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Abstract

Dynamic Fault Trees (DFTs) is a widely used failure modeling technique
that allows capturing the dynamic failure characteristics of systems in a very
effective manner. Simulation and model checking have been traditionally used
for the probabilistic analysis of DFTs. Simulation is usually based on sampling
and thus its results are not guaranteed to be complete, whereas model checking
employs computer arithmetic and numerical algorithms to compute the exact
values of probabilities, which contain many round-off errors. Leveraging upon
the expressive and sound nature of higher-order-logic (HOL) theorem proving,
we propose, in this work, a formalization of DFT gates and their probabilistic
behavior as well as some of their simplification properties in HOL. This formal-
ization would allow us to conduct the probabilistic analysis of DFTs by verifying
generic mathematical expressions about their behavior in HOL. In particular,
we formalize the AND, OR, Priority-AND, Functional DEPendency, Hot SPare,
Cold SPare and the Warm SPare gates and also verify their corresponding proba-
bilistic expressions in HOL. Moreover, we formally verify an important property,
Pr(X <Y), using the Lebesgue integral as this relationship allows us to reason
about the probabilistic properties of Priority-AND gate and the Before operator.
We also formalize the notion of conditional densities in order to formally verify
the probabilistic expressions of the Cold SPare and the Warm SPare gates. For
illustrating the usefulness of our formalization, we use it to formally analyze the
DFT of a Cardiac Assist System.
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1 Introduction

A Fault Tree (FT) [1] represents an effective way of graphically modeling the causes of
failure in a system in the form of a rooted failure tree. A typical F'T consists of a top event
representing system failure, basic failure events modeling the components failure and the
FT gates, which combine the basic failure events and allow components failure to propagate
to the top event. FTs are categorized as: Static FTs (SFTs) and Dynamic FTs (DFTs).
SFTs capture the causes of failure in a system without considering the failure dependencies
or sequences between the system components. DFTs, on the other hand, capture the failure
dependencies in systems, which represent a more realistic approach to model the behavior of
real-world systems.

Fault Tree Analysis (FTA) can be used to examine the failure characteristics of the
given system qualitatively and quantitatively. In the former analysis, the combinations and
sequences of basic failure events, associated with the system components, are determined in
the form of cut sets and cut sequences. While the quantitative analysis allows estimating
the failure probability of the system based on component’s failure probabilities among other
metrics. Usually, Markov chain (MC) based analysis or algebraic approaches are used to
perform DFT analysis. In the Markov chain based analysis, the DFT is first converted into
its equivalent MC and then the analysis is conducted on the resulting MC. Complex systems
often lead to a MC with a large number of states. The MCs of such complex systems can be
analyzed using a modularization approach that divides the corresponding FT into SFT and
DFT parts [2]. The SET part is analyzed using traditional combinatorial analysis methods,
such as Binary Decision Diagrams (BDDs) [1], while the DFT part is analyzed using MCs [3].
This kind of modularization approach has been implemented in the Galileo tool [4]. In the
algebraic approach, an algebra similar to the ordinary Boolean algebra is used to reduce the
structure function (expression) of the top event of the DFT [5]. This reduced expression is
then used to derive the failure probability of the given system based on the failure probabilities
of DFT gates.

Traditionally, DFTs are either analyzed by analytically deriving the system failure prob-
ability expression or using computer-based simulation tools. In the former method, firstly
cut-sequences consisting of basic failure events are obtained and then the probabilistic Prin-
ciple of Inclusion-Exclusion (PIE) [5] is used to derive the probability of failure of the overall
system. This kind of manual manipulation is prone to human errors and can produce erro-
neous results especially when dealing with large DFTs. The latter method is more extensively
used due to its scalability and user friendliness. Several simulation tools are available that
provide GUI editors that obtain the system F'T model from the user and return the analysis
results based on the assigned failure distribution to the system components at a given in-
stant of time. However, simulation cannot be gauranteed to produce complete and accurate
results due to the involvement of numerical techniques, such as Monte Carlo simulation [6],
and pseudo random variables. Due to the above-mentioned inaccuracies, both analytical and
simulation based methods are not suitable to conduct the failure analysis of safety-critical
systems.

As an accurate alternative, formal methods have been recently utilized for analyzing
FTs. Probabilistic model checkers (PMC), such as STORM [7], have been used to perform
the quantitative analysis of DFTs [8]. However, due to the state-based nature of PMCs,
they cannot be used to verify generic expressions for probability of failure. In addition, their
usage is only limited to exponential distributions, which in the context of reliability analysis,
for example, do not consider the aging of systems components. Due to the sound nature of



higher-order-logic (HOL) theorem proving, it has been successfully used to formalize basic
SFT gates [9], which have been in turn used to conduct the SFT-based analysis of several
systems, including an air traffic management system [10]. However, this formalization is only
limited to SFTs. So far, there is no formalization in HOL that supports the probabilistic
failure analysis of DFTs. Recently, a hybrid methodology based on both interactive theorem
proving and model checking has been presented for formal analysis of DFTs [11]. The main
idea is to first conduct the algebraic based qualitative analysis of a given DFT using theo-
rem proving and then quantitatively analyze the simplified DFT model using the STORM
model checker. Since a PMC is involved in estimating the probabilities quantitatively, this
methodology cannot provide generic expressions for probability and its usage is only limited
to exponential distributions. Moreover, the formal definitions of DFT gates in [11] cannot
cater for conducting the probabilistic analysis using HOL theorem proving as the behavior
of the DFT gates has been captured using numbers instead of random variables.

In order to perform the complete probabilistic analysis of DFTs within a higher-order-
logic theorem prover by verifying generic expressions of probability of failure, we propose to
formalize the DFT gates in higher-order logic. Based on this formalization, we also formally
verify their algebraic reduction properties. Then, using the available probability theory for-
malization [12], we also formally verify the failure probability relationships of all commonly
used DFT gates, i.e., AND, OR, Priority-AND (PAND), Functional DEPendency (FDEP),
Hot SPare gate (HSP), Cold SPare gate (CSP) and Warm SPare gate (WSP). In order to
verify the failure probability relationship of some of these DFT gates, we are required to
formalize the Pr(X < Y') describing the effect of one system component failing before the
other or one after the other. This property is mainly verified by using Lebesgue Integral
properties [13,/14]. In addition, we formalize the notion of conditional density functions,
which is necessary to formally verify the probabilistic relationships of the spare gates. The
HOL4 theorem prover |15] was a natural choice for this formalization as it has the required
theories such as: the probability theory and the Lebesgue integral [13]. In addition, we use
the existing formalization of the probabilistic PIE in HOL4 [9]. The above-mentioned formal-
izations can be utilized to conduct the DFT-based failure analysis of a variety of real-world
systems within the sound core of a theorem prover. For illustration purposes, we present the
formal DFT-based failure analysis of a Cardiac Assist System (CAS) [16], which is a safety-
critical DFT benchmark. We first reduce the original structure function of the system’s top
event using the formally verified simplification theorems. Then, we utilize the probabilistic
PIE [9] to formally verify a generic failure probability expression of the Cardiac Assist System
whereas the failure characteristics of its components are represented as generic probability
distribution and density functions.

The rest of the report is structured as follows: Section [2| presents some preliminaries
about the probability theory and the Lebesgue integral in HOL4 that will facilitate the
understanding of the rest of the work. In Section [3| we present our HOL formalization of
DFT gates and the corresponding simplification properties. Section[d]provides the verification
details of the probabilistic behavior of the DFT gates. Section [5| presents the formalization
of the probabilistic failure behavior of the Cardiac Assist System. Finally, we conclude the
report in Section [6]



2 Preliminaries

In this section, we present some preliminaries that are required for the understanding of the
proposed formalization.

