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Abstract

Cause-consequence Diagram (CCD) is widely used as a deductive safety
analysis technique for decision-making at the critical-system design stage. This
approach models the causes of subsystem failures in a highly-critical system
and their potential consequences using Fault Tree (FT) and Event Tree (ET)
methods, which are well-known dependability modeling techniques. Paper-
and-pencil-based approaches and simulation tools, such as the Monte-Carlo
approach, are commonly used to carry out CCD analysis, but lack the ability to
rigorously verify essential system reliability properties. In this work, we propose
to use formal techniques based on theorem proving for the formal modeling
and step-analysis of CCDs to overcome the inaccuracies of the simulation-based
analysis and the error-proneness of informal reasoning by mathematical proofs.
In particular, we use the HOL4 theorem prover, which is a computer-based
mathematical reasoning tool. To this end, we developed a formalization of CCDs
in Higher-Order Logic (HOL), based on the algebraic approach, using HOL4.
We demonstrate the practical effectiveness of the proposed CCD formalization
by performing the formal reliability analysis of the IEEE 39-bus electrical
power network. Also, we formally determine the Forced Outage Rate (FOR)
of the power generation units and the network reliability index, i.e., System
Average Interruption Duration Index (SAIDI). To assess the accuracy of our
proposed approach, we compare our results with those obtained with MATLAB
Monte-Carlo Simulation (MCS) as well as other state-of-the-art approaches for
subsystem-level reliability analysis.

Keywords— Cause-Consequence Diagram, Event Tree, Fault Tree, Reliability
Analysis, Safety, Formal Methods, Theorem Proving, HOL4, Monte-Carlo, FMECA,
Electrical Power Network, FOR, SAIDI.
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1 Introduction

Nowadays, in many safety-critical systems, which are prevalent, e.g. in smart grids [1]
and automotive industry [2], a catastrophic accident may happen due to coincidence
of sudden events and/or failures of specific subsystem components. These undesirable
accidents may result in loss of profits and sometimes severe fatalities. Therefore, the
central inquiry, in many critical-systems, where safety is of the utmost importance, is
to identify the possible consequences given that one or more components could fail at
a subsystem level on the entire system. For that purpose, the main discipline for safety
design engineers is to perform a detailed Cause-Consequence Diagram (CCD) [3]
reliability analysis for identifying the subsystem events that prevent the entire system
from functioning as desired. This approach models the causes of component failures
and their consequences on the entire system using Fault Tree (FT) [4] and Event
Tree (ET) [5] dependability modeling techniques.

FTs mainly provide a graphical model for analyzing the factors causing a system
failure upon their occurrences. FTs are generally classified into two categories Static
Fault Trees (SFT) and Dynamic Fault Trees (DFT) [6]. SFTs and DFTs allow safety-
analysts to capture the static/dynamic failure characteristics of systems in a very
effective manner using logic-gates, such as OR, AND, NOT, Priority-AND (PAND)
and SPare (SP) [4]. However, the FT technique is incapable of identifying the possible
consequences resulting from an undesirable failure on the entire system. ETs provide
risk analysis with all possible system-level operating states that can occur in the
system, i.e., success and failure, so that one of these possible scenarios can occur [5].
However, both of these modeling techniques are limited to analyzing either a critical-
system failure or cascading dependencies of system-level components only, respectively.

There exist some techniques that have been developed for subsystem-level reliabil-
ity analysis of safety-critical systems. For instance, Papadopoulos et al. in [7] have
developed a software tool called HiP-HOPS (Hierarchically Performed Hazard Origin
& Propagation Studies) [8] for subsystem-level failure analysis to overcome classical
manual failure analysis of complex systems and prevent human errors. HiP-HOPS can
automatically generate the subsystem-level FT and perform Failure Modes, Effects,
and Critically Analyses (FEMCA) from a given system model, where each system
component is associated with its failure rate or failure probability [7]. Currently,
HiP-HOPS lacks the modeling of multi-state system components and also cannot
provide generic mathematical expressions that can be used to predict the reliability of
a critical-system based on any probabilistic distribution [9]. Similarly, Jahanian in [10]
has proposed a new technique called Failure Mode Reasoning (FMR) for identifying
and quantifying the failure modes for safety-critical systems at the subsystem level.
However, according to Jahanian [11], the soundness of the FMR approach needs to be
proven mathematically.

On the other hand, CCD analysis typically uses FTs to analyze failures at the
subsystem or component level combined with an ET diagram to integrate their
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cascading failure dependencies at the system level. CCDs are categorized into two
general methods for the ET linking process with the FTs [12]: (1) Small ET diagram
and large subsystem-level FT; (2) Large ET diagram and small subsystem-level FT.
The former one with small ET and large subsystem-level FT is the most commonly
used for the probabilistic safety assessment of industrial applications (e.g., in [13]).
There are four main steps involved in the CCD analysis [14]: (1) Component failure
events : identify the causes of each component failure associated with their different
modes of operations; (2) Construction of a complete CCD : construct a CCD model
using its basic blocks, i.e., Decision box, Consequence path and Consequence box ;
(3) Reduction: removal of unnecessary decision boxes based on the system functional
behavior to obtain a minimal CCD; and lastly (4) Probabilistic analysis : evaluating
the probabilities of CCD paths describing the occurrence of a sequence of events.

Traditionally, CCD subsystem-level reliability analysis is carried out by using
paper-and-pencil-based approaches to analyze safety-critical systems, such as high-
integrity protection systems (HIPS) [14] and nuclear power plants [15], or using
computer simulation tools based on Monte-Carlo approach, as in [16]. A major
limitation in both of the above approaches is the possibility of introducing inaccuracies
in the CCD analysis either due to human infallibility or the approximation errors
due to numerical methods and pseudo-random numbers in the simulation tools.
Moreover, simulation tools do not provide the mathematical expressions that can
be used to predict the reliability of a given system based on any probabilistic
distributions and failure rates.

A more safe way is to substitute the error-prone informal reasoning of CCD
analysis by formal generic mathematical proofs as per recommendations of safety
standards, such as IEC 61850 [17], EN 50128 [18] and ISO 26262 [19]. In this work, we
propose to use formal techniques based on theorem proving for the formal reliability
CCD analysis-based of safety-critical systems, which provides us the ability to obtain
a verified subsystem-level failure/operating consequence expression. Theorem proving
is a formal verification technique [20], which is used for conducting the proof of
mathematical theorems based on a computerized proof tool. In particular, we use
HOL4 [21], which is an interactive theorem prover with the ability of verifying a
wide range of mathematical expressions constructed in higher-order logic (HOL).
For this purpose, we endeavor to formalize the above-mentioned four steps of CCD
analysis using HOL4 proof assistant. To demonstrate the practical effectiveness
of the proposed CCD formalization, we conduct the formal CCD analysis of an
IEEE 39-bus electrical power network system. Subsequently, we formally determine
a commonly used metric, namely Forced Outage Rate (FOR), which determines
the capacity outage or unavailability of the power generation units [22]. Also,
we evaluate the System Average Interruption Duration Index (SAIDI), which de-
scribes the average duration of interruptions for each customer in a power network [22].

The main contributions of the work we describe in this report can be summarized
as follows:
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• Formalization of the CCD basic constructors, such as Decision box, Consequence
path and Consequence box, that can be used to build an arbitrary level of CCDs

• Enabling the formal reduction of CCDs that can remove unnecessary decision
boxes from a given CCD model, a feature not available in other existing ap-
proaches

• Provide reasoning support for formal probabilistic analysis of scalable CCDs con-
sequence paths with new proposed mathematical formulations

• Application on a real-world IEEE 39-bus electrical power network system and
verification of its reliability indexes FOR and SAIDI

• Development of a Standard Meta Language (SML) function that can numerically
compute reliability values from the verified expressions of FOR and SAIDI

• Comparison between our formal CCD reliability assessment with the correspond-
ing results obtained from MATLAB MCS and other notorious approaches

The rest of the report is organized as follows: In Section 2, we present the related
literature review. In Section 3, we describe the preliminaries to facilitate the under-
standing of the rest of the report. Section 4 presents the proposed formalization of
CCD and its formal probabilistic properties. In Section 5, we describe the formal CCD
analysis of an electrical network system and the evaluation of its reliability indices
FOR and SAIDI. Lastly, Section 6 concludes the report.

2 Related Work

Only a few work have previously considered using formal techniques [20] to model
and analyze CCDs. For instance, Ortmeier et al. in [23] developed a framework for
Deductive Cause-Consequence Analysis (DCCA) using the SMV model checker [24]
to verify the CCD proof obligations. However, according to the authors [23], there is
a problem of showing the completeness of DCCA due to the exponential growth of
the number of proof obligations with complex systems that need cumbersome proof
efforts. To overcome above-mentioned limitations, a more practical way is to verify
generic mathematical formulations that can perform N -level CCD reliability analysis
for real-world systems within a sound environment. Higher-Order-Logic (HOL) [25] is
a good candidate formalism for achieving this goal.

