
Machine Learning-Based Self-Compensating
Approximate Computing
Mahmoud Masadeh, Osman Hasan, and Sofiène Tahar

Department of Electrical and Computer Engineering, Concordia University, Montreal, Quebec, Canada
Email:{m masa, o hasan, tahar}@ece.concordia.ca

Abstract—Dedicated hardware accelerators are suitable for
parallel computational tasks. Moreover, they have the tendency
to accept inexact results. These hardware accelerators are exten-
sively used in image processing and computer vision applications,
e.g., to process the dense 3-D maps required for self-driving
cars. Such error-tolerant hardware accelerators can be designed
approximately for reduced power consumption and/or processing
time. However, since for some inputs the output errors may
reach unacceptable levels, the main challenge is to enhance the
accuracy of the results of approximate accelerators and keep
the error magnitude within an allowed range. Towards this
goal, in this paper, we propose a novel machine learning-based
self-compensating approximate accelerators for energy efficient
systems. The proposed error compensation module, which is
integrated within the architecture of approximate hardware ac-
celerators, efficiently reduces the accumulated error at its output.
It utilizes lightweight supervised machine learning techniques,
i.e., decision tree, to capture input dependency of the error.
We consider image blending application in multiplication mode
to demonstrate a practical application of self-compensating ap-
proximate computing. Simulation results show that the proposed
design of self-compensating approximate accelerator can achieve
about 9% accuracy enhancement, with negligible overhead in
other performance measures, i.e., power, area, delay and energy.

I. INTRODUCTION

Dedicated hardware accelerators are extensively being ad-
vocated to be used in complex heterogeneous system-on-
chip to process large data more efficiently than pure soft-
ware processing [1]. Moreover, hardware accelerates have a
reduced power consumption, reduced latency and increased
parallelism. These features make them quite suitable for image
and digital signal processing (DSP) applications. Approximate
computing (AC) or best-effort computing [2] is being adapted
as a new design paradigm, in both hardware and software [3],
for error-resilient applications, due to the increased benefits
of approximation, i.e., simplified circuit design with reduced
silicon area, delay and power consumption. Several designs
of approximate arithmetic components, i.e., adders [4], di-
viders [5] and multipliers [6], have been presented. Such
approximate components are integrated to form approximate
hardware accelerators (AxAcc), which are suitable for error-
tolerant computationally intensive applications, e.g., big-data
and image processing. These applications can tolerate error
due to the following factors [7]: 1) the lack of a unique, golden
result, where a range of results are equally acceptable, 2) no
guarantee or need to find the best solution where good-enough
result is sufficient, 3) the input data is noisy with iterative-

refinement nature, and 4) a reduced quality is tolerable by
perceptual, i.e., visual or hearing human limitations.

The approximation error persists permanently during the
entire lifetime of the approximate hardware accelerators (Ax-
Acc). Thus, it is necessary to develop techniques that can
alleviate approximation error and enhance the accuracy with
minimal overhead, when high error cannot be afforded. Thus,
it is crucial to tackle this issue at the early design stage and
change the architecture of approximate hardware accelerators
by building a lightweight internal error compensation/recovery
module with minimal overhead, i.e., area, power and delay.

Despite the unprecedented power saving and reduced exe-
cution time introduced by design approximation, it is still an
immature computing paradigm [8], where to the best of our
knowledge, a formal model of the impact of approximation
on accuracy metric is still missing [9]. However, accuracy
performance of approximate designs is highly input-dependent
[10], where we know relatively little about enhancing the
accuracy of approximation in a disciplined manner. In this
paper, we propose a novel machine learning (ML)-based
self-compensating approximate accelerator, aiming to improve
the accuracy of the approximated results. There is no clear
relationship between the inputs of approximate accelerators
and their errors. Therefore, such accelerators are designed by
employing ML-based compensation module, to capture input
dependency of error. This leads to a noteworthy reduction in
error magnitude, with negligible overhead.