2.1 Probability Theory

The probability theory is formalized based on the measure theory in HOL4 [13]. A measure
is generally a function that designates a certain number to a set, which represents the size of
this set [12]. It is defined as the triplet (o, %, i), where o represents the space, ¥ represents
the measurable sets and finally u represents the measure. A probability space is defined as a
measure space, where the probability measure for the entire space is equal to 1.

Random variables are formalized as measurable functions that map events from the prob-
ability space to some other o- algebra space s. Random variables are defined in HOL4 as |12]:

Definition 2.1.
F VX p s. random.variable X p s &
prob_space p A X € measurable (p_space p, events p) s

where prob_space p ensures that p is a probability space with p_space as its space and
events as its measurable sets. X € measurable (p_space p, events p) s defines X as a
measurable function from the probability space p to space s.

The probability distribution of a random variable X represents the probability that the
random variable X belongs to a set A. This is equivalent to finding the probability of the
event {X € A}, which can also be represented using the preimage as X ~!(A4). The probabil-
ity distribution is defined in HOL4 as [12]:

Definition 2.2.
F Vp X. distribution p X = (As. prob p (PREIMAGE X s N p-space p))

For a random variable that maps the probability space into another space (s), the push
forward measure is a measure that uses the space and subsets of s as its space and measurable
sets and uses the distribution of the random variable as its measure part [17]. In general, the
push forward measure for any measurable function X from measure M to measure N can be
expressed as :

Definition 2.3.
FVYMNSIf. distr MN f =
(m_space N, measurable_sets N,
AA. measure M (PREIMAGE f A N m_space M))

The cumulative distribution function (CDF) of a random variable X is usually used when
we are interested in finding the probability that the random variable is less than or equal to
a certain value. It is formally defined as [9:



Definition 2.4.
FH Vp Xt. CDF p X t = distribution p X {y | y < (t:real)}

When dealing with multiple random variables, the probabilistic Principle of Inclusion
and FEzclusion (PIE) provides a very interesting relationship between the probability of the
union of different events. It can be expressed as:

n

Pr(lJA) = > (DR 4y) (1)

i=1 t£{},tC{1,2,...,m} jet

It has been formally verified in HOL4 as follows [9]:

Theorem 2.1.

- Vp L1 L2.
prob_space p A (V x. MEM x L = x € events p) =
(prob p (union list L = sumset {t | t C set L A t # {}}
(At. -1 pow (CARD t+1) * prob p (BIGINTER t))

where L is the list of events that we are interested in expressing the probability of their union.

In order to be able to handle multiple random variables, a pair measure (often called
binary prodcut measure) is required to be able to model joint distribution measures. This
pair measure can be used also in a nested way to model the joint distribution measure of
multiple random variables. The pair measure is defined as the product of two measures. It
was initially formalized in Isabelle/HOL [17] and was then ported to HOL4 [18]. The space
and the measurable sets of this pair measure are generated using the Cartesian product of
the spaces and the measurable sets of the participating measures, while the measure part is
defined using the Lebesgue integral.

The Lebesgue-Borel measure is required to integrate over the real line. In particular,
we need the Lebesgue-Borel measure in this work to integrate the density functions of the
random variables over the real line. The Lebesgue-Borel measure is a measure defined over
the real line, which uses the real line as its space and the borel sets as its measurable sets.
The Lebesgue-Borel measure is defined in HOL4 as 1borel, which uses the real borel sigma
algebra generated by the open sets of the real line as well as the Lebesgue measure [14].

2.2 Lebesgue Integral

The Lebesgue integral is defined in HOL4 using positive simple functions, which are mea-
surable functions defined as a linear combinations of indicator functions of measurable sets
representing a partition of the space X [13]|. A positive simple function, g, can be represented
using the triplet (s, a, z) as [13]:

Vte X, g(t) =) wila,(t), >0 (2)
1€ES

where 1,, is the indicator function of measurable set a; and is defined as |13]:



Definition 2.5.
F VA. indicator_fn A = (A x. if x € A then 1 else 0)

The Lebesgue integral is first defined for positive simple functions and then extended for
positive functions for measure p as [19):

/ fdu = sup{/ gdu|g < fand g positive simple function} (3)
X X

It is usually required that the probability of an event for a continuous random variable
to be expressed using the integration of the random variable’s distribution. This is verified
in HOL4 as [12]:

Theorem 2.2.
F VX ps A.
random_variable X p s A A € subsets s =
(distribution p X A =
integral (space s, subsets s, distribution p X) (indicator_fn A))

3 Formalization of Dynamic Fault Trees in HOL

Our previous formalization of DFT gates and operators was based on the algebraic ap-
proach [5], where the DFT events are treated based on their time of occurrence (failure
of corresponding components) [11]. However, these definitions cannot cater for the proba-
bilistic analysis of system failures, which is the scope of the current work. Therefore, we
provide an improved formalization of DFT gates and operators using functions of time that
can be represented as random variables when carrying out the formal probabilistic analysis
of the given DFT.

3.1 Identity Elements and Temporal Operators

Similar to ordinary Boolean algebra, the DFT algebraic approach defines identity elements
that are important in the simplification process of the DFT [5]. The DFT identity elements
are: the ALWAYS event representing an event that always occurs (fails) from time 0 and the
NEVER event, which describes an event that never occurs (fails). The formal definitions of
these elements are shown in Table |1, where extreal is the extended real numbers datatype
in HOL4 and PosInf represents +oco in HOL4. We define the events as lambda abstracted
functions so that they can be later treated as random variables.

Temporal operators are also required to model the DFT gates in the algebraic approach
[5]. These operators: are Before (<), Simultaneous (A) and Inclusive Before (). Each one
of these operators accepts two inputs, which can be subtrees or basic events. The output
event of the operator occurs according to a certain sequence of occurrence for the input
events, i.e., the time of occurrence of the first (left) input is less than, equal to or less than or
equal to the occurrence time of the second input (right) for the Before, the Simultaneous and
the Inclusive Before operators, respectively. The time of occurrence of the output event of all



operators is equal to the time of occurrence of the first input event (left). The mathematical
expressions of these operators as well as their corresponding HOL formalizations are shown
in Table [I) where X and Y represent the time of occurrence of events X and Y, respectively.

It is worth mentioning that if the inputs of the Simultaneous operator are basic events
with continuous failure distributions, then the output of this operator can never fail [5]. This
can be expressed for basic events X and Y as:

d(XAY)=NEVER (4)

3.2 Formalization of FT Gates and Simplification Theorems

Our formalization of all FT gates; static and dynamic, and their mathematical expressions
are presented in Table

3.2.1 AND and OR Gates

The AND (-) and OR (+) gates can be modeled based on the time of occurrence of their
output events. For the AND gate, the output occurs when both of its input events occur
and the time of occurrence of the output is modeled as the maximum time of occurrence of
both input events. For the OR gate, the output occurs once one of its input events occurs.
Therefore, we formalize it as the minimum time of occurrence of the inputs. In Table 2| max
and min are the HOL4 functions that represent the maximum and the minimum functions,
respectively.

3.2.2 Priority AND Gate (PAND)

The PAND gate, shown in Table [2| captures the sequence of occurrence (failure) of its in-
puts. The output event of this gate occurs if all input events occur in a certain sequence
(conventionally from left to right). The behavior of the PAND can also be represented using
the temporal operators as:

Q=Y -(XJY) (5)
We verify the above relationship in HOL4 as follows:

Theorem 3.1. - VX Y. PAND X Y = D_AND Y (D_INCLUSIVE BEFORE X Y)

This result ascertains that the behavior of PAND gate is correctly captured in our formal
definition.