Prior to our work, there were two notable projects for building frameworks to for-
mally analyze dependability models using HOL4 theorem proving [21]. For instance,
HOL4 has been previously used by Ahmad et al. in [26] to formalize SFTs. The SFT
formalization includes a new datatype consisting of AND, OR and NOT FT gates [4] to an-
alyze the factors causing a static system failure. Furthermore, Elderhalli et al. in [27]
had formalized DFTs in the HOL4 theorem prover, which can be used to conduct
formal dynamic failure analysis. Similarly, we have defined in [28] a new EVENT TREE
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datatype to model and analyze all possible system-level success and failure relation-
ships. All these formalizations are basically required to formally analyze either a system
static/dynamic failure or cascading dependencies of system-level components only, re-
spectively. On the other hand, CCDs have the superior capability to use SFTs/DFTs
for analyzing the static/dynamic failures at the subsystem level and analyze their cas-
cading dependencies at the system-level using ETs. For that purpose, in this work,
we provide new formulations that can model mathematically the graphical diagrams
of CCDs and perform the subsystem-level reliability analysis of highly-critical systems.
Moreover, our proposed new mathematics provides the modeling of multi-state sys-
tem components and is based on any given probabilistic distribution and failure rates,
which makes our proposed work the first of its kind. In order to check the correctness
of the proposed equations, we verified them within the sound environment of HOL4.

3 Preliminaries

In this section, we briefly summarize the fundamentals of the HOL4 theorem proving
approach and existing FT and ET formalizations in HOL4 to facilitate the reader’s
understanding of the rest of the report.

3.1 HOL4 Theorem Proving

Theorem proving [20] is one of the formal verification techniques that use a computer-
ized proof system for conducting the proof of mathematical theorems. HOL4 [21] is an
interactive theorem prover, which is capable of verifying a wide range of safety-critical
systems as well as mathematical expressions constructed in HOL. In general, given a
safety-critical system to be formally analyzed, we first model its structure mathemat-
ically, then using the HOL4 theorem prover, several properties of the system can be
verified based on this mathematical model. The main characteristic of the HOL4 the-
orem prover is that its core consists only of four axioms and eight inference rules. Any
further proof or theorem should be formally verified based on these axioms and rules or
based on previously proven theorems. This ensured the soundness of the system model
analysis, i.e., no wrong proof goal can be proved. Moreover, since the system properties
are proven mathematically within HOL4, no approximation is involved in the analysis
results. These features make HOL4 suitable for carrying out the CCD-based reliabil-
ity analysis of safety-critical systems that require sound verification results. Table 1
provides the HOL4 symbols and functions that we will use in this report.

3.2 Probability Theory in HOL4

Measure space is defined mathematically as (Ω, Σ, and µ), where Ω represents the
sample space, Σ represents a σ-algebra of subsets of Ω, and µ represents a measure with
the domain Σ. A probability space is a measure space (Ω, Σ, and Pr), where Ω is the
complete sample space, Σ is the corresponding event space containing all the events of
interest, and Pr is the probability measure of the sample space as 1. The HOL4 theorem
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Table 1: HOL4 Symbols and Functions

HOL4 Symbol Standard Meaning

{x | P(x)} {λx. P (x)} Set of all x such that P (x)

h :: L cons Add an element h to a list L

MAP (λx. f(x)) X x ∈ X → (λx. f)
Function that maps each
element x in the list X to f(x)

L1 ++ L2 append Joins lists L1 and L2 together

prover has a rich library of probabilities, including the functions p space, events, and
prob. Given a probability space p, these functions return the corresponding Ω, Σ,
and Pr, respectively. The Cumulative Distribution Function (CDF) is defined as the
probability of the event where a random variable X has a value less or equal to a
value t, i.e., P(X ≤ t). This definition can be been formalized in HOL4 as [29]:

` CDF p X t = distribution p X {y | y ≤ t}

where the function distribution takes three inputs: (i) probability space p; (ii)
random variable X ; and (iii) set of real numbers, then returns the probability of the
variable X acquiring all the values of the given set in probability space p.

3.3 FT Formalization

Fault Tree (FT) analysis [4] is one of the commonly used reliability assessment tech-
niques for critical-systems. It mainly provides a schematic diagram for analyzing un-
desired top events, which can cause complete system failure upon their occurrence. An
FT model is represented by logic-gates, like OR, AND and NOT, where an OR gate
models the failure of the output if any of the input failure events occurs alone, while
an AND gate models the failure of the output if all of the input failure events occur
at the same time, and lastly a NOT gate models the complement of the input failure
event. Ahmad et al. [26] presented the FT formalization by defining a new datatype
gate, in HOL4 as:

Hol datatype gate = AND of (gate list) |

OR of (gate list) |

NOT of (gate) |

atomic of (event)

The FT constructors AND and OR are recursive functions on gate-typed lists, while
the FT constructor NOT operates on a gate-type variable. A semantic function is then
defined over the gate datatype that can yield an FT diagram as:
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Definition 1:
` FTree p (atomic X) = X ∧

FTree p (OR (h::t)) = FTree p h ∪ FTree p (OR t) ∧
FTree p (AND (h::t)) = FTree p h ∩ FTree p (AND t) ∧
FTree p (NOT X) = p space p DIFF FTree p X

The function FTree takes an event X, identified by a type constructor atomic, and
returns the given event X. If the function FTree takes a list of type gate, identified
by a type constructor OR, then it returns the union of all elements after applying the
function FTree on each element of the given list. Similarly, if the function FTree

takes a list of type gate, identified by a type constructor AND, then it performs the
intersection of all elements after applying the function FTree on each element of the
given list. For the NOT type constructor, the function FTree returns the complement
of the failure event obtained from the function FTree.

The formal verification in HOL4 for the failure probabilistic expressions of the
above-mentioned FT gates is presented in Table 2 [26]. These expressions are verified
under the following constrains: (a) FN ∈ events p ensures that all associated failure
events in the given list FN are drawn from the events space p; (b) prob space p

ensures that p is a valid probability space; and lastly (c) MUTUAL INDEP p FN ensures
the independence of the failure events in the given list FN . The function

∏
takes a list

and returns the product of the list elements while the function PROB LIST returns a
list of probabilities associated with the elements of the list. The function COMPL LIST

returns the complement of the given list elements.

3.4 ET Formalization

Event Tree (ET) [5] analysis is a widely used technique to enumerate all possible
combinations of system-level components failure and success states in the form of a

Table 2: FT HOL4 Probabilistic Theorems

FT Gate Probabilistic Theorem

Failure 1

Failure N

AND
prob p

(FTree p (AND FN)) =
∏

(PROB LIST p FN)

Failure 1

Failure N

OR

prob p

(FTree p (OR FN)) =

1 -
∏

(PROB LIST p (COMPL LIST p FN))
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tree structure. An ET diagram starts by an initiating event called Node and then all
possible scenarios of an event that can occur in the system are drawn as Branches. ETs
were formally modeled by using a new recursive datatype EVENT TREE, in HOL4 as [28]:

Hol datatype EVENT TREE = ATOMIC of (event) |

NODE of (EVENT TREE list) |

BRANCH of (event) (EVENT TREE list)

The type constructors NODE and BRANCH are recursive functions on EVENT TREE-typed
lists. A semantic function is then defined over the EVENT TREE datatype that can yield
a corresponding ET diagram as:

Definition 2:
` ETREE (ATOMIC X) = X ∧
ETREE (NODE (h::L)) = ETREE h ∪ (ETREE (NODE L)) ∧
ETREE (BRANCH X (h::L)) = X ∩ (ETREE h ∪ ETREE (BRANCH X L))

The function ETREE takes an event X, identified by a type constructor ATOMIC and
returns the event X. If the function ETREE takes a list of type EVENT TREE, identified
by a type constructor NODE, then it returns the union of all elements after applying
the function ETREE on each element of the list. Similarly, if the function ETREE takes
an event X and a list of type EVENT TREE, identified by a type constructor BRANCH,
then it performs the intersection of the event X with the union of the head of the list
after applying the function ETREE and the recursive call of the BRANCH constructor.
For the formal probabilistic assessment of each path occurrence in the ET diagram,
HOL4 probabilistic properties for NODE and BRANCH ET constructors are presented in
Table 3 [28]. These expressions are formally verified under the same FT constrains,
i.e., XN ∈ events p, prob space p and MUTUAL INDEP p XN . The function

∑
P is

defined to sum the probabilities of events for a list.

Table 3: ET HOL4 Probabilistic Theorems

ET Constructor Probabilistic Theorem

Node X1

XN

N

Branch

prob p (ETREE (NODE XN)) =
∑
P p XN

Branch

Y

Z1

ZN

N

Branch

prob p

(ETREE (BRANCH Y ZN)) = (prob p Y) ×
∑
P p ZN
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4 Cause-Consequence Diagrams

Cause–Consequence Diagram [15] (CCD) has been developed to analyze the causes of
an undesired subsystem failure events, using FT analysis, and from these events obtain
all possible consequences on the entire system, using ET analysis [30]. The description
of the CCD basic constructors are illustrated in Table 4 [14]. CCD analysis is mainly
divided into two categories [31]: (1) Type I that combines SFT and ET, as shown in
Fig. 1 and Table 5 [12]; and (2) Type II that combines DFT and ET without shared
events in different subsystems, as shown in Fig. 2 and Table 6 [12]. In this analysis,
we focus on the CCD-based reliability analysis at the subsystem level of Type I.

