
Optical Stochastic Computing Architectures Using Photonic
Crystal Nanocavities

Hassnaa El-Derhalli1, Lea Constans2,3, Sébastien Le Beux1,
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Abstract

Stochastic computing allows a drastic reduction in hardware complexity us-
ing serial processing of bit streams. While the induced high computing latency
can be overcome using integrated optics technology, the design of realistic op-
tical stochastic computing architectures calls for energy efficient switching de-
vices. Photonics Crystal (PhC) nanocavities are µm2 scale devices offering 100fJ
switching operation under picoseconds-scale switching speed. Fabrication pro-
cess allows controlling the Quality factor of each nanocavity resonance, leading
to opportunities to implement architectures involving cascaded gates and multi-
wavelength signaling. In this report, we investigate the design of cascaded gates
architecture using nanocavities in the context of stochastic computing. We pro-
pose a transmission model considering key nanocavity device parameters, such
as Quality factors, resonance wavelength and switching efficiency. The model is
calibrated with experimental measurements. We propose the design of XOR gate
and multiplexer. We illustrate the use of the gates to design an edge detection fil-
ter. System-level exploration of laser power, bit-stream length and bit-error rate
is carried out for the processing of gray-scale images. The results show that the
proposed architecture leads to 8.5nJ/pixel energy consumption and 512ns/pixel
processing time.

Keywords— Nanophotonics, Optical Computing, Stochastic Computing, Photonic
Crystal Nanocavity, Design Space Exploration
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1 Introduction

Stochastic computing trades off computing accuracy with energy consumption. The
probabilistic presentation of the data and the serial processing of bit streams allow for
reduced hardware complexity and high energy efficient design [1]. Stochastic comput-
ing is suitable for error tolerant applications, such as image processing [2]. It is also
resilient to soft and transient errors since it does not involve weighted binary num-
bers [3], i.e., the weight of all bits in a stochastic bit stream is the same. However, the
intrinsic high latency, induced by the serial computation, is the main limitation of this
approach. On a technological side, integrated optics technology, which provides high
speed signal propagation and high bandwidth [4], has been widely used to accelerate
computing architectures, such as optical neural networks [5] and reconfigurable optical
processors [6].

Silicon photonics devices, such as MZI and MRR have been widely investigated
in the design of optical computing architectures [7, 8]. In these approaches, optical
signals are modulated by electrical signals, which calls for costly electronics-to-optical
and optical-to-electronics (EO/OE) converters for the design of large-scale architec-
tures. To cope with this limitation, the design of all-optical gates using MRR has been
investigated in [9]. The switching operation is obtained by applying a high power (typ-
ically few mW) optical control signal in order to modulate a lower power optical data
signal (typically few 100s µW). In MRRs, this is achieved by injecting control and data
signals on different resonant wavelength: the wavelength detuning obtained from the
control signal will modify the transmission of the data signal. The difference in trans-
mission between optical signals representing data ‘1’ and ‘0’ is called Extinction Ratio
(ER). This way, the data signals remain in the optical domain during their processing
from the inputs to the outputs, which prevent from the need for EO/OE converters.
Therefore, all-optical architectures have the potential to operate at higher speeds com-
pared to optical architectures involving electrically controlled devices. However, to
trigger non-linear effects needed for the all-optical computing, one has to take into
account the wavelength detuning achievable in the MRR, which mostly depends on the
Quality factor (Q factor). Since the Q factor is intrinsically the same for all resonances,
the modulation obtained on the data signal is necessary limited by the shift triggered
by the control signal. Photonic Crystal (PhC) nanocavities do not share this limitation
since each resonance can show a different Q factor. Hence, using such a device can lead
to extinction ratio unreachable with MRR, which is essential for the design of com-
puting architectures involving cascaded gates. Furthermore, PhC demonstrates 10ps
switching speed, 100fJ switching energy consumption and 10× compactness compared
to MRRs [10], which make the devices an ideal candidate for all-optical computing
architectures.

The design of all-optical gates is necessary to implement all-optical computing ar-
chitectures. In the context of stochastic computing, the design of all-optical XOR gate
and Multiplexer (MUX) is essential since they represent an absolute value subtractor
and an adder, respectively. The implementation of an architecture that involves cas-
caded gates, such as stochastic edge detection with cascaded multiplexers, in optical
domain is challenging. It requires a device with different Q factors and wavelength de-
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tuning to transmit a group of signals propagating at multiple wavelengths. The design
of such architecture involves a large design space to explore at both device and system
levels, such as Q factors, resonance wavelength, and wavelength detuning.

In this work, we investigate the use of PhC nanocavities to design all-optical cas-
caded gates for stochastic computing architectures. For this purpose, we develop all-
optical XOR gate and multiplexer (MUX) using nanocavities. We propose a trans-
mission model of the nanocavities taking into account Q factors and resonance wave-
lengths, which allows to explore the design space. As a case study, we implement a
Sobel edge detection filter, which involves cascaded XOR gate and MUX for absolute
value subtraction and addition. The design of the cavities is explored to trade off power
consumption, computing accuracy and processing time. System-level evaluation is car-
ried out through the processing of images under various Bit Stream Lengths (BSL) and
laser powers.

The rest of the report is organized as follows: Section 2 presents an overview of im-
age processing filters implemented using stochastic computing and introduces existing
optical computing architectures. In Section 3, we introduce the design of NOT gate,
XOR gate and MUX using PhC nanocavity, and present the proposed transmission
model of the device. Section 4 illustrates the design of a stochastic edge detection
filter-based architecture using Sobel operators. The analytical model used to estimate
the required lasers power and evaluate the computing accuracy is introduced in Section
5. In Section 6, the simulation results are presented. Finally, we conclude the report
and present future work.

2 Background and Related Work

2.1 Stochastic Computing

Computations in stochastic computing are performed on probabilities instead of
weighted binary numbers. A Stochastic Number Generator (SNG) generates bit
streams, where the ratio of the number of 1’s to the BSL indicates the probability [1].
Therefore, the result is approximated, and the accuracy is enhanced by increasing
the BSL. Stochastic computing is characterized by reduced hardware complexity. For
example, an addition can be implemented using a 2-1 MUX.

Different architectures were proposed to perform stochastic computations. The
reconfigurable architecture in [11], can execute any arbitrary single input function.
It relies on transforming the targeted function to its equivalent Bernstein polynomial
function. In [12], the architecture is designed to implement high accuracy FIR filters
by proposing non-scaled stochastic adder. The design of Low-Density Parity Check
(LDPC) decoding [13] in communication domain can be implemented using stochastic
circuits to perform parity checking and equality checking [3].

In the context of neural network, a deep neural network (DNN) relying on the
approximation of any real number using an integer stochastic stream is proposed in [14].
It results in 45% and 62% reduction in area and latency, respectively, compared to the
state-of-the-art stochastic architecture. A convolutional neural network (CNN) relying
on hybrid bit stream-binary is proposed in [15]. The design of the first layer is based
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Figure 1: Stochastic implementation of edge detection filter using Robert’s cross
operator [16] with XOR as an absolute value subtractor and MUX as an adder.

on low-discrepancy deterministic bit streams for accurate and fast computing. The
results show 19× area reduction and 16× power saving compared to the non-pipelined
fixed point binary design.