As a proof of concept, we consider approximate hardware
accelerators with 8-bit approximate array multipliers [6]. Such
accelerators have 9 bits of the results being approximated.
Also, they utilize full adder (FA) cells, known as approximate
mirror adder 5 (AMA5) [11], which provides a simplified
design with reduced area, power and delay. The challenge is
to build an efficient compensation module, which considers
the value of the inputs. Thus, machine learning techniques
are used to capture such dependency. Finally, we consider an
image blending application, where two images are multiplied
pixel-by-pixel to demonstrate a practical application of self-
compensating approximate hardware accelerators.

The rest of the paper is structured as follows: Section II
introduces the related work. Section III explains our pro-
posed methodology to enhance the accuracy of approximate
hardware accelerators. The obtained results utilizing image
processing are described in Section IV. Section V concludes
the paper and highlights the future work.

ar
X

iv
:2

00
1.

03
78

3v
1

 [
ee

ss
.S

P]
 1

1
Ja

n
20

20

II. RELATED WORK

There has been significant work on designing approximate
components and accelerators. However, to the best of our
knowledge, there are very few works targeting the enhance-
ment of the accuracy of approximate accelerators. While most
prior works focus on error prediction, in this paper, we aim to
overcome the approximation error through an input-dependent
error compensation.

Authors of [12] approximated different designs given as
behavioral descriptions based on the expected coarse-grained
input data distributions. Then, they used these approximate
designs to build an adaptive hardware accelerator based on the
applied workload. However, the proposed approximate circuits
heavily depend on the training data used during the approxi-
mation process, where not all possible workload distributions
can be precharacterized. Thus the real workload may differ
completely from the training one. Authors of [13] performed
a design-space exploration of state-of-the-art approximate de-
signs, and proposed a flow for designing approximate coarse-
grained reconfigurable arrays (CGRAs). Green [14] and SAGE
[15] check the output quality of approximate programs through
sampling techniques, and use a more accurate configuration
if the approximation error is high. However, [13] – [15] are
inadequate for fine-grained input data.

A machine learning-based technique has been proposed in
[16], aiming to control the quality of approximate computing
through selecting the most suitable approximate design based
on the inputs. Nevertheless, this technique is efficient when
having a set of approximate designs to select the most suitable
among them, which is not always applicable. A fault recovery
method utilizing machine learning to ameliorate the effect
of permanent faults have been proposed in [17], assuming
that the number of unique values of error distance (ED)
is very low, i.e., less than 5. However, such assumption is
unrealistic, where the value of the ED may range from 1
to 2n, based on fault location, where n is the number of
circuit inputs. Recently, a self-compensating accelerator has
been proposed in [18] by integrating approximate components
with their complementary designs, i.e., having the same error
magnitude with opposite polarity. However, obtaining such
complementary components is not always guaranteed, e.g., the
approximate multiplier based on AMA5, which is utilized in
this work does not have a complementary design. Moreover,
the approximate design and its complementary design may
have different characteristics, i.e., area, power, delay and
energy.

Aiming to avoid the overhead of adapting the design and
improving its accuracy, in this paper, we investigate a novel
ML-based approach to build an input-dependent compensation
module for approximate accelerators. The proposed approach
relies on the high error rate (ER) of the approximate accelera-
tor aiming to lower the magnitude of the error distance (ED).
Our work is orthogonal to the previous related work, where
innovatively we utilize ML-based, i.e., decision tree, model to
capture input dependency of error. As a proof of concept, we

Figure 1: Simplified Architecture for Accelerator of Two Approx-
imate Multipliers, (a) Without Error Compensation, (b) With Error
Compensation Module per Approximate Component, (c) With Error
Compensation Module per Approximate Accelerator.

utilize an approximate hardware accelerator with approximate
multipliers based on AMA5 FAs.