Table 4: CCD Symbols and Functions

CCD Symbol Function

Component / System 

Functions Correctly 

YES NO 
FT 

Decision Box: represents the
functionality of a component.
(1) NO Box: describes the component or
subsystem failure behavior. A FT of the
component is connected to this box that
can be used to determine the failure
probability (PF )
(2) YES Box: represents the correct
functioning of the component or reliability,
which can be calculated by simply taking
the complement of the failure probability
determined in the NO Box, i.e., 1 - PF
Consequence Path: models the
next possible consequence scenarios due to
a particular event

Consequence Box: models the
outcome event due to a particular sequence
of events
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Subsystem 1  

Functions Correctly 

YES NO 

Subsystem 2 

Functions Correctly 

YES NO 

C 

D 

X2 

A 

B 

X1 

SFT 

Subsystem 2 

Functions Correctly 

YES NO 

C 

D 

X2 

X1 X1 

X2 

OR 
OR 

ET 
SFT 

AND 

 

X2 

 

X2 

 

X2 

 

Figure 1: CCD Analysis Type A

Table 5: SFT Symbols and Functions

SFT Symbol Function

AND 

A 

B 

AND Gate: models the failure of the output if all
of the input failure events, i.e., A and B, occur at the
same time (simultaneously)

C 

D 

OR 
 OR Gate: models the failure of the output if any

of the input failure events, i.e., C or D, occurs alone

Subsystem 1  

Functions Correctly 

YES NO 

Subsystem 2 

Functions Correctly 

YES NO 

C 

D 

X2 

A 

B 

X1 

DFT 

Subsystem 2 

Functions Correctly 

YES NO 

C 

D 

X2 

X1 X1 

X2 

ET 
DFT 

 

X2 

 

X2 

 

X2 

 

PAND 

SP SP 

Figure 2: CCD Analysis Type B
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Table 6: DFT Symbols and Functions

DFT Symbol Function

PAND 

A 

B 

Priority-AND (PAND) Gate: models the
dynamic behavior of failing the output when all
input events occur in a sequence, i.e., A then B

C 

D 

SP 

SPare (SP) Gate: models the dynamic behavior
of activating the spare input D after the failure of the
main input C

Fig. 3 depicts the overview of the four steps of CCD analysis [3]: (1) Com-
ponents failure events : identify the causes of the undesired failure events for each
subsystem/component in the safety-critical system; (2) Construction of a complete
CCD : draw a complete system CCD model using its basic constructors considering
that the order of components should follow the temporal action of the system; (3) CCD
model reduction: remove the unnecessary decision boxes in the system to obtain its
minimal CCD representing the actual functional behavior of the system; and (4) CCD
probabilistic analysis : evaluate the probabilities of all CCD consequence paths. The
paths in a CCD represent the likelihood of specific sequence scenarios that are possible
to occur in a system so that only one scenario can occur [30]. This implies that all
consequences in a CCD are disjoint (mutually exclusive) [14]. Assuming that all events
associated with the decision boxes in a CCD model are mutually independent, then
the CCD paths probabilities can be quantified as follows [15]:

1. Evaluate the probabilities of each outgoing branch stemming from a decision box,
i.e., quantifying the associated FT models

2. Compute the probability of each consequence path by multiplying the individual
probabilities of all events associated with the decision boxes

Step 1 Step 2 

Components  

Failure Events  

SP 

Construction of a  

Complete CCD Model 

YES NO 

X 

YES NO 

Y Y 

CCD  

Model Reduction 

YES NO 

X 

Y 

Step 3 

YES NO 

 

YES NO 

CCD  

Probabilistic Analysis 

Step 4 

YES NO 

X 

Y 

 

Path 1 Path 2 Path 3 

YES NO 

Figure 3: Overview of CCD Analysis
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3. Determine the probability of a particular consequence box by summing the prob-
abilities of all consequence paths ending with that consequence event

As an example, consider a Motor Control Centre (MCC) [32] consisting of three
components Relay, Timer and Fuse, as shown in Fig. 4. The MCC is designed to
control an Induction Motor (IM) and let it run for a specific period of time then stops.
The IM power circuit is energized by the closure of the Relay Contacts (Rc), as shown
in Fig. 4. Rc closes after the user press the Start button that energizes R and at the
same time energizes an ON-delay Timer (T). The Timer opens its contacts (Tc) after
a specific period of time t and consequently the IM stops. If the IM is overloaded
than its design, then the Fuse (F) melts and protects both MCC and IM from damage.
Assume that each component in the MCC has two operational states, i.e., operating
or failing. The four steps of a CCD-based reliability analysis described by Andrews et
al. [14] are as follows [30]:

Start 

L1 

L2 
L3 
N 

 

IM 

Motor Power Circuit Motor Control Centre (MCC) 

T 

F 

R 

Start 

Tc 

Rc 

Legend 

  

Relay 

  

Fuse 

 
 

Timer ON Delay 

 3 Phase Power 

Lines & Neutral 

 Timer Normally  

Closed Contact  

  

Relay Contact 

 Start Normally  

Open Contact  

 3 Phase  

Induction Motor 

R 

L1 
L2 
L3 
N 

T 

Rc 

F 

IM 

Tc 

Figure 4: Schematic of an Example MCC

1. Components failure events : Assign a FT to each component in the MCC, i.e.,
FTRelay, FTT imer, FTFuse.

2. Construction of a complete CCD : Construct a complete CCD model of the IM
control operation, as shown in Fig. 5. For instance, if the condition of the first
decision box is either satisfied or not, i.e., YES or NO, then the next system
components are considered in order, i.e., Timer and Fuse, respectively. Each
consequence in the CCD ends with either motor stops (MS) or motor runs (MR).

3. CCD model reduction: Apply the reduction process on the obtained complete
CCD model. For instance, if the condition of the first decision box (Relay
Contacts Open) is satisfied, i.e., YES box, then the IM stops regardless of
the status of the rest of the components, as shown in Fig. 6. Similarly, if the
condition of the second decision box (Timer Contacts Open) is satisfied, then the
IM stops. So, Fig. 6 represents the minimal CCD for the IM control operation.
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FTFuse 

FTTimer 

 

Fuse Melts 

YES NO 

MS MR 

 

Timer Contacts Open 

YES NO 

FTRelay 

 

Relay Contacts Open 

YES NO 

FTTimer 

 

Timer Contacts Open 

YES NO 

FTFuse 

 

Fuse Melts 

YES NO 

MS MS 

 

Fuse Melts 

YES NO 

MS MS 

 

Fuse Melts 

YES NO 

FTFuse FTFuse 

MS MS 

Figure 5: Complete CCD Model of the MCC

Consequence Path 

FTTimer 

 

Fuse Melts 

YES NO 

FTFuse 

MS MR 

MS :  Motor Stops 

MR:  Motor Runs 

Decision Box 

Consequence Box 

 

Timer Contacts Open 

YES NO 

MS 

FTRelay 

 

Relay Contacts Open 

YES NO 

MS 

Figure 6: Reduced CCD Model of the MCC

4. CCD probabilistic analysis : The probabilities of the two consequence boxes MS
and MR in Fig. 6 can be expressed mathematically as:

P(Consequence BoxMS) = P(RelayS) + P(RelayF )× P(TimerS)+

P(RelayF )× P(TimerF )× P(FuseS)
(1)

P(Consequence BoxMR) = P(RelayF )× P(TimerF )× P(FuseF ) (2)

where P(XF ) is the unreliability function or the probability of failure for a
component X , i.e., FTX model, and P(XS) is the reliability function or the
probability of operating, i.e., the complement of the FTX model.

In the next section, we present, in detail, the formalization of CCDs in the HOL4
theorem prover to analyze the failures at the subsystem level of a given safety-
critical complex system and determine all their possible cascading dependencies of
complete/partial reliability and failure events that can occur at the system level.
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4.1 Formal CCD Modeling

We start the formalization of CDDs by formally model its basic symbols, as described
in Table 4 in HOL4 as follows:

Definition 3:
` DEC BOX p X Y = if X = 1 then FST Y else if X = 0 then SND Y else p space p

where Y is an ordered pair (FST Y, SND Y) representing the reliability and unreliability
functions in a decision box, respectively. The condition X = 1 represents the YES Box

while X = 0 represents the NO Box. If X is neither 1 nor 0, for instance, X = 2, this
represents the irrelevance of the decision box, which returns the probability space p to
be used in the reduction process of CCDs.