In [16], the design of stochastic edge detection filter is proposed. It is based on
Robert’s cross operator, shown in Figure 1, where two 2×2 filters are applied to an
image in order to find the gradient vector at each pixel. The filters rely on absolute
value subtraction and addition that are implemented using XOR gate and multiplexer
(MUX), respectively, as detailed in the following:

MUX

11000111 (5/8)

01001001 (3/8)

01100011 (4/8)

11000101 (4/8)
A

B

Sel

YXOR Y

01010110 (4/8)

01110110 (5/8)

00100000 (1/8)
A

B

(a) Absolute value subtractor (b) Scaled-adder

Figure 2: (a) XOR gate as absolute value subtractor and (b) 2×1 MUX as scaled
adder.

• Absolute Value Subtractor: Figure 2(a) illustrates an XOR gate imple-
menting a subtractor. This operation requires positively correlated bit streams
with maximum overlap between ’1’s and ’0’s [17]. In the example, bit streams
A=01010110 and B=01110110 are positively correlated with probability pA=4/8
and pB=5/8, respectively, which leads to pY=1/8. In general, the output of the
XOR gate can be written as:

pY =

{
pA − pB, pA > pB

pB − pA, pB > pA
(1)

which can be expressed as:
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pY = |pA − pB| (2)

• Scaled-adder: This operation can be implemented using 2-1 MUX, as shown
in Figure 2(b). The selection line has a probability of 1/2, which allows to
downscale the output in order to keep the probability in the range [0,1]. While
the bit streams to be added can be either uncorrelated or correlated [1], the
selection line needs to be uncorrelated with the inputs. The output of the MUX
is given as:

pY = (1− psel)pA + pselpB (3)

since psel=1/2, the equation can be written as:

pY =
1

2
(pA + pB) (4)

The main drawback of this implementation is the reduced accuracy of the output
due to downscaling the results by half. This can be overcome by doubling the
BSL, which, however, increases the latency. The design proposed in this work
relies on cascaded MUXs, which induce precision loss but allow to maintain low
hardware complexity. The impact of the precision loss on the application accuracy
is evaluated, which allows to choose the most suitable BSL.

A common issue in stochastic computing architectures is the overhead induced by
SNGs. To overcome this issue, an adder allowing to reduce the number of LFSRs
has been proposed in [18]. The selection line of the MUX is connected to the Least
Significant Bit (LSB) of the LFSR used to generate the MUX data inputs. The optical
adder we propose relies on this efficient design. Since the same LFSR is used to
generate correlated inputs [16], our design contains only a single LFSR to generate the
bit streams for the XOR inputs and the selection lines of the MUXs.

2.2 Optical Computing Architectures

Integrated optics devices have proven their efficiency in the computing domain, among
these devices are MZI, MRR and PhC devices. For instance, in [5], MZIs are used
to design a fully optical neural network, which demonstrates 2 order of magnitude
speedup, i.e., photodetection rate of 100GHz, compared to electronics implementation.
In [19], MZI is used to design a reconfigurable mesh required to enable different func-
tionalities in the architecture of microwave processors, such as FIR filters. In [20],
MRR is introduced in the design of optical lookup tables (OLUT), where Wavelength
Division Multiplexing (WDM) allows executing multiple functions simultaneously. A
Reconfigurable Directed Logic (RDL) architecture is designed using MRRs [8]. It cal-
culates the sum of products for a given function in two steps. First, the products
are evaluated, then the sum of products is calculated. A 2-bit delayed XOR task is
implemented on a 4×4 swirl reservoir topology designed using nonlinear MRRs [21].
The results show that the design can reach 2.5×10−4 error rate. In [22], the design
of photonic hardware accelerator is proposed that can perform parallel matrix vector
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multiplication operations at a rate of several Tera Multiply-ACcumulate per second
(TMAC/s), to process image using convolution filters. In [23], PhC cavity is proposed
in the design of all-optical RAM, where writing, storage, reading, and erasing opera-
tions are demonstrated. In [24], nanocavity is used in the implementation of all-optical
logic gates using Kerr effect, such as NAND, XOR, and XNOR. An All-Optical-Gate
(AOG) is designed in [25] using PhC nanocavity, where light is used to control the
transmission of light. Therefore, AOGs are essential in all-optical signal processing,
where it is used to achieve all-optical sampling on chip.

We investigated the combination of stochastic computing and integrated optics
in [26]. We proposed the use of silicon photonics devices namely; MZI, MRR and
all-optical add-drop filter, to implement an optical version of ReSC architecture [11].
The design can execute any arbitrary single input polynomial function and, in [27],
we studied the impact of the BSL (stochastic computing domain) and BER (optical
domain) on the application-level accuracy.

In this work, we aim to use PhC nanocavities to design an all-optical stochastic
architecture. We propose a transmission model to estimate the lasers power consump-
tion and evaluate the computing accuracy. We investigate the design of XOR gate and
MUX using nanocavities. We explore the device and system-level parameters in the
design of cascaded gate architecture by implementing edge detection filter that relies
on the proposed gates.

3 Photonics Crystal Nanocavity

In this section, we introduce the PhC nanocavity device used to implement all-optical
logic gates. The physical properties of the device and the implementation of an inverter
are first detailed. Then, the design of XOR gate and MUX are presented. Finally, a
transmission model of the nanocavity is proposed.

3.1 Nanocavity Device Overview

In this work, we use PhC nanocavity to implement all-optical logic gates. The structure
is made of III-V semiconductor bonded on top of a silicon waveguide, as illustrated
in Figure 3(a). The PhC cavity itself consists of a waveguide drilled with holes (Fig-
ure 3(b)). PhC nanocavity is a resonator that can act as a filter allowing only the
resonant optical frequency to pass through. The implementation of fully optical gates
using such cavity involves the triggering of nonlinear effect. This can be achieved using
a high power optical signal to control the transmission of lower power optical signals.
It has been shown that a fast (10ps) nonlinear response is possible with only about
100fJ of energy [28], substantially outperforming MRRs [29].

3.2 All-optical NOT Gate

As previously mentioned, the design of all-optical logic gates using nanocavity involves
triggering nonlinear effects. We illustrate this principle using the implementation of
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100 µm
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2 µm

1 µm

Silicon waveguide

a)

b)

Figure 3: Photographs of the studied PhC nanocavity. a) A III-V semiconductor PhC
cavity bonded on top of a silicon waveguide. b) Scanning electronic microscope top

view photographies of III-V PhC cavities.

all-optical NOT gate. As shown in Figure 4(a), the NOT gate has an input In, which
corresponds to the pump signal injected into the nanocavity. The value of In is given
by its optical power P[NOT] (i.e., low power means ’0’ and high power means ’1’). There-
fore, input signal In controls the value of the output signal Out, which corresponds
to the output Out of the NOT gate. The design of the nanocavity allows two (or
more) resonances separated by Free Spectral Range (FSR). One resonance, in this case
λ̂P[NOT], is used to effectively inject a pump signal at λP, which induces the spectral

shift of the other resonances, i.e., λ̂S[NOT ]. This modifies the transmission of the output
signal at λS. The signal at λS is always injected into the cavity as ’1’, as shown in
Figure 4(a). The operation of all-optical NOT gate is explained as follows:

• In=’0’ corresponds to P[NOT ]=’Low’ (Figure 4(b)): in this case, the nanocavity is

off-resonance, i.e., λ̂S[NOT ] 6= λS. Thus, the transmission of the signal at λS to the
output is maximized, which leads to Out=’1’.

