root_1 1 k * EL 1 Lf)) * complex (1 + e28,0) +

float_complex_val (float_principal_root_1 2 k * EL 2 Lf)) *

complex (1 + e27,0)) * complex (1 + e26,0))) [(0: num); 1; 2; 3]) +

(MAP (\n. fxp_complex_value (EL n d1) - fxp_complex_value (EL n y1) +

complex (e40,e40) - (float_complex_val (EL n d2) -float_complex_val (EL n y2))

* complex (1 + e41,0))[0; 1; 2; 3]) +

(MAP (\n. ((((((fxp_complex_value ((fxp_complex_mul X (fxp_principal_root X 0 k)

(EL 0 (xf_1:fxp_complex list)))) + complex (e12 , e12)) + fxp_complex_value

(fxp_complex_mul X (fxp_principal_root X 1 k) (EL 1 (xf_1:fxp_complex list))))

+ complex (e11, e11)) + fxp_complex_value (fxp_complex_mul X (fxp_principal_root X 2 k)

(EL 2 (xf_1:fxp_complex list)))) + complex (e10, e10)) - (((((float_complex_val

((float_principal_root (&0) k) * (EL 0 (xp_1:float_complex list))) * complex

(((1:real) + e15) , 0)) + float_complex_val ((float_principal_root (&1) k) *

(EL 1(xp_1:float_complex list)))) * complex (((1:real) + e14) , 0)) +

float_complex_val((float_principal_root (&2) k) * (EL 2 (xp_1:float_complex list))))

* complex (((1:real) + e13) , 0)))) [(0: num); 1; 2; 3]) +

(MAP (\n. fxp_complex_value (fxp_CNJ X (fxp_FFT X u1 (& n))) *

fxp_complex_value (EL n (fxp_error_FFT X e1 E1)) + complex (e42,e42) -

float_complex_val (float_CNJ (float_FFT u2 (& n))) *

float_complex_val (EL n (float_error_FFT e2 E2)) * complex (1 + e43,0)) [0; 1; 2; 3]) +

(MAP (\n. (fxp_complex_value (fxp_complex_4 X) * (fxp_complex_value

(fxp_complex_mul X (fxp_principal_root_1 X 0 k) (EL 0 Lp_1)) + complex (e33,e33) +

fxp_complex_value (fxp_complex_mul X (fxp_principal_root_1 X 1 k) (EL 1 Lp_1)) +

complex (e32,e32) + fxp_complex_value (fxp_complex_mul X

(fxp_principal_root_1 X 2 k) (EL 2 Lp_1)) + complex (e31,e31)) + complex (e30,e30) -

(float_principal_root_1 0 k * EL 0 Lf_1) * complex (1 + e37,0) + float_complex_val

(float_principal_root_1 1 k * EL 1 Lf_1)) * complex (1 + e36,0) +

float_complex_val (float_principal_root_1 2 k * EL 2 Lf_1)) *
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complex (1 + e35,0)) * complex (1 + e34,0))) [(0: num); 1; 2; 3]) +

(MAP (\n. ((((((fxp_complex_value ((fxp_complex_mul X (fxp_principal_root X 0 k)

(EL 0 (xf_1:fxp_complex list)))) + complex (e18 , e18)) + fxp_complex_value

(fxp_complex_mul X (fxp_principal_root X 1 k) (EL 1 (xf_2:fxp_complex list))))

+ complex (e17, e17)) + fxp_complex_value (fxp_complex_mul X (fxp_principal_root X 2 k)

(EL 2 (xf_2:fxp_complex list)))) + complex (e16, e16)) - (((((float_complex_val

((float_principal_root (&0) k) * (EL 0 (xp_2:float_complex list))) *

complex (((1:real) + e21) , 0)) + float_complex_val ((float_principal_root (&1) k)

* (EL 1(xp_2:float_complex list)))) * complex (((1:real) + e20) , 0)) +

float_complex_val((float_principal_root (&2) k) * (EL 2 (xp_2:float_complex list))))

* complex (((1:real) + e19) , 0))) ) [(0: num); 1; 2; 3]) +

( MAP (\n. fxp_complex_value (fxp_complex_2 X) * fxp_complex_value (EL n W2_1) +

complex (e44,e44) - float_complex_val float_complex_2 * float_complex_val (EL n W2_2)

* complex (1 + e45,0)) [0; 1; 2; 3]) +( MAP (\n. fxp_complex_value (EL n W1_11) +

fxp_complex_value (EL n W3_1) + complex (e46,e46) - (float_complex_val (EL n W1_21) +

float_complex_val (EL n W3_2)) * complex (1 + e47,0)) [0; 1; 2; 3]))
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