Secondly, we define the CCD Consequence path by recursively applying the BRANCH

ET constructor on a givenN list of decision boxes (DEC BOXN ) using the HOL4 recursive
function FOLDL as:

Definition 4:
` CONSEQ PATH p (DEC BOX1::DEC BOXN) =

FOLDL (λa b. ETREE (BRANCH a b)) DEC BOX1 DEC BOXN

Finally, we define the CCD Consequence box by mapping the function CONSEQ PATH

on a list using the HOL4 function MAP, then applies the NODE ET constructor:

Definition 5:
` CONSEQ BOX p LM = ETREE (NODE (MAP (λa. CONSEQ PATH p a) LM))

Using the above definitions, we can construct a complete CCD model (Step 2 in
Fig. 3) for the MCC system shown in Fig. 5, in HOL4 as:

` MCC COMPLETE CCD FTR FTT FTF =

CONSEQ BOX p

[[DEC BOX p 1 (FTR,FTR);DEC BOX p 1 (FTT,FTT);DEC BOX p 1 (FTF,FTF)];

[DEC BOX p 1 (FTR,FTR);DEC BOX p 1 (FTT,FTT);DEC BOX p 0 (FTF,FTF)];

[DEC BOX p 1 (FTR,FTR);DEC BOX p 0 (FTT,FTT);DEC BOX p 1 (FTF,FTF)];

[DEC BOX p 0 (FTR,FTR);DEC BOX p 1 (FTT,FTT);DEC BOX p 0 (FTF,FTF)];

[DEC BOX p 0 (FTR,FTR);DEC BOX p 0 (FTT,FTT);DEC BOX p 1 (FTF,FTF)];

[DEC BOX p 0 (FTR,FTR);DEC BOX p 0 (FTT,FTT);DEC BOX p 0 (FTF,FTF)]]

In CCD analysis [30], Step 3 in Fig. 3 is used to model the accurate functional
behavior of systems in the sense that the irrelevant decision boxes should be removed
from a complete CCD model. Upon this, the actual CCD model of the MCC system
after reduction, as shown in Fig. 6, can be obtained by assigning X with neither 1 nor 0,
for instance, X = 2, which represents the irrelevance of the decision box, in HOL4 as:

` MCC REDUCED CCD FTR FTT FTF =

CONSEQ BOX p

[[DEC BOX p 1 (FTR,FTR);DEC BOX p 2 (FTT,FTT);DEC BOX p 2 (FTF,FTF)];

[DEC BOX p 0 (FTR,FTR);DEC BOX p 1 (FTT,FTT);DEC BOX p 2 (FTF,FTF)];

[DEC BOX p 0 (FTR,FTR);DEC BOX p 0 (FTT,FTT);DEC BOX p 1 (FTF,FTF)];

[DEC BOX p 0 (FTR,FTR);DEC BOX p 0 (FTT,FTT);DEC BOX p 0 (FTF,FTF)]]
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Also, we can formally verify the above reduced CCD model of the MCC system, in
HOL4 as:

` MCC REDUCED CCD FTR FTT FTF =

CONSEQ BOX p

[[DEC BOX p 1 (FTR,FTR)];

[DEC BOX p 0 (FTR,FTR);DEC BOX p 1 (FTT,FTT)];

[DEC BOX p 0 (FTR,FTR);DEC BOX p 0 (FTT,FTT);DEC BOX p 1 (FTF,FTF)];

[DEC BOX p 0 (FTR,FTR);DEC BOX p 0 (FTT,FTT);DEC BOX p 0 (FTF,FTF)]]

where FTX for a component X is the complement of FTX .

4.2 Formal CCD Analysis

The important step in the CCD analysis is to determine the probability of each
consequence path occurrence in the CCD [14]. For that purpose, we formally verify
the following CCD generic probabilistic properties, in HOL4 as follows:

Property 1 : The probability of a consequence path for one decision box assigned
with a generic FT model, i.e., OR or AND, as shown in Fig. 7, under the assumptions
described in Table 2, respectively as follows:

Theorem 1:
` prob space p ∧ FN ∈ events p ∧ MUTUAL INDEP p FN ⇒

prob p

(CONSEQ PATH p [DEC BOX p X (FTree p (NOT (OR FN)),FTree p (OR FN))]) =

if X = 1 then
∏

(PROB LIST p (COMPL LIST p FN))
else if X = 0 then 1 -

∏
(PROB LIST p (COMPL LIST p FN)) else 1

For example, consider a system X consists of two components C1 and C2. Assuming
the failure of either one them causes the system failure, i.e., C1F or C2F , We can
formally model the FT of the system (FTsystem), in HOL4 as:

` FTsystem p C1F C2F = FTree p (OR [C1F;C2F])

Using Theorem 1, we can obtain the probability of a decision box YES/NO outcomes
connected to the above FT model, respectively, in HOL4 as:

Component  

Functions Correctly 

YES NO 

Component  

Functions Correctly 

YES NO 

OR 

Failure 1 

Failure N 

AND 

Failure 1 

Failure N 

Figure 7: Decision Boxes with FT Gates
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` prob p (CONSEQ PATH p [DEC BOX p 1 (FTsystem,FTsystem))]) =

(1 - prob p C1F) × (1 - prob p C2F)

` prob p (CONSEQ PATH p [DEC BOX p 0 (FTsystem,FTsystem))]) =

1 - (1 - prob p C1F) × (1 - prob p C2F)

Theorem 2:
` prob space p ∧ FN ∈ events p ∧ MUTUAL INDEP p FN ⇒

prob p

(CONSEQ PATH p

[DEC BOX p X (FTree p (NOT (AND FN)),FTree p (AND FN))]) =

if X = 1 then 1 -
∏

(PROB LIST p FN)
else if X = 0 then

∏
(PROB LIST p FN) else 1

For instance, in the above example, assume the failure of both components simul-
taneously only causes the system failure, i.e., C1F and C2F . We can formally model
the FT of the system, in HOL4 as:

` FTsystem p C1F C2F = FTree p (AND[C1F;C2F])

Using Theorem 2, we can obtain the probability of a decision box YES/NO outcomes
connected to the above FT model, respectively, in HOL4 as:

` prob p (CONSEQ PATH p [DEC BOX p 1 (FTsystem,FTsystem))]) =

1 - prob p C1F × prob p C2F

` prob p (CONSEQ PATH p [DEC BOX p 0 (FTsystem,FTsystem))]) =

prob p C1F × prob p C2F

 

System X 
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System Y 
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FTY 

— 

FTX 
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YES NO 
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— 

— — 
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OR 
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Failure M 

OR 

Failure 1 

Failure M 
AND 

Failure 1 

Failure N 

AND 

Failure 1 

Failure N 

AND 

Failure 1 
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Figure 8: Two-level Decision Boxes for CCD Analysis
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Property 2 : The probability of two-level decision boxes assigned to a CCD path
with all combinations of FT gates (AND-OR/OR-AND , AND-AND and OR-OR), as shown in
Fig. 8. Each combination has 4 possible operating scenarios that can occur (0-0, 0-1,
1-0 and 1-1) and 2 other possible reduction scenarios that may be required in Step 3
(0-2 and 1-2), which represents the removal of the decision box Y from the path. The
basic idea is to select different combinations of decision boxes to achieve the desired
system behavior and also select the reduction combination (> 1) to remove irreverent
decision boxes. This probabilistic expressions can be formally verified, in HOL4 as:

Theorem 3:
` prob space p ∧ (∀y. y ∈ (FN++FM) ⇒ y ∈ events p) ∧
MUTUAL INDEP p (FN++FM) ⇒
prob p (CONSEQ PATH p

[DEC BOX p X (FTree p (NOT (AND FN)),FTree p (AND FN));
DEC BOX p Y (FTree p (NOT (OR FM)),FTree p (OR FM))]) =

if X = 0 ∧ Y = 0 then∏
(PROB LIST p FN) × (1 -

∏
(PROB LIST p (COMPL LIST p FM)))

else if X = 0 ∧ Y = 1 then∏
(PROB LIST p FN) ×

∏
(PROB LIST p (COMPL LIST p FM))

else if X = 1 ∧ Y = 0 then

(1 -
∏

(PROB LIST p FN)) × (1 -
∏

(PROB LIST p (COMPL LIST p FM)))

else if X = 1 ∧ Y = 1 then

(1 -
∏

(PROB LIST p FN)) ×
∏

(PROB LIST p (COMPL LIST p FM))

else if X = 0 ∧ Y = 2 then
∏

(PROB LIST p FN)
else if X = 1 ∧ Y = 2 then (1 -

∏
(PROB LIST p FN)) else 1

Theorem 4:
` prob p (CONSEQ PATH p

[DEC BOX p X (FTree p (NOT (AND FN)),FTree p (AND FN));
DEC BOX p Y (FTree p (NOT (AND FM)),FTree p (AND FM))]) =

if X = 0 ∧ Y = 0 then∏
(PROB LIST p FN) ×

∏
(PROB LIST p FM)

else if X = 0 ∧ Y = 1 then∏
(PROB LIST p FN) × (1 -

∏
(PROB LIST p FM))

...

else if X = 1 ∧ Y = 2 then (1 -
∏

(PROB LIST p FN)) else 1

Theorem 5:
` prob p (CONSEQ PATH p

[DEC BOX p X (FTree p (NOT (OR FN)),FTree p (OR FN));
DEC BOX p Y (FTree p (NOT (OR FM)),FTree p (OR FM))]) =

if X = 0 ∧ Y = 0 then

(1 -
∏

(PROB LIST p (COMPL LIST p FN))) ×
(1 -

∏
(PROB LIST p (COMPL LIST p FM)))

else if X = 0 ∧ Y = 1 then

(1 -
∏

(PROB LIST p (COMPL LIST p FN))) ×∏
(PROB LIST p (COMPL LIST p FM))

...

else if X = 1 ∧ Y = 2 then
∏

(PROB LIST p (COMPL LIST p FN)) else 1
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Property 3 : A generic probabilistic property for a consequence path consisting of
complex four -level decision boxes associated with different combination of FTs and each
one consisting of N components (AND-OR-AND-OR/OR-AND-OR-AND/AND-AND-OR-OR/OR-OR-
AND-AND), which has 16 possible operating scenarios that can occur and 14 other possible
reduction possibilities, as shown in Fig. 9, in HOL4 as:

Theorem 6:
` Let

WF =
∏

(PROB LIST p FN);
W = 1 - WF;
XF = 1 -

∏
(PROB LIST p (COMPL LIST p FK)); X = 1 - XF;

YF =
∏

(PROB LIST p FM);