• In=’1’ corresponds to P[NOT ]=’High’ (Figure 4(c)): The pump power detunes the
resonance of the nanocavity by ∆λ[NOT ]. The resonance of the cavity is then aligned

to the output signal wavelength at λS, i.e., λ̂S[NOT ] = λS. This leads to a strong
attenuation of the signal and hence Out=’0’.

The fabrication process allows to control numerous parameters, such as Q factors
and resonance wavelengths. The design allows defining different Q factors for each
resonance, as shown in Figure 4. Since we assume one pump and one output signals, it
is possible to define Q factors QP [NOT ] and QS[NOT ] at resonances λ̂P [NOT ] and λ̂S[NOT ],
respectively. We define the ratio between QS[NOT ] and QP [NOT ] as the figure of merit
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Figure 4: An all-optical NOT gate implemented using nanocavity: (a) logic gate and
the equivalent nanocavity device representation, (b) gate transmission for logic input

’0’ and (c) gate transmission for logic input ’1’.

(M[NOT ]) of the cavity (M[NOT ] = QS[NOT ]/QP [NOT ]). A nanocavity with a large figure
of merits would allow to maintain efficient coupling of the pump signal power into the
device, while significantly changing the transmission around the output signal wave-
length. This would result in large gap between the cavity transmission for data ’1’
(i.e., no pump is applied) and data ’0’ (i.e., a pump signal is applied), i.e., high ER.
The impact of the figure of merits is further discussed in Section 3.4. In the sequel, we
propose the implementation of all-optical XOR gate and MUX, which we use for the
design of edge detection filter.
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Figure 5: Nanocavity operating as (a) a 2-input XOR gate implemented using two
cascaded nanocavities. (b), (c), and (d) are the gate transmissions for different inputs

scenarios.

3.3 Design of All-optical XOR Gate and MUX

The design of an edge detection circuit requires XOR gate and MUX. The following
introduces their implementation using nanocavity devices.

• 2-input XOR gate: A 2-input XOR gate is implemented using two cascaded
nanocavities, as illustrated in Figure 5(a). They are equal in Q factors but different in
the FSR. Nanocavities marked 1○ and 2○ resonate at λ̂S[X1] and λ̂S[X2], respectively.
Inputs In1 and In2, common for both cavities, are injected as pump signals into
the cavities. The pump signals propagating at λp[1] and λp[2] are close in values to
achieve the desired detuning. The signal at λS is always ’1’. It is tuned to match the
resonance wavelength of the nanocavity marked 1○ (λ̂S[X1] = λS) and hence initially,
when no pump signal is injected (In1=In2=0), the signal is attenuated leading to
Out=’0’, as shown in Figure 5(b). When one of the pump signals is high (i.e.,
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In1 6= In2), the resonance wavelengths of both cavities are shifted by ∆λ[XOR] ≈
1/2(λ̂S[X2]− λ̂S[X1]). Since none of the resonance wavelengths is aligned with λS, this
leads to the transmission of the signal at λS with maximized power, i.e., Out=’1’,
as shown in Figure 5(c). When the two pump signals are high (In1=In2=’1’), as
shown in Figure 5(d), the resonance wavelengths of both cavities are detuned by
∆λ[XOR] = (λ̂S[X2] − λ̂S[X1]). Therefore, resonance wavelength λ̂S[X2] is tuned to λS.

Since λ̂S[X1] 6= λS, this leads to the transmission of the signal at λS by the first device
marked 1○ and to its attenuation by the second device marked 2○, hence Out=’0’.

• 2×1 MUX: A 2×1 MUX is composed of a nanocavity resonating at λ̂S[MUX] and
controlled by the pump signal Sel, as illustrated in Figure 6(a). The pump signal
allows selecting the input signal (i.e., In1 or In2) to be transmitted to the output
Out. The selection is achieved by detuning the resonance of the nanocavity away
from the required input signal. For this purpose, when no pump signal is injected
(Sel=’0’), the resonance wavelength of the nanocavity is aligned with λS[1], i.e., the
wavelength of In1, hence signal In1 is attenuated and signal In2 is transmitted to
the output, as shown in Figure 6(b), i.e., Out=In2. When a pump signal is injected
(Sel=’1’), the nanocavity is detuned to λS[2] (∆λ[MUX] = λS[1] − λS[2]), thus leading
to Out=In1, as illustrated in Figure 6(c).

Sel Δλ[MUX] Out

0 0 In2

1 L In1

Sel at 
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Figure 6: Nanocavity operating as (a) a 2×1 MUX. (b) and (c) MUX transmission.
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Table 1: Device parameters.

Parameter Description Unit

λ̂P [gate]

Resonance Wavelength around pump signal

(when no pump power is injected)
nm

λ̂S[gate]

Resonance Wavelength around input signal

(when no pump power is injected)
nm

FSR Free spectral range (FSR=λ̂P [gate]-λ̂S[gate]) nm

QP [gate] Quality factor around λ̂P [gate] -

QS[gate] Quality factor around λ̂S[gate] -

M[gate] Figure of merit(M[gate]=QS[gate]/QP [gate]) -

OTE[gate]

Optical tuning efficiency (the detuning of the

nanocavity according to the applied pump power)
-

The MUXs operate on multiple signals at different wavelengths and with multiple
spacing. The nanocavities implementing MUXs thus need to be carefully defined,
taking into account the resonant wavelength, the transmission bandwidth (i.e., Q
factor) and the detuning. In the following, we propose a model estimating the
wavelength detuning and the transmission of a nanocavity, taking into account key
device parameters and the applied pump power.

3.4 Nanocavity Model

We propose a model allowing to design nanocavity based logic gates. The model allows
i) estimating the wavelength detuning (∆λ[gate]) according to the applied pump power
(P[gate]); and ii) the calculation of signal transmission (T[gate]). Table 1 summarizes
the device parameters, where [gate] indicates the logic gate that is implemented using
nanocavity, i.e., NOT, XOR, MUX, etc.

Inputs device parameters λ̂P [gate] and FSR, shown in Figure 7, allow to evaluate

λ̂S[gate] (mark 1○), when no pump power is applied. QP [gate] (mark 2○) is obtained from
QS[gate] and M[gate], which depend on the fabrication process and the cavity layout (e.g.
width and length). The optical tuning efficiency (OTE[gate]) is obtained through device
characterizations (mark 3○) and through linear extrapolation to a polynomial function
(mark 4○), which requires the targeted device parameters. The detuning (mark 5○) is
calculated by taking into account QP [gate], the applied pump power (P[gate]), and the
OTE[gate]. Finally, the transmission of the nanocavity is evaluated using Lorentzian
approximation (mark 6○) [30].

We illustrate in Figure 8 two scenarios using our model: i) different QS[gate]/same
M[gate]; and ii) same QS[gate]/different M[gate], respectively.