III. METHODOLOGY

In self-compensating approximate accelerator, we propose to
integrate an input-dependent compensation module in such a
way that the accumulative error is reduced. The design of
a simplified accelerator with two approximate multipliers is
shown in Figure 1(a). The magnitude of error e1 depends on
inputs A and B, while the magnitude of error e2 depends on
inputs C and D. Whereas, e1 does not equal e2, i.e., e1 6=
e2, unless {A,B} = {C,D}. It is important to note that most
of the previous work did not consider the input dependency
of the approximation error. The final accelerator error is e,
where e = e1 + e2. The maximum error is |e1| + |e2|. In this
paper, without loss of generality, we consider accelerators con-
structed utilizing 8-bit approximate array multipliers based on
AMA5 FAs with 9-bits of the results being approximated [6].
However, the proposed methodology is applicable to any
approximate accelerator design, e.g., approximate multiply-
accumulate units [19].

The main challenge in the design of self-compensating
accelerators is the development of the input-dependent com-
pensation module that has minimal area, delay and power
overhead. An overview of the proposed design methodology
is given in Figure 2, where its steps are explained next. The
fundamental step in the proposed flow is designing an approx-
imate multiplier, which is the essential building component

Figure 2: Design Flow for Approximate Accelerator Compen-
sation Module -

Table I: Characteristics of Approximate Accelerator Compo-
nents, i.e., Approximate Multiplier and Compensation Module

Design Dynamic
Power (mW)

Slice
LUTs

Occupied
Slices

Period
(ns)

Frequency
(MHz)

Energy
(pj)

Exact
Multiplier 442 85 33 8.747 114.32 3866.2

Approximate
Multiplier 113 31 11 4.625 216.22 522.6

Compensation
Module 2.79 23 8 2.213 451.88 6.6

Figure 3: Histogram Distribution of the Error Distance (ED)
of the Approximate Multiplier

of the accelerator. Table I shows the design characteristics
of the 8-bit approximate multiplier including its area, delay,
power and energy consumption. Moreover, in order to show
the benefits of such approximation, the characteristics of the
exact multiplier are also shown in Table I. We evaluate the
power, area, delay and energy utilizing the XC6VLX75T
FPGA, which belongs to the Virtex-6 family, and the FF484
package. We use Mentor Graphics Modelsim [20], Xilinx
XPower Analyser and Xilinx Integrated Synthesis Environment
(ISE 14.7) tool suite.

Since the magnitude of approximation error is input depen-
dent, we apply an exhaustive simulation by having 28 = 256
different values for each input. Thus, we have 256 ∗ 256 =
65, 536 different input combinations with their associated error
distance (ED), which constitute our training data. Figure 3
shows the histogram distribution for the ED of the approximate
multiplier. Accordingly, we can make the following observa-
tions regarding the ED:

• Out of the 65536 possible input combinations, 62420
have inexact results, thus the error rate (ER) is 95.25%.

• Approximate computing relies on the principle of fail
small or fail rare. Therefore, high error rate (ER), i.e.,
95.25%, requires having a small value of ED to get an
acceptable final result.

• Small errors occur more frequently than large errors. For
example, we have only 1575 input combinations with
ED>500, which is about 2.48% of the erroneous inputs.
Considering such extreme values in ED may simplify
building the compensation module.

• Error distance has 176 distinctive values, where the
minimum ED is 4, the maximum ED is 756 and the
average is 185.

Generally, whenever the error occurs for a small fraction of
input combinations, i.e., error rate (ER) is low, approximate
design with simple error correction, such as adding a constant
corrective magnitude, exhibits better performance compared
with the exact design. However, our approximate accelerator
has an ER of 95.25%. Therefore, such high ER makes simple
error correction inapplicable.