Table 1: Definitions of Identity Elements and Temporal Operators

[ Element/Operator [ Mathematical Expression [ Formalization
Alwvays element d(ALWAY S) = 0 F ALWAYS = (As. (O:extreal))
Never element d(NEVER) = +co F NEVER = (As. PosInf)
_Jd(X), d(X) <d(Y) F VX Y. DBEFORE X Y =
Before ’“qu)*{mc d(X)>d(Y) | (As. if X s <Y s then X s else PosInf)
) “fd(x), d(x)=d(v) | F VX Y. DSIMULT X Y =
Simultaneous d(XAY)_{+oo, d(X) # d(Y) (As. if X s = Y s then X s else PosInf)
F V X Y. D_.INCLUSIVE BEFORE X Y =
Inclusive Before d(XAY)= d(X),  d(X) < d(¥)
d(X) > d(Y) (As. if X s < Y s then X s else PosInf)




3.2.3 Functional DEPdency Gate (FDEP)

The FDEP is used to model the dependencies in the failure behavior between the system
components. In other words, it is used when the failure of one component triggers the failure
of another. For the FDEP gate, shown in Table [2| event X can occur if it is triggered by
the failure of T or if it occurs by itself. As a result, the occurrence time of X (triggered
X) equals the minimum time of occurrence of T and X. From the FDEP definition, we can
notice that its behavior is equivalent to the behavior of the OR gate. We verify this in HOL4
as follows:

Theorem 3.2. - VX T. FDEP X T =DOR X T

3.2.4 Spare Gates

Modeling spare parts in real systems is necessary when analyzing the probability of failure
of the overall system, as these spares are used to replace the main parts after their failure.
The main part Y of the spare gate, shown in Table [2], is replaced by the spare part X after

Table 2: DFT Gates

] Gate ‘ Mathematical Expression ‘ Formalization
X Q
\ d(X -Y)=maz(d(X),d(Y)) |+ VXY.DAND X Y = (As. max (X s)(Y s))
AND
X Q
¢ dAX+Y)=min(d(X),d(Y)) | FVEY.DORXY = (As. min (X s)(Y s))
OR
X Q
Y@ d(Q ) = d(Y), d(X)<d(Y)| - VX Y. PAND X Y =
PAND +oo, d(X)>d(Y)| (As. if X s < Y s then Y s else PosInf)
PAND
T X d(Xr) =min(d(X),d(T)) b VX T. FDEP X T = (As. min (X s)(T s))
FDEP
_JdX), d(Y)<d(X) |+ vXKY.CSPYX-=
Q d(QCSP) T Hoo,  d(Y) >d(X) (As. if Y s < X s then X s else PosInf)
d(Qusp) =max(d(Y),d(X)) | - VX Y. HSP Y X = (As. max (Y s)(X s))
Y X dQwsp) =d(Y - (Xg<<Y)+ | - VY Xa Xd. WSPY XaXd =
D_OR(D_OR(D_-OR (D_AND Y (D_BEFORE X.d Y))
S .
pare KXo (Y < Xa)+ (D-AND X_a (D_BEFORE Y X_a)))
YAX,+YAX, | (DSIMULT Y X_a)) (D-SIMULT Y X_d)
a  a [d@Q)=dX -(Zg<X)+ F VXY Za Zd.
shared_spare X Y Z.a Zd =
Za- (X < Za)+ D_OR (D_OR (D_AND X (D_BEFORE Z.d X))
X oz X (Y <X)) (D-AND Z.a (D_BEFORE X Z.a)))
(D_AND X (D_BEFORE Y X)))
Shared
Spare




a failure occurs. The spare gate has three variants depending on the type of the spare:

e Cold SPare Gate (CSP): The spare part can only fail while it is active.

e Hot SPare Gate (HSP): The spare part can fail in both the active and the dormant
states with the same probability.

e Warm SPare Gate (WSP): The spare part can fail in both the dormant and active
states with different probabilities.

While manipulating the structure function of the DFT, it is required to distinguish between
the two states of the spare part, i.e., the active state and the dormant state, therefore a
different variable is assigned to each state. For example, for the spare gate in Table
variable X is assigned X, and X, for the dormant and active states, respectively.

It can be noticed from the definition of the W S P gate that the output of the spare occurs
in two cases; if the spare fails in its dormant state, then the main part fails or the main part
fails then the spare is activated and then it fails in its active state. The last two terms in
the WSP definition cover the possibility that the spare and the main part fail at the same
time. This can happen if the main part and the spare are functionally dependent on the
same trigger. For the C'SP gate, the output occurs if the main part fails then the spare is
activated and then the spare fails while it is active. Since the spare part of the HSP has
the same failure distribution in both of its states, the output of the HSP occurs when both
inputs (main and spare) fail. We formally verify in HOL4 that the HSP is equivalent to an
AND gate as:

Theorem 3.3. - VX Y. HSP Y X = DAND Y X

In some real-world applications, a spare part can replace one of two main parts. This
case is represented using shared spare gates as shown in Table [2| [L1]. The expression of the
output 1 of the first gate is listed in Table 2l This expression implies that the output Q1 of
this gate occurs in three different situations: (i) if the main part X fails, then the spare fails
while it is active (Z,), (i) if the spare part fails in its dormant state Z;, then the main part
fails, or (ui) if the second main part (of the other gate) Y fails before X, and thus the spare
is not available to replace X when it fails. We use the DFT operators to model the behavior
of this gate, as shown in Table

In the DFT algebraic approach, many simplification theorems exist and are used to reduce
the structure function of the top event. In [11], we verified over 80 simplification theorems.
However, these theorems were based on our old definitions of the DFT gates and operators
that cannot cater for probabilistic analysis. We verify all these theorems for the new defini-
tions, presented in this work, and the details can be accessed from [20]. These simplification
theorems range from simple ones, such as commutativity of the AND, OR and Simultane-
ous operator, to more complex ones that include combinations of all the operators. Table
includes some of these verified properties.

4 Formal Verification of DFT Probabilistic Behav-
ior

In order to formally verify the probability of failure of the top event of a DFT, it is required to
formally model and verify the probability of failure expression for each DFT gate. We assume
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Table 3: Examples of Formally Verified Simplification Theorems

DFT Algebra Theorems | HOL Theorems
X+Y=Y+X FVXY. DORX Y =DOR Y X
X.NEVER=NEVER F VX. D_AND X NEVER = NEVER

FV XY Z. DBEFORE X (DOR Y Z) =
D_AND (D_BEFORE X Y) (D_BEFORE X Z)

-V X Y Z. D_INCLUSIVE BEFORE X (D_OR Y Z) =
XY +2)=(X<Y).(X<Z) D_AND (D_INCLUSIVE_BEFORE X Y)

XAY+2)=(X<Y).(X<Z)

(D_INCLUSIVE BEFORE X Z)

F VX Y. D_OR (D_INCLUSIVE BEFORE X Y)
(D_SIMULT X Y) = D_INCLUSIVE_BEFORE X Y

(XY)+(XAY)=XY

that the basic events of the DFT are independent. However, in some cases these events can
be dependent; in particular in the case of CSP and WSP, where the failure of the main part
affects the operation and failure of the spare part. We handle this by first introducing the
probabilistic behavior of the gates for independent events, then we present the probabilistic
behavior of the W SP and the C'SP gates, which deal with dependent events.

4.1 Probabilistic Behavior of Gates with Independent Events

Assuming that we are interested in finding the probability of failure until time t, the following
four expressions can be used to express the probability of any DFT gate with independent
basic events [5]:

Pr{X - Y}(t) = Fx(t) x Fy(t) (6a)
Pr{X +Y}(t) = Fx(t) + Fy (t) — Fx(t) x Fy(t) (6b)
PriY - (X <Y)}t) = ; fr(y) Fx(y) dy (6¢)
Pr{X <Y )}(t) = Ot fx(@)(1 = Fy(z)) da (6d)

where Fx and Fy represent the CDFs of the random variables X and Y, respectively, and
fx and fy represent their corresponding PDFs.