• M[gate]=1 leads to the same Q factor at pump and input signals resonances, as
illustrated in Figure 8(a) for QP [gate] = QS[gate]= 700, 1500, and 4000. The corre-
sponding detuning (∆λ[gate]) of the cavity is plotted for pump power ranging from 0
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Figure 8: (a) and (d) Transmission of nanocavity devices of (QS[gate]= 700, 1500,
4000, M[gate]=1] and (QS[gate]=1050, M[gate]=1.5, 1, 0.5). (b) and (e) The

corresponding wavelength detuning (∆λ[gate]) of (a) and (d), respectively. (c) and (f)
The corresponding transmission of input signal according to the applied pump power.
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to 300µW, as shown in Figure 8(b). As it can be observed, the higher QP [gate], the
smaller the maximum detuning ∆λ[gate] max, which is due to the reduced coupling of
the pump with the cavity. The transmission of the input signal at λS according to
the applied power is shown in Figure 8(c). While 70% signal transmission can be ob-
tained for all QS[gate], the use of high QP [gate] can lead to pump power reduction since
the maximum transmission is reached earlier (50µW and 270µW for QS[gate]=4000
and QS[gate]=700, respectively).

• M[gate] 6= 1 leads to QP [gate]=700 and QP [gate]=2100 for M[gate]=1.5 and M[gate]=0.5,
respectively, assuming QS[gate]=1050 (Figure 8(d)). As can be seen in Figure 8(f),
the maximum signal transmission reaches 0.3 and 0.8 for M[gate]=0.5 and M[gate]=1.5,
respectively. Reaching high ER of the input signal is thus possible for high M[gate]

figures, thus leading to opportunities to reduce the data signal power.

4 Proposed Edge Detection Filter Architecture

In this section, we investigate the design of a stochastic filter application using photonic
nanocavities. Detecting edges in an image can be implemented using first derivatives
by sliding two dimensional filters over the pixels. The application of the filters involves
subtracting and adding the input pixels with each other. In SC, absolute value subtrac-
tion and addition can be implemented using XOR gates and MUXs, respectively. The
implementation of the gates in the optical domain has been discussed in the previous
section. We then discuss the main design challenges related to computing accuracy
and energy consumption.

4.1 Architecture Overview

The architecture we propose is generic and characterized by a size N . It is composed
of one stage of 2N XOR gates (for the subtraction) followed by N MUX stages (for the
addition). Each MUX stage is composed of 2N/2n MUXs, where n is the stage position
in the addition tree (1 6 n 6 N).

1. Design Patterns

The architecture involves the following design patterns:

• Two XOR gates followed by a MUX allow implementing a sub-sum function. As
illustrated in Figure 9(a), two input signals at λS[i] and λS[i+1] are injected into
XOR[i] and XOR[i+1], respectively (mark 1○ in the figure), where i is the position
of the XOR in the range 1 6 i 6 2N . For each gate, the transmission of the input
signal to the output is controlled by a pump signal (mark 2○) generated by an
SNG (mark 3○), as detailed later. The multiplexer MUX[j1,1] receives the signals
transmitted through the XORs (mark 4○), where [j1, 1] is the MUX at position j1

in stage n = 1 and 1 6 j1 6 2N/2. Depending on the pump signal generated from
SNG5 (mark 5○), the multiplexer either transmits the signal at λS[i] or λS[i+1].
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Figure 9: The The optical computing architecture of edge detection filters: a)
proposed design pattern to implement subtraction and addition using XOR gates and
MUXs; b) design pattern to implement a tree adder; c) architecture for the 3×3 Sobel

operator example.

• Three MUXs allow implementing a sum function, as shown in Figure 9(b). The
aim of the MUXs is to sum signals propagating at several wavelengths: a MUX
at stage n receives two sets of 2n/2 signals ( 6○ and 7○) and outputs a single set of
2n signals. For example, each input of the MUX at n=3 is composed of 4 signals
wavelengths and its output is composed of 8 wavelengths. In this design, only
one signal will propagate to the output, other signals will be filtered through the
MUXs. However, the number of wavelengths that can potentially carry the signal
increases with the MUX stage. This calls for a MUX design taking into account
the number of signals to process and the distance between the wavelengths.

2. Sobel Filter Architecture Example

Figure 9(c) illustrates the design of a Sobel filter, where a 3×3 window slides over
the entire image to compute the gradient vector of the image. As shown in the
figure, the design patterns are repeated through the entire architecture (see the
blue and green dashed boxes). Each XOR receives two input pixels as pump signals,
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thus leading to a subtraction. The resulting signals propagate to the MUXs (that
implement an adder-tree) and the output signal is transmitted to the photodetector.
In order to keep the architecture symmetrical, we duplicate the input pixels for which
coefficients 2 and -2 are applied in the Sobel filter. For instance, XOR[7] and XOR[8]

are duplicated from XOR[5] and XOR[6], respectively. In optical domain, the design
of the architecture requires i) eight lasers (i.e., one per XOR gate) emitting input
signals at different wavelengths; and ii) 23 pump lasers (i.e., two per XOR gate and
one per MUX).

3. Stochastic Number Generators (SNG)

The cavities are controlled by pump signals corresponding to stochastic numbers.
As illustrated in Figure 10. Different SNGs are used for the XOR gates and the
MUXs. However, in the proposed architecture, the same LFSR is used for the SNGs
of all logic gates. The operation of the SNG according to the logic gates is detailed
as follows:

avSNG for XOR

bitn-1<

(a)

λP[x] λP[w]

LFSR L-bit
L-bit

LFSR

SNG for MUX

zvOLPP[XOR] OLPP[MUX,i]

෠λ
𝑆[𝑀𝑈𝑋,

𝑖
2𝑛

,𝑛]

P[MUX,jn,n]

𝑀𝑈𝑋
[
𝑖
22

,2]
෠λ
𝑆[𝑀𝑈𝑋,

𝑖
22

,2]

P[XOR,i]

(b)

Figure 10: SNGs for (a) XOR gates and (b) MUXs.

• As shown in Figure 10(a), the XOR gates require electrical SNGs converting an
input pixel (av) into a stochastic bit stream (zv). For each XOR gate, av is
compared to the value generated by a LFSR: ’1’ is generated if the LFSR value
is less than av; ’0’ is generated otherwise. The comparator controls a modulator,
thus leading to the modulation of a signal continuously emitted by a laser at
λP [x]. Bit ’0’ leads to a destructive interference in the modulator, hence a low
pump signal is generated. Otherwise, a constructive interference in the modulator
causes high pump signal (P[XOR,i]) to be injected into the gate, thus allowing to
implement the XOR function. In order to avoid crosstalk, each pump signal uses
a dedicated wavelength. To generate correlated inputs, the same LFSR is used to
generate the bit streams inputs for all XOR gates.

• As shown in Figure 10(b), the selection line of the MUX only requires the genera-
tion of bit streams with the same number of zeros and ones (probability of 0.5) to
generate P[MUX,jn,n] values. For this purpose, a modulator is directly controlled
by a bit in the LFSR. In order to reduce the area and power overhead, the same
LFSR (used for the XOR gates) is used to control several MUXs. This can be
achieved without loss of accuracy by selecting bits at different positions.
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Figure 11: The transmission of two XOR gates and one MUX per stage.