In order to predict the ED based on the value of the inputs,
we use a lightweight machine learning-based algorithm, i.e.,
classification decision tree (DT) based on C5.0 algorithm [21],
given in R [22] which is a programming and statistical comput-
ing language. Decision trees which are fast, memory efficient
and have a simple structure, are quite well able to model the
non-linear relationship between the inputs and error distance.
We notice that the inputs of the approximate design with close
magnitudes are associated with a very close ED. Consequently,
we quantize the inputs based on their magnitudes into 16
different clusters. Thus, the model has 16∗16 = 256 different
input combinations rather than 256 ∗ 256 = 65, 536 which
simplifies its internal structure. Figure 4 shows the structure
of the decision tree that we obtained. The leaves of the tree
represent the expected values of the ED that should be added
to correct the final result, while the internal nodes represent the
conditional decision points which are the inputs of the model,
i.e., the first input (Input1) and the second input (Input2)
of the approximate design. The values associated with the
connections between the conditional decision points represent
the cluster of the inputs, i.e., from 1 to 16. For example, the
first branch in Figure 4 examines the class of Input1, then it
traces to the left-side if it is ≤9 or traces to the right side if
the class is >9.

To show the effectiveness of the proposed compensation
module, we perform accuracy evaluation utilizing its imple-
mentation in MATLAB. Moreover, we evaluate its power,
area, delay and energy. Table I shows the obtained results,
where the power consumption of the module is about 2.8mW,
which forms about 2.4% added power to the approximate
multiplier. Similarly, the introduced area, delay and energy
overhead of the module with respect to the approximate
multiplier is about 42.5%, 32.4% and 1.2%, respectively. Such
overhead is insignificant when compared to the approximate
multiplier where we integrate multiple instances of it within
the approximate accelerator.

Figure 5 shows a relative representation of the power, area,

Figure 4: The Structure of the Decision Tree-based Model

Figure 5: Power, Area, Delay and Energy of Approximate
Accelerator Components

delay and energy of the approximate multiplier, compensation
module as well as the exact multiplier. Despite of the module
added overhead, the approximate multiplier with the accom-
panying module (as shown in Figure 1(b)) has a reduction of
73.8%, 38.1%, 21.8% and 86.3% in the power, area, delay
and energy, respectively, compared to the exact multiplier.
The error of the approximate multiplier, i.e., e1, will be
reduced to e1C , which represents e1 after being alleviated
by the compensation module at the component level, where
e1C<<e1.

Moreover, in order to amortize the overhead of the proposed
module, we propose another architectural configuration with a
single compensation module for the approximate accelerator,
as shown in Figure 1.(c), rather than having a dedicated
module for each approximate component, as shown in Figure
1.(b). Such proposed design is applicable when different data
processed at different components have alike values, e.g.,
adjacent image pixels. Thus, the introduced error is roughly
similar.

In image processing applications, the accelerator processes
adjacent image pixels, which usually have close values. There-
fore, for image blending in multiplicative mode where the pix-
els of the two images are multiplied pixel-by-pixel, we propose

to divide the image into three segments (colored-components),
i.e., red, green and blue. Each colored component is processed
on a separate accelerator. For that, the compensation module
of the approximate accelerator evaluates the average value
of the pixels for each frame colored-component. Based on
that, a compensation value is calculated (predicted by decision
tree-based model) and then added to all the pixels of the
frame colored-component. Thus, the error of the approximate
accelerator, i.e., e1+ e2, will be reduced to e1A + e2A, based
on the error compensation module at the accelerator level.
The next section evaluates the accuracy of the implemented
compensating module that we developed.

IV. RESULTS AND DISCUSSION

This section presents the experimental results obtained by
introducing the compensation module both at the component
and the accelerator level. In order to evaluate the performance
of the compensation module, which is shown in Figure 1.(b),
we perform an exhaustive simulation of the approximate
multiplier. Figure 6 shows the histogram of the error distance
of the approximate multiplier without compensation as well as
and the compensated value by integrating the compensation
module into the approximate component. Such module will
enhance the accuracy of the result, by adding a compensation
value based on decision tree-model in order to reduce the final
error distance (ED). Clearly, there is a significant reduction in
error characteristics, i.e., in both error magnitude and error
frequency.