Y = 1 - YF;
ZF = 1 -

∏
(PROB LIST p (COMPL LIST p FJ )); Z = 1 - ZF

in

prob p

(CONSEQ PATH p

[DEC BOX p W (FTree p (NOT (AND FN)),FTree p (AND FN));
DEC BOX p X (FTree p (NOT (OR FK)),FTree p (OR FK));
DEC BOX p Y (FTree p (NOT (AND FM)),FTree p (AND FM));

DEC BOX p Z (FTree p (NOT (OR FJ )),FTree p (OR FJ ))]) =

if W = 0 ∧ X = 0 ∧ Y = 0 ∧ Z = 0

then WF × XF × YF × ZF
else if W = 0 ∧ X = 0 ∧ Y = 0 ∧ Z = 1

then WF × XF × YF × Z

else if W = 0 ∧ X = 0 ∧ Y = 1 ∧ Z = 0

then WF × XF × Y × ZF
...

else if W = 1 ∧ X = 1 ∧ Y = 2 ∧ Z = 2

then W × X

else if W = 1 ∧ X = 2 ∧ Y = 2 ∧ Z = 2

then W else 1

For complex systems consisting of N -level decision boxes, where each decision box
is associated with an AND/OR gate consisting of an arbitrary list of failure events,
we define three types A, B and C of possible CCD outcomes, as shown in Fig. 10,
with a new proposed mathematics as:

Property 4 (N Decision Boxes of Type A): The probability of n decision boxes
assigned to a consequence path corresponding to n subsystems, where all decision
boxes are associated with FT AND models consisting of arbitrary lists of k events,
can be expressed mathematically at a specific time t for three cases as:

(A1) All outcomes of n decisions boxes are NO

FA1(t) =
n∏
i=1

k∏
j=2

Fij(t) (3)
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Figure 9: Four-level Decision Boxes for CCD Analysis
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(A2) All outcomes of n decisions boxes are YES

FA2(t) =
n∏
i=1

(1−
k∏
j=2

Fij(t)) (4)

(A3) Some outcomes of m decisions boxes are NO and the rest outcomes of p decisions
boxes are YES

FA3(t) =

(
m∏
i=1

k∏
j=2

Fij(t)

)
×

(
p∏
i=1

(1−
k∏
j=2

Fij(t))

)
(5)

To verify the correctness of the above-proposed new safety analysis mathematical
formulations in the HOL4 theorem prover, we define two generic CCD functions SSY ESAND

and SSNOAND that can recursively generate the outcomes YES and NO of the function
FTree, identified by gate constructors AND and NOT, for a given arbitrary list of all
subsystems failure events (SSN), respectively, in HOL4 as:

Definition 6:
` SSY ESAND p (SS::SSN) = FTree p (NOT (AND SS1))::SSY ESAND p SSN

Definition 7:
` SSNOAND p (SS1::SSN) = FTree p (AND SS1)::SSNOAND p SSN

Using above defined functions, we can verify three two-dimensional and scalable proba-
bilistic properties corresponding to the above-mentioned safety equations Eq. 3, Eq. 4,
and Eq. 5, respectively, in HOL4 as:

Theorem 7:
` prob p (CONSEQ PATH p (SSNOAND p SSN)) =∏

(MAP (λ a.
∏

(PROB LIST p a)) SSN)

Theorem 8:
` prob p (CONSEQ PATH p (SSY ESAND p SSN)) =∏

(MAP (λ b. (1 -
∏

(PROB LIST p b))) SSN)

Theorem 9:
` prob p

(CONSEQ PATH p

[CONSEQ PATH p (SSNOAND p SSm);

CONSEQ PATH p (SSY ESAND p SSp)]) =(∏
(MAP (λ a.

∏
(PROB LIST p a)) SSm)

)
×(∏

(MAP (λ b. 1 -
∏

(PROB LIST p b)) SSp)

)
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Property 5 (N Decision Boxes of Type B): The probabilistic assessment of n
decision boxes assigned to a CCD consequence path, where all decision boxes are
associated with generic FT OR models consisting of arbitrary lists of k events, can be
expressed mathematically for three cases:

(B1) All outcomes of n decisions boxes are NO

FB1(t) =
n∏
i=1

(1−
k∏
j=2

(1−Fij(t))) (6)

(B2) All outcomes of n decisions boxes are YES

FB2(t) =
n∏
i=1

k∏
j=2

(1−Fij(t)) (7)

(B3) Some outcomes of m decisions boxes are NO and some outcomes of p decisions
boxes are YES

FB3(t) =

(
m∏
i=1

(1−
k∏
j=2

(1−Fij(t)))

)
×

(
p∏
i=1

k∏
j=2

(1−Fij(t))

)
(8)

To verify the correctness of the above-proposed new CCD mathematical formulas
in HOL4, we define two generic functions SSY ESOR and SSNOOR to recursively generate
the outcomes YES and NO of the function FTree, identified by gate constructors OR

and NOT, for a given list of subsystems events.

Definition 8:
` SSY ESOR p (SS::SSN) = FTree p (NOT (OR SS1))::SSY ESOR p SSN

Definition 9:
` SSNOOR p (SS1::SSN) = FTree p (OR SS1)::SSNOOR p SSN

Using above defined functions, we can formally verify three scalable probabilistic
properties corresponding to Eq. 6, Eq. 7, and Eq. 8, respectively, in HOL4 as:

Theorem 10:
` prob p (CONSEQ PATH p (SSNOOR p SSN)) =∏

(MAP

(λ a.

(1 -
∏

(PROB LIST p (compl list p a)))) SSN)

Theorem 11:
` prob p (CONSEQ PATH p (SSY ESOR p SSN)) =∏

(MAP

(λ b.∏
(PROB LIST p (compl list p b))) SSN)
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Theorem 12:
` prob p

(CONSEQ PATH p

[CONSEQ PATH p (SSNOOR p SSm);

CONSEQ PATH p (SSY ESOR p SSp)]) =∏
(MAP

(λ a.

(1 -
∏

(PROB LIST p (compl list p a)))) SSm)

×
∏
(MAP

(λ b.∏
(PROB LIST p (compl list p b))) SSp)

Property 6 (N Decision Boxes of Type C): The probabilistic assessment of n
decision boxes assigned to a consequence path for a very complex system, where some
m decision boxes are associated with generic FT AND models consisting of k-events,
while other p decision boxes are associated with generic FT OR models consisting of
z-events, as shown in Fig. 10, is proposed to be expressed mathematically for nine
cases as:

(C1) All outcomes of m and p decisions boxes are NO.

FC1(t) =

(
m∏
i=1

k∏
j=2

Fij(t)

)
×

(
p∏
i=1

(1−
z∏
j=2

(1−Fij(t)))

)
(9)

Theorem 13:
` prob p

(CONSEQ PATH p

[CONSEQ PATH p (SSNOAND p SSm);

CONSEQ PATH p (SSNOOR p SSp)]) =∏
(MAP (λ a.

∏
(PROB LIST p a)) SSm)

×
∏
(MAP

(λ b.

(1 -
∏

(PROB LIST p (compl list p b)))) SSp)

(C2) All outcomes of m and p decisions boxes are YES.

FC2(t) =

(
m∏
i=1

(1−
k∏
j=2

Fij(t))

)
×

(
p∏
i=1

z∏
j=2

(1−Fij(t))

)
(10)
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Theorem 14:
` prob p

(CONSEQ PATH p

[CONSEQ PATH p (SSY ESAND p SSm);

CONSEQ PATH p (SSY ESOR p SSp)]) =∏
(MAP (λ a. 1 -

∏
(PROB LIST p a)) SSm)

×
∏
(MAP

(λ b.∏
(PROB LIST p (compl list p b))) SSp)

(C3) All outcomes of m decisions boxes are NO and all outcomes of p decisions boxes
are YES.

FC3(t) =

(
m∏
i=1

k∏
j=2

Fij(t)

)
×

(
p∏
i=1

z∏
j=2

(1−Fij(t))

)
(11)

Theorem 15:
` prob p

(CONSEQ PATH p

[CONSEQ PATH p (SSNOAND p SSm);

CONSEQ PATH p (SSY ESOR p SSp)]) =∏
(MAP (λ a.

∏
(PROB LIST p a)) SSm)

×
∏
(MAP

(λ b.∏
(PROB LIST p (compl list p b))) SSp)

(C4) All outcomes of m decisions boxes are YES and all outcomes of p decisions boxes
are NO.

FC4(t) =

(
m∏
i=1

(1−
k∏
j=2

Fij(t))

)
×

(
p∏
i=1

(1−
z∏
j=2

(1−Fij(t)))

)
(12)

Theorem 16:
` prob p

(CONSEQ PATH p

[CONSEQ PATH p (SSY ESAND p SSm);

CONSEQ PATH p (SSNOOR p SSp)]) =∏
(MAP (λ a. 1 -

∏
(PROB LIST p a)) SSm)

×
∏
(MAP

(λ b.

(1 -
∏

(PROB LIST p (compl list p b)))) SSp)
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(C5) Some outcomes of s out of m decisions boxes are NO, some outcomes of u out of
m decisions boxes are YES and all outcomes of p decisions boxes are NO.