Equation represents the probability of the AND and HSP gates, which results from
the probability of intersection of two independent events. Equation describes the prob-
ability of the OR and FDEP gates, which corresponds to the probability of union of two
independent events. Equation represents the probability of having two basic events
occurring in sequence one after the other until time ¢, i.e., Pr(X < Y) until time ¢ or
Pr(X <Y AY <1t), which is the failure probability of the PAND for basic events. Finally,
the probability of the Before operator is represented by Equation , which is the prob-
ability of having event X occurring before event Y until time ¢, i.e., Pr(X <Y A X < ).
The difference between the last two events (before and after) is that in the before event, we
are just interested in finding the probability of failure of X until time ¢ with the condition

11



that X fails before Y. So, it is not necessary that Y fails. While in the after event, we find
the probability of failure of Y until time ¢ with the condition that Y fails after X. So, it is
required that both X and Y fail in sequence.

Since the probability is defined for sets, we define a DFT_event that satisfies the condition
that the input function is less than or equal to time ¢, which represents the moment of time
until which we are interested in finding the probability of failure.

Definition 4.1.
- Vp X t. DFTevent p Xt = {s | X s < Normal t} N p_space p

where Normal typecasts the type of ¢ from real to extreal, p represents the probability
space and X represents the time-to-failure function.

We formally verify the equivalence between the probability of the DFT_event of an ex-
tended real function and its equivalent CDF of the real version of the function as:

Theorem 4.1.
FVEpt. (Vs. X s # PosInf AN 0 < X s8) =
(CDF p (As. real (X s)) t = prob p (DFT_event p X t))

where real is mirror opposite to the typecasting Normal operator. This typecasting is re-
quired as the DFT_event is defined for extreal data-type, and the CDF is defined for real
random variables only. Therefore, it is required to ensure that the input function does not
equal +o00 and is greater than or equal to 0 since it represents the time of failure of a system
component.

4.1.1 Probabilistic Behavior of AND, HSP, OR and FDEP Gates

To formally verify Equations and , we verify the equivalence of the DFT event of
the AND gate to the intersection of two events and the OR as the union:

Lemma 4.1.
FVptXY.
DFT event p (D_AND X Y) t = DFT_event p X t N DFT_event p Y t

Lemma 4.2.
FVptXY.
DFT event p (DOR X Y) t = DFT_event p X t U DFT_event p Y t

12



Based on the independence of random variables and using Theorem [4.1] we formally verify
Equation in HOL4 as:

Theorem 4.2.

FVp t X Y. rv_gtOninfty [X; Y] A
indep_var p lborel (As. real (X s)) lborel (As. real (Y s)) =
(prob p (DFT_event p (D_AND X Y) t) =
CDF p (As. real (X s)) t * CDF p (As. real (Y s)) t

where indep_var ensures the independence of the random variables, X and Y, over the
Lebesgue-Borel (1borel) measure [1§]. In general, for any two random variables X and Y,
indep_var ensures that the probability of the intersection of their events is equal to the
multiplication of the probability of the individual events. Independence of random variables
is defined as [18]:

Definition 4.2.
F indep vars p M X ii =
(Vi. i € ii =
random variable (X i) p
(m_space (M i), measurable sets (M i))) A
indep_sets p
(Ai. {PREIMAGE f A N p_space p |
(f = X i) A A € measurable_sets (M i)}) ii

where p is the probability space, M is the measure space that the random variable X maps
to. In this case, M and X are indexed by a number from the set of numbers ii, which
gives the possibility of defining the independence for multiple random variables that map
from the probability space to different spaces. indep_vars defines the independence by first
ensuring that the group of input functions X are random variables and that their event sets are
independent using indep_sets. Using indep_sets, the probability of the intersection of any
sub-group of events of the random variables is equal to the multiplication of the probability
of the individual events.
Using indep_vars, the independence of two random variables is defined as [18]:

Definition 4.3.
F indepvar p Mx X My Y =
indep_vars p (Ai. if i = O then M x else M.y)
(Mi. if i =0 then XelseY) {x | (x=0)V (x=1}

In Theorem rv_gtOninfty adds the condition that the inputs are greater than or
equal to 0 but not equal to +00. We define this generally for the elements of any list as:

13



Definition 4.4.
F (rv_gtOninfty [1 = T) A
(rv_gtOminfty (h::t) = (Vs. 0 < h s A hs # PosInf) A
(rv_gtO_ninfty t))

This condition is required since we are dealing with the real versions of the random
variables. It is a logical condition, since any real-world component will eventually fail, so we
are interested only in dealing with the time of failure that is not co.

In Theorem the random variables are type-casted as real-valued, using the operator
real, to function over the Lebesgue-Borel (1borel) measure. 1borel is purposely used here
to facilitate the Lebesgue integration over the real line when expressing the probabilities of
the before and after events.

Theorem represents the probability of the AND gate and the HSP gate, since based
on Theorem the behavior of the HSP is equivalent to the behavior of the AND gate.

We formally verify Equation based on the probabilistic PIE and the independence
of random variables and using Theorem [4.1] as:

Theorem 4.3.

FVpt XY. rvgtOninfty [X; Y] A All distinct events p [X;Y] t A
indep_var p lborel (As. real (X s)) lborel (As. real (Y s)) =
(prob p (DFT_event p (DOR X Y) t) =
CDF p (As. real (X s)) t + CDF p (As. real (X s)) t -

CDF p (As. real (X s)) t x CDF p (As. real (Y s)) t)

where A1l _distinct_events ascertains that the event sets are not equal. We formally define
it as:

Definition 4.5.
F All distinct events p L t =
ALL_DISTINCT (MAP (Ax. DFT.event p x t) L

where ALL_DISTINCT is a HOL4 predicate, which ensures that the elements of its input list
are not equal, MAP is a function that applies the input function (Ax. DFT_event p x t) to
all the elements in the list L and returns a list. This condition is required for the probabilistic
PIE.

Theorem provides the probability of the OR gate as well as the FDEP gate, since the
behavior of the FDEP is equivalent to the OR gate according to Theorem

4.1.2 Probabilistic Behavior of PAND Gate and Before Operator
We verify Equations and as Theorems and respectively.
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Theorem 4.4.
VXY p fy t.
rv_gtOninfty [X; Y] A 0 < t A prob_space p A
indep_var p lborel (As. real (X s)) lborel (As. real (Y s)) A
distributed p lborel (As. real (Y s)) fy A (Vy. 0 < fy y) A
cont CDF p (As. real (X s)) A
measurable CDF p (As. real (X s)) =
(prob p (DFT_event p (Y-(X<Y)) t) =
pos_fn_integral lborel
Ay. fy y *
(indicatorfn {w | 0 < w A w < t} y *
CDF p (As. real (X 8)) y)))

Theorem 4.5.
FVXYpfyt.
rv_gtOninfty [X; Y] A 0 < t A prob_space p A
indep_var p lborel (As. real (X s)) lborel (As. real (Y s)) A
distributed p lborel (As. real (X s)) fx A (Vx. 0 < fx x) A
measurable CDF p (A s. real (Y s)) =
(prob p (DFT_event p (X < Y) t) =
pos_fn_integral lborel
(Ax. fx x *
(indicatorfn {u | 0 < u A u < t} x *
(1- CDF p (As real (Y s)) x)))

where pos_fn_ integral is the Lebesgue integral for positive functions [13|, fy and fx
are the PDF of random variables of the real version of functions Y and X, respectively.
measurable CDF is a predicate which ensures that the CDF function is a measurable func-
tion from the real-borel space (borel) of the real line to the extreal-borel space (Borel) of
the extreal line (measurable CDF p X = (Ax. CDF X x) € measurable borel Borel).
cont_CDF is another predicate, which adds the condition that the CDF is continuous
(cont CDF p X = Vz. (Ax. real (CDF X x)) contl z). This condition is required in
Theorem as we need to prove that Pr(X < t) and Pr(X < t) are equal, and this is not
valid unless the CDF function is continuous (cont).