As summarized in the table shown in Figure 6, the pro-
posed compensation module, reduces the maximum ED of
the multiplier from 756 to 520, while the mean ED is de-
creased from 185 to 110. The number of input combinations
with erroneous result, where ED>500, is reduced from 1575
input combinations into 16, which is a significant quality
improvement. Similarly, the number of input combinations
with erroneous result that has an ED>400 and ED>300 is

Figure 6: Distribution of Error Distance (ED) of Approximate Multiplier with/without the Error Compensation Module

Figure 7: Output Quality (PSNR) of Image Blending, (a) Without Error Compensation, (b) With Error Compensation Module
per Approximate Component, (c) With Error Compensation Module per Approximate Accelerator

notably reduced from 5454 to 218, and from 12922 to 1458,
respectively. This noteworthy improvement in the quality of
results validates the importance of the added compensation
module. Moreover, the number of distinctive values of the
ED is lowered from 176 to 129. Without the proposed com-
pensation module, the approximate multiplier has 3116 error-
free input combinations, i.e., error rate is 95.25%. However,
adding a ML-based compensation module reduces the error-
free input combinations into 2177, i.e., error rate is 96.68%,
by erroneously adding a compensation value into error-free
result. This is due to model imperfection, even though the
final accuracy has significant improvement. Similarly, in some
cases, the compensation module increase the ED rather than
reduce it. Overall, there is a significant reduction in error
magnitude and error frequency, where this will enhance the
final accuracy of the utilized error-resilient application.

In order to evaluate the proposed self-compensating approx-
imate accelerators in practical applications, we deployed them
in the image blending, where two images are multiplied pixel-
by-pixel. The images used in blending and their corresponding

accurate results are shown in Figure 8, where the size of each
image is 250x400 pixels. Two configurations of compensation
modules are used: 1) a compensation module for each approx-
imate component; and 2) a single compensation module for
all approximate components. The Peak-Signal-to-Noise ration
(PSNR) of the obtained results are shown in Figure 7, which
show that the output quality is improved because of error
compensation.

As shown in Figure 7, all blending examples have an im-
proved quality, i.e., PSNR, whenever the compensation module
is used. Clearly, the improvement in the output quality when
the compensation module is incorporated at the component
level is higher than the case when the module is used at the
accelerator level. The shown results of image blending with er-
ror compensation have an enhanced quality, where the increase
in the PSNR ranges from 2.6dB to 4.7dB with an average
of 4.2bB for the considered examples. Thus, we are able to
obtain an average of 9% improvement in the final quality of
image blending application with negligible overhead. Using
the compensation module at the accelerator level achieved a

lower accuracy enhancement, where the compensation value
is evaluated for 100,000 components. Obviously, the accuracy
of approximate accelerators can be enhanced by integrating
the compensation module at finer granularity level.

V. CONCLUSION

In this paper, we proposed a novel machine learning-based
self-compensating approximate accelerators for enhancing the
efficiency of approximate computing applications. In con-
trast to the state-of-the-art error reduction methodologies, the
proposed generic self-compensating methodology has shown
an opportunity for error reduction without requiring similar
approximate computing elements. The proposed decision tree-
based compensation module, illustrated through approximate
accelerators, is found to achieve noteworthy enhancement
in accuracy performance without compromising the power
consumption and speed. This work yields significant new
insights into the potential of approximate computing in com-
plex hardware designs, that can lead the designers towards
exploiting the problematic error reduction. For future work,
we aim to investigate complex accelerators with heterogeneous
arithmetic components considering other error metrics rather
than ED, as well as other error-tolerant applications. Machine
learning based-models, other than decision trees, may be
investigated.

REFERENCES

[1] A. G. Scanlan, “Low power and mobile hardware accelerators for deep
convolutional neural networks,” Integration, vol. 65, pp. 110 – 127,
2019.

[2] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in European Test Symposium,
2013, pp. 1–6.

[3] S. Mittal, “A survey of techniques for approximate computing,” vol. 48,
no. 4, pp. 1–33, 2016.

[4] Z. Yang, A. Jain, J. Liang, J. Han, and F. Lombardi, “Approximate
xor/xnor-based adders for inexact computing,” in IEEE International
Conference on Nanotechnology, 2013, pp. 690–693.