FC5(t) =

(
s∏
i=1

k∏
j=2

Fij(t)

)
×

(
u∏
i=1

(1−
k∏
j=2

Fij(t))

)
×

(
p∏
i=1

(1−
z∏
j=2

(1−Fij(t)))

)
(13)

Theorem 17:
` prob p

(CONSEQ PATH p

[CONSEQ PATH p (SSNOAND p SSs);

CONSEQ PATH p (SSY ESAND p SSu);

CONSEQ PATH p (SSNOOR p SSp)]) =∏
(MAP (λ a.

∏
(PROB LIST p a)) SSs)

×
∏

(MAP (λ b. 1 -
∏

(PROB LIST p b)) SSu)

×
∏
(MAP

(λ c.

(1 -
∏

(PROB LIST p (compl list p c)))) SSp)

(C6) Some outcomes of s out of m decisions boxes are NO, some outcomes of u out of
m decisions boxes are YES and all outcomes of p decisions boxes are YES.

FC6(t) =

(
s∏
i=1

k∏
j=2

Fij(t)

)
×

(
u∏
i=1

(1−
k∏
j=2

Fij(t))

)
×

(
p∏
i=1

z∏
j=2

(1−Fij(t))

)
(14)

Theorem 18:
` prob p

(CONSEQ PATH p

[CONSEQ PATH p (SSNOAND p SSs);

CONSEQ PATH p (SSY ESAND p SSu);

CONSEQ PATH p (SSY ESOR p SSp)]) =∏
(MAP (λ a.

∏
(PROB LIST p a)) SSs)

×
∏

(MAP (λ b. 1 -
∏

(PROB LIST p b)) SSu)

×
∏
(MAP

(λ c.∏
(PROB LIST p (compl list p c))) SSp)

(C7) Some outcomes of s out of p decisions boxes are NO, some outcomes of u out of
p decisions boxes are YES and all outcomes of m decisions boxes are NO.

FC7(t) =

(
m∏
i=1

k∏
j=2

Fij(t)

)
×

(
u∏
i=1

z∏
j=2

(1−Fij(t))

)
×

(
s∏
i=1

(1−
z∏
j=2

(1−Fij(t)))

)
(15)
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Theorem 19:
` prob p

(CONSEQ PATH p

[CONSEQ PATH p (SSNOAND p SSm);

CONSEQ PATH p (SSY ESOR p SSu);

CONSEQ PATH p (SSNOOR p SSs)]) =∏
(MAP (λ a.

∏
(PROB LIST p a)) SSm)

×
∏
(MAP

(λ b.∏
(PROB LIST p (compl list p b))) SSu)

×
∏
(MAP

(λ c.

(1 -
∏

(PROB LIST p (compl list p c)))) SSs)

(C8) Some outcomes of s out of p decisions boxes are NO, some outcomes of u out of
p decisions boxes are YES and all outcomes of m decisions boxes are YES.

FC8(t) =

(
m∏
i=1

(1−
k∏
j=2

Fij(t))

)
×

(
u∏
i=1

z∏
j=2

(1−Fij(t))

)
×

(
s∏
i=1

(1−
z∏
j=2

(1−Fij(t)))

)
(16)

Theorem 20:
` prob p

(CONSEQ PATH p

[CONSEQ PATH p (SSY ESAND p SSm);

CONSEQ PATH p (SSY ESOR p SSu);

CONSEQ PATH p (SSNOOR p SSs)]) =∏
(MAP (λ a. 1 -

∏
(PROB LIST p a)) SSm)

×
∏
(MAP

(λ b.∏
(PROB LIST p (compl list p b))) SSu)

×
∏
(MAP

(λ c.

(1 -
∏

(PROB LIST p (compl list p c)))) SSs)

(C9) Some outcomes of s out of m decisions boxes are NO, some outcomes of u out of
m decisions boxes are YES, some outcomes of v out of p decisions boxes are NO and
some outcomes of w out of p decisions boxes are YES.
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FC9(t) =

(
s∏
i=1

k∏
j=2

Fij(t)

)
×

(
v∏
i=1

(1−
z∏
j=1

(1−Fij(t)))

)

×

(
u∏
i=1

(1−
k∏
j=2

Fij(t))

)
×

(
w∏
i=1

z∏
j=2

(1−Fij(t))

) (17)

Theorem 21:
` prob p

(CONSEQ PATH p

[CONSEQ PATH p (SSNOAND p SSs);

CONSEQ PATH p (SSY ESAND p SSu);

CONSEQ PATH p (SSNOOR p SSv);

CONSEQ PATH p (SSY ESOR p SSw)]) =∏
(MAP (λ a.

∏
(PROB LIST p a)) SSs)

×
∏

(MAP (λ b. 1 -
∏

(PROB LIST p b)) SSu)

×
∏
(MAP

(λ c.

(1 -
∏

(PROB LIST p (compl list p c)))) SSv)

×
∏
(MAP

(λ d.∏
(PROB LIST p (compl list p d))) SSw)

Therefore, by verifying all the above-mentioned theorems in HOL4, we showed the
completeness of our proposed formal approach and thereupon solving the scalability
problem of CCD analysis for any given large engineering complex system at the
subsystem level [33].

Property 7 : A generic probabilistic expression of CONSEQ BOX for a certain event
occurrence in the entire system as the sum of all individual probabilities of all
M CONSEQ PATH ending with that event:

Theorem 22:
` Let

CONSEQ PATHS LM = MAP (λa. CONSEQ PATH p a) LM)

in

prob space p ∧ MUTUAL INDEP p LM ∧
disjoint (CONSEQ PATHS LM) ∧ ALL DISTINCT (CONSEQ PATHS LM) ⇒
prob p (CONSEQ BOX p LM) =

∑
(PROB LIST p (CONSEQ PATHS LM))

where the HOL4 function disjoint ensures that each pair of elements in a given list is
mutually exclusive while the function ALL DISTINCT ensures that each pair is distinct.
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The function
∑

is defined to sum the events for a given list. Remark that all above-
mentioned CCD new formulations have been formally verified in HOL4, where the
proof-script amounts to about 16,000 lines of HOL4 code, which can be downloaded for
use from [33]. Also, this code can be extended, with some basic knowhow about HOL4,
to perform dynamic failure analysis of dynamic subsystems where no dependencies
exist in subsystems using DFTs, such as PAND and SP, i.e, CCD reliability analysis
of Type II (see Fig. 2).

To illustrate the applicability of our proposed approach, in the next section, we
present the formal CCD step-analysis of the standard IEEE 39-bus electrical power
network and verify its reliability indexes (FOR and SAIDI), which are commonly
used as reliability indicators by electric power utilities.

5 Electrical Power 39-bus Network System

An electrical power network is an interconnected grid for delivering electricity from pro-
ducers to customers. The power network system consists of three main zones [1]: (i) gen-
erating stations that produce electric power; (ii) transmission lines that carry power
from sources to loads; and (iii) distribution lines that connect individual consumers.
Due to the complex and integrated nature of the power network, failures in any zone
of the system can cause widespread catastrophic disruption of supply [1]. Therefore a
rigorous formal cause-consequence analysis of the grid is essential in order to reduce the
risk situation of a blackout and enable back-up decisions [34]. For power network safety
assessment, reliability engineers have been dividing the power network into three main
hierarchical levels [12]: (a) generation systems; (b) composite generation and transmis-
sion (or bulk power) systems; and (c) distribution systems. We can use our proposed
CCD formalization for the formal modeling and analysis of any hierarchical level in the
power network. In this case study, we focus on the generation part only, i.e., hierar-
chical level I. Also, we can evaluate the Force Outage Rate (FOR) for the generation
stations, which is defined as the probability of the unit unavailability to produce power
due to unexpected equipment failure [34]. Additionally, we can determine the System
Average Interruption Duration Index (SAIDI), which is used to indicate the average
duration for each customer served to experience a sustained outage. SAIDI is de-
fined as the sum of all customer interruption durations (probability of load failures E
multiplying by the mean-time-to-repair the failures and the number of customers that
are affected by these failures) over the total number of customers served [34]:

SAIDI =

∑
P(XE)×MTTRX×CNX∑

CNX

(18)

where CNX is the number of customers for a certain location X while MTTRX is the
mean-time-to-repair the failure that occurred at X . We formally define a function

∑T

E
in HOL4 to sum all customer interruption durations. Also, we formally define a generic
function SAIDI by dividing the output of

∑T

E over the total number of customers
served, in HOL4 as:
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Definition 10:
`
∑T
E (L::LM) (MTTR::MTTRM) (CN:CNM) p =

prob p (CONSEQ BOX p LM) × MTTR × CN +
∑T
E LM MTTRM CNM p

Definition 11:

` SAIDI LM MTTRM CNM p =

∑T
E LM MTTRM CNM p∑

CNM

where LM is the list of CCD paths, MTTRM is the list of meantime to repairs, and
CNM is the list of customer numbers. The function

∑T

E (Definition 10) models
the numerator of Eq. 18, which is the sum of all customer interruption durations
at different locations in the electrical power grid. Each probability of failure
is obtained by evaluating a CONSEQ BOX consisting of a list of M CONSEQ PATH,
which cause that failure. Definition 11 represents the division of output of Defini-
tion 10 over the total number of customers at all those locations as described in Eq. 18.