4. Transmission Spectrum and Device Characteristics

As previously explained, the number of signals crossing the cavities increases with
the stages. Figure 11 illustrates transmission examples corresponding to the archi-
tecture in Figure 9(c), where eight signals propagate using eight wavelengths. As
detailed in the following, i) the distance between the wavelengths; and ii) the Q
factor are key design parameters as they directly impact crosstalk and switching
energy:

• WLSn corresponds to the wavelength spacing at stage n of the MUX. The wave-
lengths are then regularly spaced following a hierarchy that suits the MUX tree.
In the example, WLS1 is the distance between two consecutive signals in the
first MUX stage, e.g., between λS[1] and λS[2], λS[3] and λS[4], etc. WLS2 is the
distance between two consecutive sets of wavelengths in the second stage, e.g.,
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between {λS[1],λS[2]} and {λS[3],λS[4]}, {λS[5],λS[6]} and {λS[7],λS[8]}, etc.

• QS[gate,n] corresponds to the cavity Q factor at stage n. Indeed, assuming the
same Q factor for all cavities in a stage allows using the same laser power per
stage. Moreover, we assume both XOR gates and the MUXs in the first stage to
have the same Q factor. We define QS[XOR], without n, as the Q factor of the
XOR gate around the input signal. Moreover, as the wavelength distance between
signals to be multiplexed increases, the bandwidth of the cavity increases (i.e.,
QS[MUX,n] > QS[MUX,n+1]).

To summarize, the design of the proposed architecture involves exploring numerous
parameters, such as laser powers, wavelength distances and Q factors. In the follow-
ing, we further discuss their optimization according to computing accuracy and power
consumption purposes.

4.2 Design Challenges

The design of such an architecture involves the optimization of computing accuracy,
power consumption and processing time. The following summarizes key technological
and system-level parameters we consider for the optimization of the architecture:

• BSL and BER: computing accuracy depends on BSL (stochastic domain specific)
and BER (optical domain specific). While both techniques result in power consump-
tion, a reduction in the BER should be preferred, since it can be achieved without
impacting the processing time.

• Input signal power: the architecture is composed of cascaded gates, which results
in signal attenuation. In order to ensure a proper operation of the design, an input
signal should be injected with a high enough optical power (typically 3µW to 10µW).

• Pump signal power: it controls the wavelength detuning of the nanocavity and
ranges from 100µW to 10mW scale. To prevent the input signal from detuning the
cavity, we assume that its power should not exceed 10% of the pump power.

• Wavelength spacing: it impacts the power consumption as follows: small WLS
increases crosstalk and hence results in high BER. This requires high lasers power for
the input signals to overcome the crosstalk. On the contrary, larger WLS contributes
to a reduction in input signal power but calls for higher pump power to cover the
larger wavelength detuning.

In the following, we present models allowing to explore these parameters.

5 Implementation and Model

In this section, we present an analytical model to evaluate the error induced from the
stochastic computing technique and the optical transmission. Moreover, we develop a
transmission model for the edge detection filter to estimate the power consumption.
We also define the required design parameters and an exploration methodology.
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5.1 Error Evaluation

Two types of errors are considered: i) errors related to stochastic computing domain;
and ii) errors related to optical domain as discussed in the following:

• EDBSL: an error distance induced by the approximation when generating stochastic
bit streams. This error is defined as:

EDBSL = |Ý − Y | (5)

where Y is the error free result and Ý is the approximated result for a given BSL.

• EDTrans: an error distance induced by the optical transmission and occurs at the
photodetector side. It is indicated by the BER, i.e., the ratio of incorrectly trans-
mitted bits. EDTrans is given as:

EDTrans = | ´́Y − Ý | (6)

where
´́
Y is the approximated result considering given BSL (related to Ý ) and BER.

This error can be enhanced using high laser power. As a result, the total error
(worst-case error) can be defined as:

EDTotal = EDBSL + EDTrans (7)

We use PSNR as a metric to evaluate the computing accuracy when processing an
image as follows:

PSNRTotal = 10× log10

( MAX2
I

MSETotal

)
(8)

where MAXI is the maximum pixel in the error free image defined as 255 for 8-bit
pixels. MSETotal is the Mean Square Error given as:

MSETotal =
1

M ×K

M∑
i=1

K∑
j=1

EDTotal(i, j)
2 (9)

where M and K are the number of rows and columns in the image, respectively.
EDTotal(i,j) is the total error distance from processing a pixel at position (i,j) in the
image.

5.2 Edge Detection Transmission Model

In order to estimate the BER of the architecture, we need to define the transmission
of the signals. As defined in Section 4, an edge detection architecture of size N is com-
posed of 2N XOR gates, where each gate is designed using two nanocavities connected
in series. Each XOR gate transmits one of 2N input signals through N MUXs. The
transmission (T[i]) of input signal i, propagating at λS[i] through two nanocavities of
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the XOR gate and N MUXs is given as:

T[i] = T[X1](λS[i], λ̂S[X1,i], P{1,2}[XOR,i])︸ ︷︷ ︸
Transmission through the first cavity in XOR gate

×

T[X2](λS[i], λ̂S[X2,i], P{1,2}[XOR,i])︸ ︷︷ ︸
Transmission through the second cavity in XOR gate

×

N∏
n=1

T[MUX](λS[i], λ̂S[MUX,jn,n], P[MUX,jn,n])︸ ︷︷ ︸
Transmission through N MUXs

(10)

where jn = di/2ne is the MUX position in stage n and 1 6 jn 6 2N/2n.
From the signal transmission, SNR is calculated as follows:

SNR = OLPInput ×
R

I
×
(
T[i] −

M∑
k=1
k 6=i

T[K]

)
(11)

where OLPInput is the laser power of input signal at λS[i] injected into the XOR gate.
R and I are the photodetector responsivity and internal noise, respectively. T[i], in
this case, is the transmission of signal i as ’1’, while the other crosstalk signals k are
transmitted as ’0’. T[k] is the transmission of the crosstalk signals k as ’1’ while signal
i is transmitted as ’0’, where M = 2N . The BER assuming ON/OFF Key (OOK)
modulation of the input signals is given by:

BER =
1

2
erfc

(SNR
2
√

2

)
(12)

5.3 Nanocavity Design Parameters

The evaluation of T[i] depends on λS[i], λ̂S[gate], and P[gate] parameters, which we define
according to the methodology detailed in the following:

• Signal Wavelengths, Cavity Resonances and Spacing: As previously ex-
plained, WLSn corresponds to the shifting distance of the cavities located in stage
n. Based on Figure 11, we assume WLS3 > WLS2 > WLS1. In the XOR stage, each
gate will operate on a signal propagating at λS[i], where i is the row input number
(1 6 i 6 2N). We set to 1542nm the baseline wavelength λS[1] (i.e., the first input
signal in Figure 9(c)). The subsequent signal wavelengths are assigned as follows:

λS[i] = λS[1] −
N∑

n=1

(
b i− 1

2n − 1
cmod2

)
×WLSn (13)

For each XOR gate, we set the first and second resonance (i.e., λ̂S[X1,i] and λ̂S[X2,i])
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according to the signal wavelength λS[i] and the assumed detuning ∆λ[XOR]:

λ̂S[X1,i] = λS[i] (14)

λ̂S[X2,i] = λ̂S[X1,i] + ∆λ[XOR] (15)

The resonance at rest of each MUX is defined by the mean wavelength of the first
set of input signals:

λ̂S[MUX,jn,n] =
λS[2n(i−1+1] + λS[2n(i−1)+2n−1]

2
(16)

where jn = di/2ne is the MUX position in stage n.