Verifying Theorems and is not a straightforward task due to the involvement of
Lebesgue integration. We first prove the probability of sets of real random variables in the
form of integration before extending the proofs to extended real functions.

Proof Strategy for Theorem

To verify Theorem we first express the event set that corresponds to the integration in
Equation as:

(X, V) H(w,w) |u < w A O0< wA w < t} (7)
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Then we verify that the probability of this set can be written using the integration as
in Equation (6d). Therefore, we verify the relationship between the distribution and the
integration of positive functions using the push forward measure (distr):

Theorem 4.6.
F VX pMA.
measure_space M A
random_variable X p (m_space M, measurable_sets M) A
A € measurable sets M =
(distribution p X A =
pos_fn_integral (distr p M X) (indicator_fn A))

We use Theorem [4.6] to verify the relationship between the probability and the integration
of the joint distribution F'xy of two independent random variables as:

Pr(X,Y) }A) = / 14 dFxy (8)

We formalize this relationship in HOL4 and use a property, which converts the distribution
of a pair measure of independent measures into the pair measure of the individual distributions
[18], to split the integral of joint distributions into two integrals of the individual distributions
(| [14dFxdFy). In order to reach the final form of Equation , we express it in the form
of two integrals:

/0 Jr () % Fx(y) dy = /0 / OO fr(y) x fx(z) do dy (9a)

= [ ([ setw an Yay (90)

The problem in Equations and lies in the fact that the outer integral is a function
of the inner integral, i.e., for the inner integral we are integrating until y which is the variable
of the outer integral. To be able to handle this formally, we verify that the indicator function
of the set in Equation ([7]) can be written in the form of the multiplication of two indicator
functions, where one is a function of the other.

Lemma 4.3.

FVxyt.
indicator fn {(u,w) | u<w A0 < w A w < t}(x,y) =
indicator_fn {w| 0 < w A w < t} y * indicator_fn {ulu < y} x

In order to use the above-mentioned lemma and the set on the left hand side, we need to
verify that this set is measurable in the two dimensional borel space, i.e., the set belongs to
the measurable sets of pair measure lborel lborel. This property can be verified based
on the fact that the countable union of measurable sets is also measurable. We verify this
fact on the rational numbers Q as follows:
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Theorem 4.7.

F Vm s.
measure_space m A (Vn. n € Q.set = s n € measurable_sets m) =
BIGUNION (IMAGE s Q_set) € measurable_sets m

where m in our case is pair measure lborel lborel. The purpose of using the set of
rational numbers is that we need a countable set that can be used to express the set in
Lemma [4.3] as the union of borel rectangles. We verify this in HOL4 as:

Lemma 4.4.

F Vt.
BIGUNION
{{u lu<real q} x {w |l real g<w A O <wAw<t}|
q € Qset} =

{u,w) lu<wAO<wAwWw<t}

Besides this, we also verify a lemma that the sets in the union of Lemmal|4.4]are measurable
sets in the pair measure lborel lborel as:

Lemma 4.5.

F VvVt q.
{ulu<real q} x {w |l realgq<w A0 <wAw<t}e
measurable _sets (pair_measure lborel lborel

We can use the proof steps of the previous lemmas to verify the same properties for similar
sets, which is essential for other gates expressions. This facilitates dealing with other events
in the future, by following the steps in our proof.

By using the above lemmas, we can reason that the original set is measurable set in the
pair_measure lborel lborel as:

Lemma 4.6.

F V.
{u,w) lu<wAO<wAw<t}E
measurable sets (pair_measure lborel lborel)

We use Lemmas and to verify that the expression given in Equation is equal
to [ 4 dFxdFy, where A is the set that specifies the boundaries of the integral. We verify this
in HOL4 using the push forward measure as:
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Lemma 4.7.
FVXYpt.
prob_space p A indep_var p lborel X lborel Y =
(pos_fn_integral (pair measure (distr p lborel X)
(distr p lborel Y))
(A(x,y). indicator fn{(u,w) lu<w A O <wAw<t }(x,y) =
pos_fn_integral (distr p lborel Y)
(A\y. indicator_fn {wl0 < w A w < t} y *
pos_fn_integral(distr p lborel X)
(Ax. indicator_fn {u | u < y} x)))

where indep_var ensures that the random variables defined from the probability space p to the
borel space are independent, and pair_measure (distr p lborel X) (distr p lborel
Y), represents the joint distribution of the push forward measures of random variables X
and Y over the borel space.

We verify several essential properties for CDF in order to prove that the inner integral
of Lemma is equal to Fx(y) or formally to (CDF p X y). In order to have the PDF
of random variable Y in the integral, we assume that the random variable Y has a PDF
by definig a density measure for Y. We ported the following definition, distributed, from
Isabelle/HOL [17], where f in this definition is the PDF of random variable X, and the
measure part of the density measure is the integral of this PDF. Using this definition, the
integral of f is equal to the distribution of the random variable X.

Definition 4.6.
FVp MXTE.
distributed p M X f &
X e
measurable(m_space p,measurable_sets p)
(m_space M,measurable_sets M) A
f € measurable(m_space M,measurable_sets M) Borel A
AEM {x | 0 < f x} A (distr p M X = density M f)

We also use a theorem that replaces the integration with respect to the density measure
by the PDF with respect to the original measure (1borel in our case) [17]. In addition to the
previously verified theorems, we also prove some additional properties, such as sigma finite
measure for the push forward measure over the borel space (sigma_finite measure (distr
p lborel X)). We also verify that the space generated by the pair measure of two distri-
butions over the borel space is sigma algebra (sigma algebra (m_space (pair_measure
(distr p lborel X) (distr p lborel Y)), measurable sets (pair measure (distr
p lborel X) (distr p lborel Y)))). Moreover, we verify that the space generated
by the space and the measurable sets of the pair measure of lborel is also a sigma
algebra  (sigma_algebra (m_space (pair measure lborel lborel), measurable_sets
(pair measure lborel 1lborel))). Finally, we prove that the set of the left-hand side of
Equation is equal to the set that corresponds to the integration of the right-hand side
of the same equation as:
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Lemma 4.8.
FVptXY.
rv_gtOmninfty [X; Y] A0 < t =
(DFT_event p (Y- (X<Y)) t =
PREIMAGE (Ax. (real (X x), real (Y x)))
{(u,w) u<wAO<wAwW<t} N pspace p

where rv_gtO_ninfty ensures that the input functions are greater than or equal to 0 but not
equal to +oco. Based on all the above mentioned lemmas, we are able to verify the original

goal for Equation as in Theorem

Proof Strategy for Theorem

For the verification of Theorem [4.5] we follow almost the same steps for the previous proof.
We start by first writing the event set for the integration as:

XY) Hu,w) |0 < uAultAu < w} (10)

Then, we describe the indicator function of this set as the multiplication of two indicator
functions as:

Lemma 4.9.
FVxyt.
indicator_fn {(u,w)

| uAu<tAuc<uux,y =
indicator fn {u | 0 <

u < t} x * indicator_fn {w | x < w} y

0 <
u A

Similar to the procedure, explained previously for the set of the after event in Lemmas (4.4
[4.5]and we verify that the set of the before event is a measurable set in the pair measure
lborel 1borel.