Consider a standard IEEE 39-bus electrical power network test system consisting of
10 generators (G), 12 substations (S/S), 39 Buses (Bus), and 34 transmission lines (TL),
as shown in Fig. 11 [35]. Assuming the generators G1-G10 are of two types: (i)
solar photo-voltaic (PV) power plants G1-G5; and (ii) steam power plants G6-G10.
Using the Optimal Power Flow (OPF) optimization [36], we can determine the flow of
electricity from generators to consumers in the power network. Typically, we are only
interested in evaluating the duration of certain failure events occurrence for specific
loads in the grid. For instance, if we consider the failure of load A, which according
to the OPF is supplied from G9 and G5 only, as shown in Fig. 11, then the failure of
either one or both power plants will lead to a partial or a complete blackout failure at
that load, respectively. Assuming the failure of two consecutive power plants causes
a complete blackout of the load. Hence, considering the disruption cases of only one
supply generator, then different partial failures for loads A, B, C and D, as shown in
Fig. 11, can be obtained by observing different failures in the power network as:

a. P(Load
AE) =(1−FORG9)×FORG5 + FORG9 × (1−FORG5)

b. P(Load
BE) =(1−FORG7)×FORG9 + FORG7 × (1−FORG9)

c. P(Load
CE) =(1−FORG1)×FORG2 + FORG1 × (1−FORG2)

d. P(Load
DE) = (1−FORG6)× (1−FORG3)× (1−FORG8)×FORG4

+ (1−FORG6)× (1−FORG3)×FORG8 × (1−FORG4)

+ (1−FORG6)×FORG3 × (1−FORG8)× (1−FORG4)

+ FORG6 × (1−FORG3)× (1−FORG8)× (1−FORG4)

Therefore, the assessment of SAIDI for the Grid (G) shown in Fig. 11, including an
evaluation for the FOR of all its power plants, can be written mathematically as:

SAIDIG =
P(Load

AE)×MTTRLoadA × CNLoadA + . . .

CNLoadA + CNLoadB + CNLoadC + CNLoadD

(19)
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Figure 11: IEEE 39-bus Electrical Power Network [35]

5.1 Formal CCD Analysis in HOL4

We can apply our four steps of CCD formalization to verify the expression of SAIDI
in terms of the power plant generator components, in HOL4 as:

Step 1 (Component failure events):
The schematic FT models of a typically PV power plant consisting of 2 solar farms [37]
and a steam power plant consisting of 3 generators [34] are shown in Fig. 12 and Fig. 13,
respectively. Using the formal FT modeling, we can formally define the FT models of
both plants, in HOL4 as:

Definition 12:
` FTPV p [LF1;LF2] [DC DC1;DC DC2] [SA1;SA2] [DC AC1;DC AC2] =

FTree p (OR [OR [LF1;DC DC1;DC AC1;SA1]; OR [LF2;DC DC2;DC AC2;SA2]])

Definition 13:
` FTSTEAM p [BO1;BO2;BO3] [TA1;TA2;TA3] =

FTree p (AND [AND [BO1;TA1]; AND [BO2;TA2]; AND [BO3;TA3]])

Steps 2 and 3 (Construction of a CCD and Reduction):
Construct a formal complete CCD for all loads in our case study (Fig. 11), i.e., A, B,
C, and D, then remove the irrelevant decision boxes according to the electrical power
network functional behavior. For instance, we can model the CCD models for loads A
and D, as shown in Fig. 14, respectively, in HOL4 as:
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Definition 14:
` CCD LOAD A =

CONSEQ BOX p

[[DEC BOX p 1 (FTSTEAM,FTSTEAM);DEC BOX p 1 (FTPV ,FTPV )];

[DEC BOX p 1 (FTSTEAM,FTSTEAM);DEC BOX p 0 (FTPV ,FTPV )];

[DEC BOX p 0 (FTSTEAM,FTSTEAM);DEC BOX p 1 (FTPV ,FTPV )];

[DEC BOX p 0 (FTSTEAM,FTSTEAM);DEC BOX p 0 (FTPV ,FTPV )]]

Definition 15:
` CCD LOAD D =

CONSEQ BOX p

[[DEC BOX p 1 (FTSTEAM,FTSTEAM);DEC BOX p 1 (FTPV ,FTPV );

DEC BOX p 1 (FTSTEAM,FTSTEAM);DEC BOX p 1 (FTPV ,FTPV )];

[DEC BOX p 1 (FTSTEAM,FTSTEAM);DEC BOX p 1 (FTPV ,FTPV );

DEC BOX p 1 (FTSTEAM,FTSTEAM);DEC BOX p 0 (FTPV ,FTPV )];
...

[DEC BOX p 0 (FTSTEAM,FTSTEAM);DEC BOX p 0 (FTPV ,FTPV )]]

Step 4 (Probabilistic analysis):
We can use our proposed formal approach to express subsystem-level failure/reliability
probabilistic expressions of electrical power grids, which enable us to analyze the cas-
cading dependencies with many subsystem levels, based on any probabilistic distri-
bution. In this work, we assumed that the failure of each component is exponentially
distributed (i.e., CDF p X t = 1 − e(−λX t), where λX is the failure rate of the variable
X and t is a time index).

31



 

Generator 9 

Functions Correctly 

YES NO 

 

Generator 5 

Functions Correctly 

YES NO FTPV 

FTSTEAM 

 

Generator 5 

Functions Correctly 

YES NO 

 

Generator  6 

Functions Correctly 

YES NO 

 

Generator  3 

Functions Correctly 

YES NO 

 

Generator  3 

Functions Correctly 

YES NO 

 

Generator  8 

Functions Correctly 

YES NO 

 

Generator  8 

Functions Correctly 

YES NO 

 

Generator  4 

Functions Correctly 

YES NO 

 

Generator  4 

Functions Correctly 

YES NO 

 

Generator  4 

Functions Correctly 

YES NO 

FTPV 
FTPV FTPV 

FTPV FTPV FTPV 

FTSTEAM 

FTSTEAM 
FTSTEAM 

PF NO PF CF 

PF NO 

NO :  Normal Operation 

PF  :  Partial Failure  

CF  : Complete Failure  

CF PF CF PF 

CF 

CF 

CCD of Load A CCD of Load D 

Figure 14: CCD Analysis of Loads A and D

5.1.1 FOR Analysis

Using Definitions 12 and 13 with the assumption that the failure states of components
are exponentially distributed, we can formally specify the probabilistic FOR expression
for both PV and steam power plants, in HOL4 as:

Definition 16:
` FORPV p [LF1;LF2] [DC DC1;DC DC2] [SA1;SA2] [DC AC1;DC AC2] =

prob p (FTPV p (↓ [LF1;LF2]) (↓ [DC DC1;DC DC2])

(↓ [SA1;SA2]) (↓ [DC AC1;DC AC2]))

Definition 17:
` FORSTEAM p [BO1;BO2;BO3] [TA1;TA2;TA3] =

prob p (FTSTEAM p (↓ [BO1;BO2;BO3]) (↓ [TA1;TA2;TA3])

where the function ↓ takes a list of N components and assigns an exponential failing
event to each component in the list.

We can formally verify the above-expressions of FORPV and FORSTEAM , in
HOL4 as:

Theorem 23:
` FORPV p [LF1;LF2] [DC DC1;DC DC2] [SA1;SA2] [DC AC1;DC AC2] =

1− e(−λLF1t) × e(−λLF2t) × e(−λDC DC1t) × e(−λDC DC2t) × e(−λSA1t) × e(−λSA2t) ×
e(−λDC AC1t) × e(−λDC AC2t)

Theorem 24:
` FORSTEAM p [BO1;BO2;BO3] [TA1;TA2;TA3] =

(1− e(−λBO1t)) × (1− e(−λBO2t)) × (1− e(−λBO3t)) × (1− e(−λTA1t)) ×
(1− e(−λTA2t)) × (1− e(−λTA3t))
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5.1.2 SAIDI Analysis

Using Theorems 1-24 with the assumption that the failure states of components are
exponentially distributed, we can formally verify SAIDIG (Eq. 19), in HOL4 as:

Theorem 25:
` SAIDI
[[CONSEQ PATH p

[DEC BOX p 1

(FTree p (NOT (FTSTEAM p (↓ [BO1;BO2;BO3]) (↓ [TA1;TA2;TA3]))),

FTSTEAM p (↓ [BO1;BO2;BO3]) (↓ [TA1;TA2;TA3]));

DEC BOX p 0

(FTree p (NOT (FTPV p (↓ [LF1;LF2]) (↓ [DC DC1;DC DC2])

(↓ [SA1;SA2]) (↓ [DC AC1;DC AC2]))),

FTPV p (↓ [LF1;LF2]) (↓ [DC DC1;DC DC2])

(↓ [SA1;SA2]) (↓ [DC AC1;DC AC2]))];

[DEC BOX p 0

(FTree p (NOT (FTSTEAM p (↓ [BO1;BO2;BO3]) (↓ [TA1;TA2;TA3]))),

FTSTEAM p (↓ [BO1;BO2;BO3]) (↓ [TA1;TA2;TA3]));

DEC BOX p 1

(FTree p (NOT (FTPV p (↓ [LF1;LF2]) (↓ [DC DC1;DC DC2])

(↓ [SA1;SA2]) (↓ [DC AC1;DC AC2]))),

FTPV p (↓ [LF1;LF2]) (↓ [DC DC1;DC DC2])

(↓ [SA1;SA2]) (↓ [DC AC1;DC AC2]))]];

...]