• Pump Power: we assume the same pump lasers power (OLPP) injected into the
cavities located in the same stage. The pump powers received by XOR gates are
defined by:

P{1,2}[XOR,i] =

{
OLPP [XOR] × IL, zv = 1

OLPP [XOR] × IL× ER, zv = 0
(17)

where where IL is the Insertion Loss, ER is the Extinction Ratio, zv is the bit streams
of the input pixels for XOR gate. The pump powers received by the MUXs are given
as:

P[MUX,jn,n] =

{
OLPP [MUX,n] × IL, LFSR bitn−1 = 1

OLPP [MUX,n] × IL× ER, LFSR bitn−1 = 0
(18)

To ensure that the input power signal does not contribute to the detuning of the
nanocavity, we set the maximum power of the input signal to 10% of the cavity pump
power.

• Algorithm: the following summarizes the steps we follow to explore the design
space:

1. Define input parameters: figure of merits (M[gate]), wavelength of input signal
(λS[1]), and targeted BER at the photodetector.

2. From the experimental results, use QS[gate], QP [gate], λ̂S[gate] and λ̂P [gate] to cal-
ibrate the PhC nanocavity model. Validate that the transmissions model and
measurements are well correlated.

3. For XOR gate design, explore ∆λ[XOR] and Qs[XOR] to minimize laser power.

This requires setting the resonance wavelengths of the XOR gate; λ̂S[X1,1] and

λ̂S[X2,1] according to Equations 14 and 15, respectively.

4. For the MUX design, iterate from stage 1 to N to:

(a) Set the resonance wavelength of the MUX[1,1] to λS[1] (Equation 16).

(b) Explore WLS1 and Qs[MUX,1] to minimize BER at the output stage, and
select the desired BER. This allows defining λS[2] according to Equation 13
and the resonance wavelength of XOR[2] and MUX[1,2] according to Equa-
tions 14 - 16.
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(c) Repeat step 4.b to explore WLS2 and Qs[MUX,2]. By selecting a BER, λS[3]

and λS[4] are now evaluated using the corresponding WLS2 (Equation 13).
Accordingly, the resonance wavelengths of XOR[3], XOR[4], and MUX[2,1]

are defined (Equations 14 - 16).

(d) Repeat step 4.b again for the next stage until stage N . At this point, all
WLS are defined. This allows calculating the wavelengths of the rest of
input signals and the resonance wavelengths of the remaining devices.

5. According to the input lasers power and pump lasers power, estimate the energy
per bit (Equations 17 and 18).

6. Process an image and evaluate the application-level computing accuracy for a
given BSL and input lasers power (Equations 5 - 8).

6 Results

In this section, we target a NOT gate of a given Q factor and compare the transmission
and detuning using our proposed model and the experimental characteristics. We
evaluate the lasers powers for a NOT gate and present the valid range of wavelength
detuning. We introduce the design of XOR gate and MUX by exploring the design
space in each stage. We process an image using the proposed architecture and we
evaluate the computing accuracy, energy consumption and processing time.

6.1 Model Calibration

In the following, we detail the model calibration according to the experimental results
for a NOT gate. As it can be observed from the transmission results reported in
Figure 12(a), the gate is characterized by resonance wavelengths at λ̂S[NOT ]=1592.5nm

(around input signal) and λ̂P [NOT ]=1568.8nm (around pump signal), which leads to

FSR=24nm. At λ̂S[NOT ] and λ̂P [NOT ] resonances, the 3dB bandwidth of the nanocavity
is 1.44nm and 0.65nm, respectively, which induces M[NOT ]=0.5. We calibrate the model
using these parameters and, as it can be seen in the figure, a good correlation is
obtained.

Figure 12(b) shows the measured nonlinear cavity detuning (∆λ[NOT ]) correspond-
ing to an off-chip pump average power ranging from 0 to 250µW. This corresponds to
an on-chip pump pulse energy up to 800fJ, for a cavity Q factor=700. These pulsed
mode measurements could be extrapolated to quasi CW excitation, which will be con-
sidered here assuming pulse duration is equal to the carrier lifetime, about 10ps. Thus,
the off-chip average pump level 250µW corresponds to on-chip peak power roughly
equals to 100mW. Depending on the Q factor and the material used, these numbers
might change. In fact, the resonator here has been designed for maximized speed,
hence low Q, trading off with energy efficiency. A different balance would target an
order of magnitude larger Q. Figure 12(c) illustrates the transmission of the cavity
at λ̂S[NOT ] under a 78mW on-chip peak power (178µW pump power). This leads to
around 1.6nm blue shift of the resonance, which we observe for both measurement and
model, thus validating the calibration.
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Figure 12: Characterization results and model calibration: (a) Transmission when no
pump power is applied, (b) wavelength detuning according to the average pump

power, and (c) transmission when a pump power is injected.

In the following, we explore the impact of the signal detuning (∆λ[NOT ] = λ̂S[NOT ]−
λS) on the lasers powers, where λ̂S[NOT ] is the cavity resonance at rest. We consider a
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Figure 13: For a nanocavity of QS[NOT ] = 2000 and M[NOT ] = 2: (a) The transmission
assuming ∆λ[NOT ] = 0.05, 0.1, 0.19, and 0.35nm. (b) Lasers powers according to

∆λ[NOT ] ranges from 0 to 0.5nm.

nanocavity with QS[NOT ]=2000, M[NOT ]=2 and λ̂S[NOT ]=1542nm. In Figure 13(a), we
assume transmission scenarios for ∆λ[NOT ]=0.05nm, 0.1nm, 0.19nm, and 0.35nm. Two
optical signals are injected: OLPInput and OLPP correspond to the optical power of in-
put signal and pump signal, respectively. As illustrated in Figure 13(a), ∆λ[NOT ]=0.05
(mark 1○) requires the lowest OLPP value due to the small shift in the resonant wave-
length. On the other hand, this results in a rather low 0.7dB ER, which is compensated
by using a high OLPInput value. Higher ∆λ[NOT ], such as 0.1nm (mark 2○), 0.19nm
(mark 3○), and 0.35nm (mark 4○), leads to an increase in the ER=1.7dB, 4.3dB, and
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6.9dB, respectively. This contributes to lower OLPInput but induces higher OLPP due
to the larger wavelength detuning distance.

To further explore the design space, we investigate the design power consumption
by considering lasers powers, i.e., OLPInput and OLPP . We assume BER = 10−1 and
∆λ[NOT ] ranging from 0 to 0.5nm. We define the valid range when OLPInput accounts
for 10% or less of OLPP . As it can be seen in Figure 13(b), the power consumption
is dominated by OLPInput for ∆λ[NOT ] < 0.1nm. At ∆λ[NOT ]=0.05nm (mark 1○), we
obtain OLPP=2.9µW and OLPInput=19.1µW (for a total power of 22µW). This implies
an input signal power (injected by OPLInput) exceeding 10% of the pump signal power
(injected by OPLP ). Therefore, ∆λ[NOT ]=0.05nm is an invalid option. Although
∆λ[NOT ]=0.1nm (mark 2○) leads to optimal total power consumption, it is not a valid
design option, since the OLPInput accounts for 39% of the total power received by
the cavity. From ∆λ[NOT ]=0.19nm (mark 3○) to ∆λ[NOT ] max=1.13nm, the design
becomes valid but leads to power overhead. Hence the power is dominated by OLPP

due to the large wavelength distance needed to reach the input signal. For example,
∆λ[NOT ]=0.35nm (mark 4○) involves OLPP=33.9µW and OLPInput=0.7µW, which
increases the power consumption by 2.7× compared to the optimal ∆λ[NOT ]. Each
nanocavity of a given QS[NOT ] has a unique range of wavelength detuning that varies
between 0 and ∆λ[NOT ] max. However, the minimum detuning is specified according
to the ratio of the injected input power to the pump power signals. In the sequel, we
explore the power consumption in the design of XOR gates considering nanocavities
of different Q factors.