[5] S. Vahdat, M. Kamal, A. Afzali-Kusha, M. Pedram, and Z. Navabi,
“Truncapp: A truncation-based approximate divider for energy efficient
dsp applications,” in Design, Automation Test in Europe Conference
Exhibition, 2017, pp. 1635–1638.

[6] M. Masadeh, O. Hasan, and S. Tahar, “Comparative study of approxi-
mate multipliers,” in Great Lakes Symposium on VLSI. ACM, 2018,
pp. 415–418.

[7] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan,
“Approximate computing and the quest for computing efficiency,” in
Design Automation Conference, 2015, pp. 1–6.

[8] M. Masadeh, O. Hasan, and S. Tahar, “Approximation-Conscious IC
Testing,” in International Conference on Microelectronics, 2019, pp.
56–59.

[9] F. Regazzoni, C. Alippi, and I. Polian, “Security: The dark side of
approximate computing?” in International Conference on Computer-
Aided Design. ACM, 2018, pp. 44:1–44:6.

[10] M. Masadeh, O. Hasan, and S. Tahar, “Error analysis of approximate ar-
ray multipliers,” CoRR, vol. https://arxiv.org/pdf/1908.01343.pdf, 2019.

[11] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power
digital signal processing using approximate adders,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 32,
no. 1, pp. 124–137, 2013.

[12] S. Xu and B. C. Schafer, “Approximate reconfigurable hardware ac-
celerator: Adapting the micro-architecture to dynamic workloads,” in
International Conference on Computer Design. IEEE, 2017, pp. 113–
120.

Figure 8: Image Blending Examples for Module Evaluation

[13] M. Brandalero, L. Carro, A. C. S. Beck, and M. Shafique, “Approximate
on-the-fly coarse-grained reconfigurable acceleration for general-purpose
applications,” in Design Automation Conference. ACM, 2018, pp.
160:1–160:6.

[14] W. Baek and T. Chilimbi, “Green: A framework for supporting energy-
conscious programming using controlled approximation,” SIGPLAN
Notices, vol. 45, no. 6, pp. 198–209, Jun. 2010.

[15] M. Samadi, J. Lee, D. Jamshidi, A. Hormati, and S. Mahlke, “SAGE:
Self-tuning approximation for graphics engines,” in International Sym-
posium on Microarchitecture, 2013, pp. 13–24.

[16] M. Masadeh, O. Hasan, and S. Tahar, “Using machine learning for
quality configurable approximate computing,” in Design, Automation &
Test in Europe. IEEE/ACM, 2019, pp. 1554–1557.

[17] F. N. Taher, J. Callenes-Sloan, and B. C. Schafer, “A machine learning
based hard fault recuperation model for approximate hardware acceler-
ators,” in Design Automation Conference. ACM, 2018, pp. 80:1–80:6.

[18] S. Mazahir, O. Hasan, and M. Shafique, “Self-compensating accelerators
for efficient approximate computing,” Microelectronics Journal, vol. 88,
pp. 9 – 17, 2019.

[19] M. Masadeh, O. Hasan, and S. Tahar, “Input-Conscious Approximate
Multiply-Accumulate (MAC) Unit for Energy-Efficiency,” IEEE Access,
vol. 7, pp. 147 129–147 142, 2019.

[20] “Mentor Graphics Modelsim,” 2019, https://www.mentor.com/company/
higher ed/modelsim-student-edition, Last accessed on 2019-05-15.

[21] “Package C50,” 2019, https://cran.r-project.org/web/packages/C50/C50.
pdf, Last accessed on 2019-8-21.

[22] “The R project for statistical computing,” 2019, https://www.r-project.
org/, Last accessed on 2019-8-21.

https://www.mentor.com/company/higher_ed/modelsim-student-edition
https://www.mentor.com/company/higher_ed/modelsim-student-edition
https://cran.r-project.org/web/packages/C50/C50.pdf
https://cran.r-project.org/web/packages/C50/C50.pdf
https://www.r-project.org/
https://www.r-project.org/

	I Introduction
	II Related Work
	III Methodology
	IV Results and Discussion
	V Conclusion
	References