[MTTR LoadA;MTTR LoadB;MTTR LoadC;MTTR LoadD]

[CN LoadA; CN LoadB; CN LoadC; CN LoadD] p =

((1− (1− e(−λBO1t))× (1− e(−λBO2t))× (1− e(−λBO3t))×
(1− e(−λTA1t))× (1− e(−λTA2t))× (1− e(−λTA3t)))×

(1− e(−λLF1t) × e(−λLF2t) × e(−λDC DC1t) × e(−λDC DC2t)×
e(−λDC AC1t) × e(−λDC AC2t) × e(−λSA1t) × e(−λSA2t))+

(1− e(−λBO1t))× (1− e(−λBO2t))× (1− e(−λBO3t))×
(1− e(−λTA1t))× (1− e(−λTA2t))× (1− e(−λTA3t))×
e(−λLF1t) × e(−λLF2t) × e(−λDC DC1t) × e(−λDC DC2t)×
e(−λDC AC1t) × e(−λDC AC2t) × e(−λSA1t) × e(−λSA2t))×
MTTR LoadA× CN LoadA + . . . )

CN LoadA + CN LoadB + CN LoadC + CN LoadD

To further facilitate the exploitation of our proposed approach for power grid re-
liability engineers, we defined a Standard Meta Language (SML) functions [33] that
can numerically evaluate the above-verified expressions of FORPV , FORSTEAM , and
SAIDI. Subsequently, we compared our results with MATLAB CCD algorithm based
on Monte-Carlo Simulation (MCS) and also with other existing subsystem-level relia-
bility analysis techniques, such as HiP-HOPS and FMR, to ensure the accuracy of our
computations, which is presented in the next section.
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5.2 Experimental Results and Discussion

Considering the failure rates of the power plant components λBO, λTA, λLF, λDC DC,
λDC AC and λSA are 0.91, 0.84, 0.96, 0.67, 0.22, and 0.56 per year [38], respectively. Also,
assuming that MTTRLoadA , MTTRLoadB , MTTRLoadC , and MTTRLoadD are 12, 20, 15,
and 10 hours/interruption [39] and CNLoadA , CNLoadB , CNLoadC , and CNLoadD are 500,
1800, 900, and 2500 customers, respectively. The reliability study is undertaken for 1
year, i.e., t = 8760 hours. Based on the given data, we can evaluate FOR and SAIDI
for the electrical power network (Fig. 11) using following techniques:

1. Our proposed SML functions to evaluate the verified expressions of FORPV ,
FORSTEAM , and SAIDI in HOL4 (Theorems 23-25), as shown in Fig. 15.

Figure 15: SML Functions: FOR and SAIDI Results

2. MATLAB MCS-based toolbox that uses a random-based algorithm to obtain
FOR and SAIDI for the electrical grid. The steps followed in this technique
are as follows [40]:

• Read the values of failure rate λ in f/hours and repair time r in hours for
each component

• Generate a random number U

• Calculate the predicted next Time to Fail (TTF ) and Time to Repair (TTR)
from the equations

TTF =
− lnU

λ
TTR =

− lnU

r
(20)

• Repeat the above iterative process till the number of iterations exceeds 1e5

Based on the above-mentioned MCS steps, we obtain different results of FOR
and SAIDI every run of the algorithm depending on the generated random
number with a tolerance error between 4-9%. So, we present in Table 7 the best-
estimated results of FOR and SAIDI in MATLAB based on the MCS approach
with the least errors. Subsequently, we take the mean average of all the obtained
FOR and SAIDI results for the power grid.
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Table 7: MATLAB MCS: FOR and SAIDI Results

Run FORPV FORSTEAM SAIDI

1 88.55e-2 36.18e-3 5.8023

2 107.19e-2 40.03e-3 6.5045

3 93.52e-2 36.35e-3 6.0222

5 110.17e-2 43.03e-3 7.0495

4 95.24e-2 38.66e-3 6.3960

Average 98.93e-2 38.85e-3 6.3549

3. The Failure Mode Reasoning (FMR) approach, which identifies all the failure
modes of safety-critical system inputs that can result in an undesired state at its
output. The FMR process consists of four main stages [10]:

(a) Composition: Failure mode variables are defined and a set of logical impli-
cation statements is generated that express local failure modes.

(b) Substitution: Local statements will be combined to create a single global
implication statement between the critical-system inputs and outputs.

(c) Simplification: The complex formula is simplified, where we trim off any
redundant statements.

(d) Calculation: The probability of failure is evaluated using the component
failure rates.

Based on the above-mentioned FMR procedures, we can express the component-
level failure analysis of the PV power plant (Fig. 12) as:

(ô = ḟ)⇒ (x̂1 = ḟ ∨ x̂2 = ḟ) (21)

The above equation means that if the output o is False by fault then either one
of its inputs to the OR gate, i.e., x1 or x2, must be False by fault. We now need
to determine what can cause x̂1 = ḟ and x̂2 = ḟ . Similar to Eq. 6, we can write:

(x̂1 = ḟ)⇒ (x̂3 = ḟ ∨ x̂4 = ḟ ∨ x̂5 = ḟ ∨ x̂6 = ḟ) (22)

(x̂2 = ḟ)⇒ (x̂7 = ḟ ∨ x̂8 = ḟ ∨ x̂9 = ḟ ∨ x̂10 = ḟ) (23)

where x3, x4, x5, x6, x7, x8, x9, x10 are LF1, DC DC1, DC AC1, SA1, LF2,
DC DC2, DC AC2, SA2, respectively. Similarly, we can express the component-
level failure analysis of the steam power plant (Fig. 13) as:

(ô = ḟ)⇒ (x̂11 = ḟ ∧ x̂12 = ḟ ∧ x̂13 = ḟ) (24)
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(x̂11 = ḟ)⇒ (x̂14 = ḟ ∧ x̂15 = ḟ) (25)

(x̂12 = ḟ)⇒ (x̂16 = ḟ ∧ x̂17 = ḟ) (26)

(x̂13 = ḟ)⇒ (x̂18 = ḟ ∧ x̂19 = ḟ) (27)

where x14, x15, x16, x17, x18, x19, are BO1, TA1, BO2, TA2, BO3, TA3, respec-
tively. Table 8 shows the results of FORPV , FORSTEAM , and SAIDI based
on FMR analysis using the assumed failure rates of the power plant components.

Table 8: FMR: FOR and SAIDI Results

FORPV FORSTEAM SAIDI

99.19e-2 38.87e-3 6.3728

According to Jahanian et al. [11], the soundness of the obtained FMR equations
(Eq. 21 to Eq. 27) needs to be proven mathematically.

4. The HiP-HOPS software for failure analysis, which can perform FMECA analysis
by given architectural blocks that hierarchically describe a safety-critical system

Figure 16: HiP-HOPS: PV Plant FMECA Analysis
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Figure 17: HiP-HOPS: Steam Plant FMECA Analysis

at the subsystem level. Fig. 16 and Fig. 17 depict the FMECA analysis of the
PV and steam power plants using the HiP-HOPS software, respectively. The
probabilistic results of FORPV , FORSTEAM , and SAIDI based on HiP-HOPS
analysis are equivalent to the FMR analysis results presented in Table 8.

It can be observed that SAIDI result obtained from our formal HOL4 analysis are
approximately equivalent to the corresponding ones calculated using FMR and HiP-
HOPS approaches. On the other hand, MATLAB MCS-based uses a random-based
algorithm, which estimates different results of FOR and SAIDI every generation
of a random number with errors between 4-9%. This clearly demonstrates that our
analysis is not only providing the correct result but also with a formally proven relia-
bility expressions (Theorems 23-25) compared to simulation tools, i.e., the soundness of
subsystem-level reliability analysis. By performing the formal CCD step-analysis of a
real-world 39-bus electrical power network, we demonstrated the practical effectiveness
of the proposed CCD formalization in HOL4, which will help design engineers to meet
the desired quality requirements. Also, our proposed formal approach can be used to
analyze larger scale CCD models of other complex electrical power system applications,
such as Smartgrids [1].
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6 Conclusions

In this work, we developed a formal approach for Cause-Consequence Diagrams (CCD),
which enables safety engineers to perform N -level CCD analysis of safety-critical sys-
tems within the sound environment of the HOL4 theorem prover. Our proposed ap-
proach provides new CCD mathematical formulations, which their correctness was
verified in the HOL4 theorem prover. These formulations are capable of performing
CCD analysis of multi-state system components and based on any given probabilistic
distribution and failure rates. These features are not available in any other existing ap-
proaches for subsystem-level reliability analysis. The proposed formalization is limited
to perform CCD-based reliability analysis at the subsystem level that integrates static
dependability analysis. However, this formalization is generic and can be extended to
perform dynamic failure analysis of dynamic subsystems where no dependencies exist
in different subsystems. We demonstrated the practical effectiveness of the proposed
CCD formalization by performing the formal CCD step-analysis of a standard IEEE 39-
bus electrical power network system and also formally verified the power plants Force
Outage Rate (FOR) and the System Average Interruption Duration Index (SAIDI).
Eventually, we compared the FOR and SAIDI results obtained from our formal
CCD-based reliability analysis with the corresponding ones using MATLAB based on
Monte-Carlo Simulation (MCS), the HiP-HOPS software tool, and the Failure Mode
Reasoning (FMR) approach. As future work, we plan to integrate Reliability Block
Diagrams (RBDs) [41] as reliability functions in the CCD analysis, which will enable us
to analyze hierarchical systems with different component success configurations, based
on our CCD formalization in the HOL4 theorem prover.
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