6.2 Design of XOR Gate

As previously defined, an XOR gate is composed of two cascaded nanocavities with the
same Q factor but with resonances separated by ∆λ[XOR]. We assume M[XOR]=2 and
QS[XOR]=[2000; 3500; 5000; 8000]. Figure 14(a) illustrates the total power consumption
for ∆λ[XOR] ranging from 0 to 1nm and for a targeted BER = 10−1. As it can be seen in
the figure, QS[XOR]=8000 and 2000 lead to a valid ∆λ[XOR] range of [0.17-0.28]nm and
[0.45-1.13]nm, respectively, and involve a total power consumption ranging from 39µW
to 94µW and 104µW to 276µW, respectively. Hence, the lower QS[XOR], the larger the
valid range of ∆λ[XOR] and the more increases the power overhead. As also can be
observed from the figure, a total power=82.5µW can be obtained for QS[XOR]=8000,
5000, and 3500 under ∆λ[XOR] =0.27nm, 0.335nm, and 0.365nm, respectively (see 1○).
This demonstrates that the same power efficiency can be obtained for different cavities
(QS[XOR]) and wavelength detuning (∆λ[XOR]).

In the following, we explore QS[XOR] and ∆λ[XOR] with the aim to find design pa-
rameters that minimize the XOR power consumption. The results are reported in
Figure 14(b). For the sake of clarity, the design parameters corresponding to cavities
detailed in Figure 14(a) are highlighted in Figure 14(b) (mark 1○). As a first obser-
vation, we note that the higher QS[XOR] and the lower ∆λ[XOR], the lower the power
consumption, which is due to the reduced amount of energy needed to shift the cav-
ity. Overall, the cavities laser power consumption ranges from 34.7µW (at ∆λ[XOR]

=0.14nm and QS[XOR]=10000) to 398.2µW (at ∆λ[XOR]=1nm and QS[XOR]=2000). As
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discussed earlier, we use the same parameters for the cavities located in the XOR stage
and the first MUX stage. In the following, we explore the remaining design parameters
for MUX stages.

6.3 Design of MUX

In the following, we explore the MUX design parameters. For this purpose, we target
a BER = 5× 10−1 at the photodetector, which corresponds to BER at stage n=3 of
the MUX (BER[MUX,3]), and we explore the design space from the first stage to the
last stage, by defining the inter-stage BER to be reached. We use the corresponding
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parameters (QS[MUX,n], WLSn) from stage n to explore the design space of stage n+1.

• Stage n=1: we assume 3µW input signals powers (OLPInput) injected in the XOR
gates, we also assume the following ranges for Q factors and WLS1: 1 < QS[MUX,1] <
10000 and 0 < WLS1 < 1.2nm. As shown in Figure 15(a), the exploration results
in BER[MUX,1] ranges between 10−4 and 5× 10−1. As can be seen, a high QS[MUX,1]

leads to more accurate designs. For example, QS[MUX,1]=10000 and 5000 result in
BER[MUX,1]= [10−4 - 4 × 10−4] and [4 × 10−4 - 5 × 10−2], respectively. Moreover,
the higher WLS1, the lower BER[MUX,1], which is due to the reduced crosstalk.
We choose QS[MUX,1]=10000 and WLS1=0.215nm, which lead to the lowest possi-
ble BER for the covered design space (BER[MUX,1] = 10−4). The corresponding
transmission is plotted in the caption of Figure 15(a). The data signals propagate
at λS[1]=1542nm (i.e., baseline wavelength obtained through experimental results)
and λS[2]=1541.785nm (i.e., baseline wavelength minus the 0.215nm spacing). The
detuning of the cavity to λS[2] is obtained with a 32µW pump power. The selected
signal is transmitted to the MUX output with a power of 1.2µW.

• Stage n=2: We assume the parameters defined in stage n=1 (i.e., QS[MUX,1]=10000
and WLS1=0.215nm) and we explore the same ranges of values for QS[MUX,2] and
WLS2. Figure 15(b) shows the resulting BER at stage n=2 (BER[MUX,2]), which is
overall higher than BER[MUX,1] due to: i) the higher crosstalk induced by additional
input signals to process (2 and 4 input signals at n=1 and n=2, respectively) and
ii) the lower received data signal power (3µW and 1.2µW at n=1 and n=2, respec-
tively). We target 10−2 for BER[MUX,2], which we obtain with QS[MUX,2]=1900 and
WLS2=1.19nm (for a 210µW pump power). The resulting transmission is shown
in the caption. In addition to the input signals at λS[1] and λS[2], we inject signals
at λS[3]=1540.81nm and λS[4]=1540.595nm: the distance between λS[3] and λS[4] is
0.215nm and the distance between {λS[1], λS[2]} and {λS[3], λS[4]} is 1.19nm.

• Stage n=3: The design of the MUX at stage n=3 (MUX[1,3]) is explored assuming
QS[MUX,2]=1900 and WLS2=1.19nm. As reported in Figure 15(c), QS[MUX,3]=500
and WLS3=4.35nm lead to the targeted 5 × 10−1 BER. The 8 signals received
by MUX[1,3] and the corresponding cavity transmission are illustrated in the cap-
tion. The selected value for WLS3 leads to λS[5]=1537.65nm, λS[6]=1537.435nm,
λS[7]=1536.46nm, and λS[8]=1536.245nm. The selection of signals λS[4−8] is achieved
by applying a 670µW pump power.

As it has been observed, the design space considerably shrinks from a stage to
another, which is mostly due to the increasing number of signals to process, as shown
in Figure 15(d). This calls for increasing wavelength spacing and thus reducing QS[gate].
As a matter of fact, we found that the highest possible Q factor should be preferred for
the design of the XOR gates. Regarding the error rate, which inevitably increases as
signals propagate through the stages, it can be overcome by increasing the power laser
and the BSL, as discussed in the sequel. Overall, the optimization of the architecture
would benefit from heuristics to explore the design space, which is out of the scope of
the work, but we plan to investigate this in our future work.
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Figure 15: Achievable BER at each stage for nanocavities with M[MUX] = 2: (a)
Stage n = 1 with 1 < QS[MUX,1] < 10000 and 0 < WLS1 < 1.2nm. (b) Stage n = 2

with 1 < QS[MUX,2] < 10000 and 0 < WLS2 < 1.2nm. (c) Stage n = 3 with
1 < QS[MUX,3] < 1000 and 3 < WLS3 < 10nm. (d) The transmission of the MUXs at

different stages.