Finally, we rewrite Equation as:

PrX aY}(t) = /0 / " @) fr() dy de

=[x ([ vt dy Yo

We verify some additional properties for the CDF in order to complete the proof. For
example, we verify that fmoo fy(y) dy is equal to 1 — Fy (). Similarly, we also formally verify
that the event of the left-hand side of Equation is equal to the set that corresponds to
the integration of the right-hand side of the same equation. We use the set in Equation
to verify this as:

(11)

19



Lemma 4.10.
FVptXY.
rv_gtOmninfty [X; Y] A0 < t =
(DFT_event p (X«Y) t =
PREIMAGE (As. (real (X s),real (Y s)))
{(u,w) | 0 <uAu<wAuc<t} N pspace p

Based on all these verified theorems, we are able to formally verify Theorem

So far, we presented the formal verification of the probabilistic behavior of:
e The AND and HSP gates using Theorem (since they are equivalent).
e The OR and FDEP gates using Theorem (since they are equivalent).
e The PAND gate for basic events using Theorem

e The Before operator using Theorem

There is no probability of failure for the Simultaneous operator as it is eliminated for basic
events according to Equation . This implies that the probability of the Inclusive Before
operator is equal to the probability of the Before operator for basic events.

4.2 Probabilistic Behavior of Gates with Dependent Events

The probabilistic behavior of the CSP and WSP requires dealing with dependent events, as
the failure of the main part affects the behavior of the spare part. Therefore, it is required
to approach the proof in a different manner.

For the C'SP, the failure distribution of the spare part is affected by the failure time of
the main part, as the cold spare starts working after the failure of the main part. Hence,
the failure distribution of the spare part is dependent on the failure of the main part. The
probability of failure for the output event of a CSP with Y as the main part and X as the
spare part is given by [5]:

Pr(Qcsp)(t) = /Ot (/vt f(Xa‘y:v)(u)du) fy(v)dv (12)

where f(x,|y=v) is the conditional probability density function for the spare part in its active
state (X,) given that the main part(Y’) has failed at time v. It can be noticed from Equation
that the failure distribution of the spare part is affected by the failure of the main part.
Hence, these two input events are not independent, and we cannot utilize the previously
verified relationships in Section to verify the probabilistic behavior of the CSP gate.

For the WSP gate with two basic events, the output fails in two cases, Case 1: when the
main part fails, then the spare fails in its active state (this case is similar to the CSP case);
Case 2: when the spare part fails in its dormant state, then the main part fails with no spare
to replace it. In the latter case, the failure distribution of the spare part in its dormant state
is independent of the main part. Hence, we can use the previously verified expressions for
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this case. The probability expression for a WSP with X as the spare part (X, for the active
state and X for the dormant state) and Y as the main part is expressed as [5]:

PriQuse)®) = [ ([ oo @du)frdo+ [ b (9

where Fx, is the CDF of X in its dormant state. The first part of Equation represents
the probability of a CSP and the second part represents the probability when the spare fails
before the main part. For the second part, Y and X, are independent and hence we can use
Equation for this case.

We verify Equations and as Theorems and respectively.

Theorem 4.8.
FVp XY fxy fy fcond t.
rv_gtOninfty [X; Y] A O < t A
(Vy. cond_density lborel lborel p
(As. real (X 8)) (As. real (Y s)) y fxy f_y f_cond) A
prob_space p A den_gtOninfty f xy f.y f cond =
(prob p (DFT_event p (CSP Y X) t) =
pos_fn_integral lborel
(\y.
indicator fn {u | 0 < u Au <t} y* fyy*
pos_fn_integral lborel
(Ax. indicator fn {w | y<w A w <t} x * fcondyx)))

Theorem 4.9.
FVp Y XaXdt fy fxy fcond.
prob_space p A (Vs. ALLDISTINCT [X.a s; Xd s; Y s]) A
(DLAND X_a X.d = NEVER) A rv_gtOninfty [Xa; Xd; Y] A0 <t A
(Vy. cond_density lborel lborel p
(As. real (X.a s))(As. real (Y s)) y fxy fy £ cond) A
den_gtO_infty f xy fy f_cond A
indep_var p lborel (As. real (X.d s)) lborel (As. real (Y s)) A
cont CDF p (As. real (Xd s)) A
measurable CDF p (As. real (X.d s)) =
(prob p (DFT_event p (WSP Y X_.a X.d) t) =
pos_fn_integral lborel
(\y.
indicator fn {u | 0 < u A u <t} yx* fyy*
pos_fn_integral lborel
(Ax. indicatorfn {w | y <w A w < t} x * fcond y x ))+
pos_fn_integral lborel
(Ay.
fyy*
(indicatorfn {u | 0 < u A u < t} y *
CDF p (As. real (Xd s)) y )))
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where p is the probability space, £f_xy is the joint density function for X and Y, f_y is
the marginal density function for Y, cond_density defines the conditional density function
(f_cond) for X given that (Y = y) and den_gtO_ninfty ensures the proper values for the
density functions and is defined as:

Definition 4.7.
F VEfxy f_y f_cond.
den_gtOninfty f xy f.y f cond <
Vx y.
0 < fxy (x,yJ N0O<fyyAfyy # PosInf A 0 < fcond y x

It is noticed that the spare part in the CSP is used without any subscript, i.e., it is used as
X, since the spare has only one state in the CSP, which is the active state. Therefore, there is
no need to use any subscript to distinguish between the dormant and the active states. While
in the WSP, we need to distinguish between the two states, i.e., active and dormant, hence
the usage of X, and Xy. For Theorem the condition D_AND X_a X_d = NEVER ensures
that the spare part can only fail in one of its states but not both. In addition, it is assumed
that the spare part in the dormant (Xy) state is independent of the main part Y since the
failure of the spare part in its dormant state is not affected by the failure of the main part.
As with the previous theorems in Section we need to use the typecast operator real with
the random variables, since the random variables are of type extreal and the integral over
the 1borel requires real random variables.

Proof Strategy for Theorem (CSP Gate)

In order to verify Theorem we formalize the conditional density function as [21]:

Definition 4.8.

VML M2 p XYy fxy fy f_cond.
cond density M1 M2 p X Y y fxy f.y f_cond &
random_variable X p (m_space M1, measurable sets M1) A
random_variable Y p (m_space M2, measurable_sets M2) A
distributed p (pair measure M1 M2) (Ax. X x, Y x)) fxy A
distributed p M2 Y f.y A (f_cond y = (Ax. £(x,y) / fy y))

where p is the probability space, M1 and M2 are the measure spaces that the random variables
X and Y map to, respectively (we will use lborel in our case), f_xy is the joint density
function for X and Y, f_y is the marginal density function of Y and finally, £_cond is the
conditional density function of X given (Y = y).

The conditional density function definition ensures that X and Y are random variables
with joint density function f_xy and a marginal density function f_y. It is noticed from the
definition of the conditional density function f_cond that it is a function of x only, and it can
have different variants depending on the value of Y that we are conditioning at, i.e., y. This
is why f_cond takes y as a parameter.

From Definition we formally verify the following relationship between the conditional
density, the joint density and the marginal density functions, given that fy (y) # 0:
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Ixy(w,y) = fxpy=y(®) X fr(v) (14)

The above equation can be formalised in HOL4 as:

Theorem 4.10.

VML M2 p XY fcond x y £fxy f_y.
My. fiyy # 0 A f.y y # PosInf A f.y y # NegInf) A
cond density M1 M2 p X Y y fxy f.y f cond =
(fxy (x,y) = fcond y x *x f.y y)

The condition f_y y # 0 is required, as this function will be used in the denominator
of the conditional density and it cannot equal to 0. In addition, since we are dealing with
extended-real numbers, f_y y cannot equal infinity.