6.4 Application-level Design Comparison

In the following, we evaluate the application level computing accuracy, energy consump-
tion and processing time of the architecture. For a comparison purpose, we assume
injected input power signals at 3µW and 4µW, and we target 5×10−1 and 10−1 BER,
respectively. By following the algorithm defined in Section 5.3, we obtain Design A
and Design B, for which the Q factors and wavelength spacings are reported in Table 2.

In order to evaluate the computing accuracy at the application level, we process
512×512 pixels images assuming BSL=256, 512, and 1024. This results in three designs
for each set of parameters, as illustrated in Figure 16(b) and (c). The error is calculated
with respect to the error free image shown in Figure 16(a). As expected, the accuracy
increases with BSL. For instance, in Figure 16(b), PSNRTotal is reduced from 20 to 26.4
when BSL is increased from 256 to 1024. Furthermore, the use of BSL=1024 for Design
A and BSL=512 for Design B results in PSNRTotal=26.4, thus leading to opportunities
to explore power and processing time tradeoffs. For this purpose, we evaluate the
energy per computed pixel assuming 10ps pump pulse width under 1GHz repetition
rate and 20% lasing efficiency. As reported in Table 2, Design B results in 5.6% energy
saving and 2× reduction in processing time compared to Design A. This indicates
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(a) Error free image

(1) BSL=256, PSNRTotal=23

(3) BSL=1024, PSNRTotal= 26.4

Computing accuracy
PSNRTotal=26.4

Design A Design B

Input 
parameters

OLPInput 3µW 4µW

BSL 1024 512

Device 
parameters

QS[XOR]=QS[MUX,1] 10000 7700

QS[MUX,2] 1900 1600

QS[MUX,3] 500 200

System-level 
parameters

WLS1 (nm) 0.215 0.275

WLS2 (nm) 1.19 1.41

WLS3 (nm) 4.35 11.3

Performances 

BER 5×10-1 10-1

Energy consumption 
(nJ/pixel)

0.9 0.85

Processing time 
(ns/pixel)

102.4 51.2

(b) OLPInput=3µW

(1) BSL=256, PSNRTotal=20 

(3) BSL=1024, PSNRTotal=27.6

(2) BSL=512, PSNRTotal=22.4 (2) BSL=512, PSNRTotal=26.4

(c) OLPInput=4µW (d) 

Figure 16: Processed image: (a) error free, and PSNRTotal for (b) OLPInput=3µW and
(c) OLPInput=4µW assuming BSL=256, 512, and 1024.

Table 2: Device/system-level parameters, and performance of two designs target
PSNRTotal=26.4.

Computing accuracy
PSNRTotal=26.4

Design A Design B
OLPInput 3µW 4µWInput

parameters BSL 1024 512
QS[XOR]=QS[MUX,1] 10000 7700

QS[MUX,2] 1900 1600
Device

parameters
QS[MUX,3] 500 200

WLS1 (nm) 0.215 0.275
WLS2 (nm) 1.19 1.41

System-level
parameters

WLS3 (nm) 4.35 11.3
BER 5×10−1 10−1

Energy consumption
(nJ/pixel)

9 8.5
Performance

Processing time
(ns/pixel)

1024 512

that for the assumed set of device parameters, BSL has a higher negative impact on
energy consumption compared to BER due to the higher static energy. Therefore, a
small BSL is preferred for higher energy efficiency and faster processing architecture.
Furthermore, while a higher injected input signal power contributes to reduce the BER,
it also significantly reduces the design space due to the higher crosstalk. This calls for
cavities with a higher figure of merits (M[gate]), as discussed in the following.
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7 Discussion and Future Work

In this work, we have provided a quantitative analysis of our optical stochastic comput-
ing based on consolidated photonic technologies. We have introduced a novel photonic
device, which allows implementing all-optical NOT gate, XOR gate and MUX. We
have also demonstrated the design of all-optical cascaded gates using nanocavities. In
order to reduce the energy consumption, nanocavities of higher Q factors are required.
As seen from the results, the use of high Q nanocavities implies a limited wavelength
detuning, which drastically reduce the design space. This calls for nanocavities with
high figure of merits (i.e., M[gate] > 2), which we plan to fabricate to demonstrate their
full potential in large scale designs. Indeed, while M[gate] > 1 is generally observed in
PhC resonators as the modes are differently spatially confined, larger M[gate] should
rely on a tailor-made conception of the PhCs structures allowing two modes with a
large difference of Q factors. This will be achieved, for instance, by optimizing the
coupling strength of each of these modes to the waveguide. In order to accurately
control the operating wavelength of each gate, micro-heaters [31] will be implemented
on the nanocavities, which will be taken into account in our energy model. At system
level, the exploration of figure of merits will considerably increase the design space
to explore, which calls for heuristic algorithms we will develop to efficiently optimize
architectures.

Our future work aims to design fully optical stochastic computing architectures.
This will allow conducting a comprehensive comparison with binary conventional and
stochastic computing CMOS-based architectures [32, 33]. For this purpose, the design
of all-optical SNG will be investigated. An all-optical implementation of the SNG would
greatly improve the perspectives of our approach since they would allow to avoid the
use of LFSR, comparators and modulators. An all-optical SNG could be based on the
chaotic dynamics of semiconductor diode laser [34]. The statistical qualities of these
sources have been validated against a variety of statistical tests such as NIST [35]. They
generated random streams of data at a rate of 10 GHz or more [36]. The energy con-
sumed by chaotic lasers could be reduced by replacing them with integrated lasers [37]
or recently demonstrated nanolasers [38]. Furthermore, they are readily integrated on
a silicon photonic chip, similar to the optical gates described here, with typical electric
power threshold for lasing below 1mW. All-optical stochastic computing architectures
will be used to design complex accelerators. We will first design architectures with
larger filter patterns and we will then address the design of FIR and IIR filters. Even-
tually, we plan to develop a tool allowing to synthesize and optimize optical stochastic
accelerators from high level descriptions of combinational applications.

8 Conclusion

In this work, we investigated the use of PhC nanocavity to design a stochastic com-
puting architecture. We proposed a generic transmission model for the nanocavity,
which showed a good correlation with experimental measurements for a NOT gate
of QP [NOT ]=2400 and M[NOT ]=0.5, hence validating the proposed model. The results
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showed that we can reach an ER= 6.9dB for δλ[NOT ]=0.35nm when 34.7µW power is
injected. We used the model to design XOR gate and MUX of different device pa-
rameters. We showed that an XOR gate of QS[XOR]=10000 and wavelength detuning
equals to 0.14nm leads to 34.7µW power consumption. We designed an edge detec-
tion filter that relies on the proposed nanocavities-based XOR gate and MUX. We
showed that it is possible to implement the filter using a design of Q factors=7700
for XOR gates and 7700, 1600, and 200 for MUXs. At the application-level, images
were processed for various lasers power and BSL. The results showed that the assumed
set of device parameters, BSL has a higher negative effect on the energy consumption
compared to BER. The resulting architecture showed 8.5nJ/pixel energy consumption
and 512ns/pixel processing time. All these observations raised the need to fabricate
nanocavities with a higher figure of merits (M[gate]) to increase the design space of the
gates, which we plan to investigate in our future work. Other perspectives include
the design of optical SNG and de-randomizer circuits, which will allow us to show the
potential of integrated optics in accelerating stochastic computing architectures.
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