The second step in verifying the expression of the CSP is by verifying that the probability
of the joint random variables is equal to the iterated integrals of the joint density function.
This can be expressed as:

PrXY) ) = [ [ 1ax fev(ede dy (15)
We use Theorem [4.6] to verify this in HOL4 as:

Theorem 4.11.
FVp XY fxy A
distributed p (pair_measure lborel lborel) (Ax. (X x, Y x)) fxy A
prob_space p A (Vx. 0 < fxy x) A
A € measurable_sets (pair_measure lborel lborel)=
(prob p (PREIMAGE (Ax. (X x, Y x)) A N p_space p) =
pos_fn_integral lborel
(\y.
pos_fn_integral lborel
(Ax. indicator_fn A (x,y) * fxy (x,y))))

Then, we express the probability of the joint random variables using the conditional
density function as:

PrOCY) ) = [ [ 1ax Sy (@) Ay (o) do dy (16)
We verify this in HOL4, using Theorems and as:
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Theorem 4.12.
FVp XY fxy fy f cond A.
(Vy. cond density lborel lborel p X Y y fxy fy f_cond) A
prob_space p A (Vx. 0 < fxy x) A
My. 0<fyy A fy y # PosInf) A
A € measurable_sets (pair_measure lborel lborel)=
(prob p (PREIMAGE (Ax. (X x, Y x)) A N p_space p) =
pos_fn_integral lborel
(Ay.
pos_fn_integral lborel
(Ax. indicator_fn A (x,y) * fcond y x *x f_y y )))

In order to be able to reach the final form of Equation , we need first to express the
event set that corresponds to the integration in Equation as:

(X, ) M@y |y <zAhaz <tA0<yAy <t} (17)
We verify in HOL4 that this set corresponds to the DFT_event of the CSP gate as:

Lemma 4.11.
FVXYpt.
rv_gtOninfty [X; Y] A 0 < t =
(DFT_event p (CSP Y X) t =
PREIMAGE (As. (real (X s), real (Y s)))
{Gly<zxAx<tAO0O<yAy<t}N pspace p)

In addition, we verify that the event set in Lemma is measurable in pair_measure
lborel lborel. Finally, we verify that the indicator function of the set in Lemma |4.11]| can
be expressed as the multiplication of two indicator functions to determine the boundaries of

the iterated integrals in Equation as:

Lemma 4.12.

FVxyt.
indicator fn {(w,u) |u<w A w <t A0 <uAuc<t} x,y) =
indicator fn {w | y < w A w < t} x *
indicatorfn {u | 0 < u A u < t}y

Using all these verified theorems and lemmas, we formally verify Theorem

Proof Strategy for Theorem (WSP Gate)

For the verification of Theorem it is evident that the probability expression involves the
probability of the CSP gate in addition to the probability of the after expression of Theorem
Therefore, we choose to verify that the event of the WSP for basic events is equivalent
to the union of two sets as:
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Lemma 4.13.
FVpYXaxdt.
(Vs. 0 <Y s) A (Vs. ALLDISTINCT [X.a s; Xd s; Y s]) A
(D_AND X_a X.d = NEVER) =
(DFT_event p (WSP Y X.a Xd) t =
{s | Ys<Xas A Xas < Normal t A
0<YsAYs <t} N pspace pU
{s | Xds<Ys AYs < Normal t } N p_space p)

Then, we verify that the above two sets are disjoint. As these two sets are disjoints then
the probability of the original set is equivalent to the sum of the probabilities of the disjoint
sets. Based on this, we verify that the probability of the first set ({s | Y s < X.a s A X.a
s < Normal t A 0 <Y s AYs <t} N pspace p) is equal to the probability of the
CSP gate, which will result in the first term in the addition of the conclusion of Theorem
We also verify that the probability of the second set in Lemma {s | Xdas<Y
s A Y s < Normal t} N p_space p)) is expressed using Theorem 4.4 which will result in
the second term of the addition of the conclusion of Theorem As a result, we have the
probability of the WSP as in Theorem

In this section, we formally verified the probabilistic behavior of the DFT gates: AND,
OR, HSP, FDEP, PAND, CSP, WSP and the Before operator besides the formalization of
expressions for Pr(X <Y AY <t) and Pr(X <Y A X <t1).

These verified properties are generic, i.e., universally quantified for all distribution and
density functions, and can be used to formally verify the probability of failure expression
of any DFT. The HOL4 proof script for this verification as well as the gate definitions is
available at [20].

5 Formal Verification of the Cardiac Assist System

In order to illustrate the utilization of our formalized probabilistic behavior of the gates and
operators in the last section, we present a DFT-based formal failure analysis of the Cardiac
Assist System, shown in Figure (1] [16].

We first provide generic steps that can be followed in order to use our formalization of
the DFTs to conduct the formal analysis of DFTs in the form of generic expressions of failure
probabilities. These steps are:

1. Determine the structure function of the top event of the DFT.

2. Simplify the structure function and formally verify that the simplified version is equal
to the original function obtained in step (1).

3. Create the DFT_event of the structure function.
4. Express the DFT_event of the top event as the union of multiple input events.

5. Apply the probabilistic PIE to the union of events generated in the previous step,
then simplify the result of the PIE. This will result in having the summation of the
probabilities of the intersection of the different events that contribute to the failure of
the top event of the DFT.
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6. Replace each term in the result of the PIE by its probabilistic expression based on the
verified expressions in Section [4] for each gate and operator.

Step requires proving many lemmas that are necessary for manipulating the result of
the PIE. For example, we need to verify the associativity property of addition for a large group
of numbers (in case of the Cardiac Assist system, we verified this property for 63 numbers).
Although this seems a trivial task, it requires dealing with extreal numbers, which includes
proving that for all combinations of the inputs, the result of the addition cannot equal to co.
Step also requires verifying the power set of events in a recursive way. Moreover, based
on the independence of the input random variables, we need to verify the independence of
several combinations of random variables (in the Cardiac Assist system, we verified that any
two random variables out of the ten are independent, then three out of ten,... etc).

In the rest of this section, we illustrate the utilization of the previous steps to perform
the formal DFT analysis of the Cardiac Assist System to provide a generic expression for
the probability of failure of the top event. The Cardiac Assist system consists of three main
subsystems: pumps, motors and CPUs. The system has two main pumps (PA and PB) with
a shared spare PS. It has three motors MS, M A, and M B, where M B replaces M A after
failure. Finally, the system has one main CPU (P) and a spare CPU (B). Both CPUs are
functionally dependent on a trigger, which is the union of the crossbar switch (C'S) and the
system supervisor (SS5). In this case study, we are assuming that the spare gates are HSPs.

Our goal is to verify the probability of of failure of the Cardiac Assist system by apply-
ing the probabilistic PIE considering that the input events are independent. This can be
represented mathematically as:

Pr(Q) =Fcs(t) + Fss(t) + /Ot fva(y) x Fars(y) dy +
FMA(t) X FMB(t) + Fp(t) X FB(t) + FpA(t) X FPB(t) X Fps(t)
— b= Fos(t) x Fss(t) % ([ fuua(w) x Pusty) dy )
0

X FMA<t) X FMB(t) X Fp(t) X FB(t) X FPA(t) X FPB(t) X Fps(t)

(18)

Figure 1: Cardiac Assist System
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We verify Equation for generic probability CDF and PDF in HOL4 as:

Theorem 5.1.
 VCS SS MA MS MB P B PA PB PS p t £ MA.
0 < t A prob_space p A
ALL DISTINCT RV [CS;SS;MA;MS;MB;P;B;PA;PB;PS] pt A
indep_vars_sets [CS;SS;MA;MS;MB;P;B;PA;PB;PS] p t A
distributed p lborel (As. real (MA s)) fMA A (My. O < fMA y) A
cont CDF p (As. real (MS s)) A
measurable CDF p (As. real (MS s)) =
(prob p
(DFT_event p
((shared_spare PA PB PS PS):(shared_spare PB PA PS PS)+
(PAND MS MA)+(HSP MA MB)+
(HSP (FDEP(CS + SS) P)(FDEP(CS + SS) B))) t) =
CDF p (As. real (CS s)) t + CDF p (As. real (SS s)) t +
pos_fn_integral lborel
(Ay.
fMA y * (indicatorfn {u | 0 < u A u < t} y *
CDF p (As. real (MS s)) y)) +
CDF p (As. real (MA s)) t *x CDF p (As. real (MB s)) t +
CDF p (As. real (P s)) t x CDF p (As. real (B s)) t +
CDF p (As. real (PA s)) t * CDF p (As. real (PB s)) t *
CDF p (As. real (PS s)) t - ....+...-
CDF p (As. real (CS s)) t * CDF p (As. real (S8S s)) t *
pos_fn_integral lborel
(A\y.
fMA y * (indicatorfn {u | 0 < u A u < t} y *
CDF p (As. real (MS s)) y)) *
CDF p (As. real (MB s)) t * CDF p (As. real (P s)) t *
CDF p (As. real (B s)) t x CDF p (As. 1real (PA s)) t *
CDF p (As. real (PB s)) t * CDF p (As. real (PS s)) t)

where 0 < t ensures that the time ¢ is greater than or equal to 0, prob_space p indicates
that p is a probability space, ALL_DISTINCT RV is a predicate which ensures that all inputs
and their event sets are not equal and their values are greater than or equal to 0 but they
cannot equal +o0o. This assumption is a realistic one, since for any component in a system
the time of failure will always be greater than or equal to 0 and the component will eventually
fail. The predicate indep_vars_sets adds the condition that all random variables and their
event sets are independent. The predicate (distributed p lborel (As. real (MA s))
f MA) indicates that the real random variable of M A has the density function £ MA. The
last two predicates in the goal ensures that the CDF of the real random variable of M S is
continuous and measurable from the real line to the extreal one (real-borel to extreal-borel).

We verify several intermediate lemmas to prove Theorem We first verify a reduced
form of the given DFT and, then we verify the probability expression of the verified reduced
version.
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Lemma 5.1.

F VCS SS MA MS MB P B PA PB PS.
(Vs. ALL_DISTINCT [MA s; MS s; PA s; PB s; PS s]) =
((shared_spare PA PB PS PS)-(shared_spare PB PA PS PS) +
(PAND MS MA) +
(HSP MA MB)+(HSP (FDEP(CS + SS) P)(FDEP(CS + SS) B)) =
Cs + 8s + (MA-(MS < MA)) + MA-MB + P-B + PA-PB-PS)

In the above lemma, (shared spare PA PB PS PS)-(shared spare PB PA PS PS) rep-
resents the pumps part of the DFT, (PAND MS MA)+(HSP MA MB) represents the motors
parts and finally the CPUs part is represented by (HSP (FDEP(CS + SS) P) (FDEP(CS + SS)
B). The predicate ALL_DISTINCT ensures that all basic events cannot fail at the same time.
Since we assumed that all spare gates are HSPs, the spare input PS for the shared spare
gates is the same for both the active and dormant states. In order to find the probability of
the top event, we utilize the formally verified reduced version of the structure function and
encapsulate it into a DFT_event, as the probability can only be applied to sets. To utilize
the probabilistic PIE, we express the DFT_event of the Cardiac Assist system as the union of
events.

Lemma 5.2.
 VPA PB PS MS MA MB CS SSPBpt.
DFT_event p
(CS + 8S + (MA-(MS < MA)) + MA'MB + P-B + PA-PB-PS) t =
union_list
[DFT_event p CS t; DFT_event p SS t;
DFT_event p (MA-(MS < MA)) t;
DFT_event p (MA-MB) t;
DFT event p (P-B) t; DFT event p (PA-PB-PS) t]

From Lemma [5.2] we can notice that the top event is constructed from the union of six
different sets. Applying the probabilistic PIE on the union of these sets (6 sets) generates 63
different terms (combinations). We verify several lemmas to be able to use the theorem of
the probabilistic PIE [9] for the union list of these six sets. For example, we formally verify
that

Lemma 5.3.

VA BCDE K.
{t | t SUBSET {A; B; C; D; E; k} At # {}} =
{{a}; {B}; {c}; {D}; {E}; {k}; {A; B}; {A; C};...;

{A; B; C; D; E; k}}

The result of Lemma is a set of 63 different sets. We had to apply the SIGMA function
that results from the sum_set in the PIE theorem. Therefore we verify the following lemma
for 63 sets.
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Lemma 5.4.
FVYABCDEK.
ALL DISTINCT [A;B;C;D;E:;k] A
(Vx. x €{{A};{B};{C};{D};{E};{k};...;{A; B; C; D; E; k}} =
f x # PosInf) =
(SIGMA £ {{A};{B};...;{A; B; C; D; E; k}} =
f {A} + £ {B} +...+ £ {A; B; C; D; E; k}

After verifying all these lemmas and based on the reduced DFT expression we are able
to verify the probability of the Cardiac Assist system (Equation into Theorem

The first part of the conclusion of Theorem corresponds to the original DFT (without
reduction). In the verification of this theorem, we use Lemma to replace the original
DFT with the reduced one. Then, we use Lemma to represent the DFT_event as a union
list. After representing the left-hand side of the conclusion of Theorem as a union list,
we use Lemmas and the probabilistic PIE theorem [9] to prove this goal. The first 6
terms in the right-hand side of the conclusion of Theorem correspond to the probability
of the elements of the list in Lemma For example, CDF p (As. real (CS s)) t
represents the probability of DFT_event p CS t, which is Fog(t), according to Theorem (4.1
pos_fn_integral 1lborel(\y. f MA y *(indicator fn {u |0 < u A u < t} y * CDF
p (As. real (MS s)) y)) represents the probability of DFT_event p (MA-(MS <1 MA)) t,
which is fg fualy) x Fuys(y) dy, according to Theorem The following terms in the
conclusion of Theorem correspond to finding the probability of the intersection of each
pair in the list, then each 3 elements then 4 elements until we reach the last term in the
right-hand side of the goal, which corresponds to the probability of the intersection of all
elements in the list. Since all six elements in the union list are independent, the probability
of their intersection is equal to the multiplication of the individual probabilities.

It is important to note that we have been able to verify the probability of the Cardiac
Assist system for generic distributions and density functions, which can be instantiated later
with specific functions according to the required constraints, without any need to repeat
the whole process from the beginning. It is worth mentioning that such results cannot be
obtained using PMCs, as they can only generate the probability of failure after specifying
the failure rates of the components. In addition, PMCs are only limited to exponential
distribution which does not consider the aging factor in any system. However, using our
formalization for generic expression, it can be used with any probability distribution and
density function as long as they are integrable, which makes it a more general and accurate
alternative to the existing techniques.

6 Conclusions

In this work, we proposed to conduct the probabilistic analysis of DFTs within the HOL4
theorem prover and thus obtain formally verified probability of failure expressions for generic
probability distributions and density functions. We verified many simplification theorems for
DFT gates and operators that allow formal reasoning about the reduction of the structure
function of the DFT top event into a simpler form. In particular, we verified the probability
of the intersection and the union of independent events to provide the probability of the AND,
OR, FDEP and HSP gates. Moreover, we verified the probability of a sequence of two failing
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events (Pr(X <Y)) in two forms, i.e, Pr(X <Y AY <t) and Pr(X <Y A X <t), which,
to the best of our knowledge, is another novel contribution. These expressions are used
to formally express the probability of the PAND gate and the before operator. Similarly,
we also verified the probabilistic behavior of the spare gates, which required dealing with
dependent events and conditional density functions. To illustrate the effectiveness of our
formalization, we presented the formal analysis of the Cardiac Assist System, which is a
safety-critical system. Using our formalization, we were able to provide generic results for
the probability of failure of this system, i.e., for any distributions and density functions. It
is evident that such results cannot be obtained using simulation nor using model checking.
This highlights the importance of our proposed work, besides the fact that it inherits the
sound and expressive nature of HOL theorem proving.
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