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ABSTRACT

Formalization of Partial Differential Equations using HOL Theorem

Proving

Elif Deniz, Ph.D.

Concordia University, 2024

Partial Differential Equations (PDEs) are central for the mathematical modeling

of many physical and engineering problems such as heat transfer, the flow of fluids

and the radiation of electromagnetic waves. Solving these equations is essential for

gaining precise insights into the behavior of such systems. Traditionally, the analysis

of PDEs has been performed using paper-and-pencil based proofs or computer-based

numerical methods. However, these analysis techniques compromise the soundness

and accuracy of their results, especially in safety-critical systems, due to the risk

of human errors and inherent incompleteness of numerical algorithms. To address

these limitations, we propose to use formal methods, in particular higher-order logic

(HOL) theorem proving, for analyzing PDEs. The main motivation of this choice is

the highly expressive and sound nature of HOL, which can be used to effectively model

most systems that can be expressed in a closed mathematical form.

In this thesis, we introduce a comprehensive framework for the formal analysis

of mathematical models of physical systems described by PDEs using the interactive

proof assistant HOL Light. In particular, we have developed formal libraries for the

heat, Laplace, telegrapher’s and wave equations. Each library includes the formaliza-

tion of these PDEs, encompassing their formal definitions and the formal verification
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of some classical properties as well as their analytical solutions. These libraries consti-

tute distinct contributions, each providing substantial value for various applications.

To demonstrate the practical utility and effectiveness of our proposed framework, we

conduct the formal analysis of several physical systems such as thermal protection,

transmission lines, and potential flows.

iv



In loving memory of my father and my aunt,

To my mother, my sister and my nephew.

v



ACKNOWLEDGEMENTS

First of all, I would like to express my heartfelt gratitude to my supervisor,

Professor Sofiène Tahar, for making me a part of the HVG family, for taking me

under his wings and believing in my potential as a researcher. His extensive knowledge,

passion for his work, patience, and dedication to teaching and mentoring are sources

of constant inspiration in throughout my academic journey. During the challenging

moments of my PhD, his encouragement, support and strategic advice have been

invaluable keeping me motivated and helping me complete this thesis. I am truly

fortunate to have had him as my supervisor, and I will always be grateful for his

mentorship and support.

I would like to thank to Dr. Osman Hasan for the encouraging and construc-

tive feedback throughout my research. I would like to extend my thanks to Dr. Ad-

nan Rashid for his technical feedback and advice. I am also grateful to Prof. Yusuf

Zeren, who supervised my master’s studies at Yildiz Technical University. His guidance

broadened my perspective, motivated me to explore different research environments,

which influenced my decision to pursue a PhD abroad.

I would like to express my gratitude to Dr. Teimuraz Kutsia for accepting to

be my external Ph.D. thesis examiner. I am also grateful to Dr. Dongyu Qiu, Dr.

Juergen Rilling and Dr. Yan Liu for serving on my advisory thesis committee.

I am very thankful for my friends and colleagues at HVG, especially Kubra,

Oumaima and Alain, for their support and friendship. Their presence during tough

research periods, whether through meaningful conversations or fun games of ping

pong, made those times much more memorable and enjoyable.

vi



I am deeply grateful to my mother for her unconditional love and support. Even

with the distance between us, her soothing words and uplifting messages have consis-

tently reached me and kept me motivated. I am also profoundly thankful to my aunt,
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Chapter 1

Introduction

1.1 Motivation

Nothing puzzles me more than time and space; and yet nothing troubles me less,

as I never think about them.

- Charles Lamb, Letter to T. Manning (1810)

The study of physical science has been instrumental in fostering the development

of numerous important mathematical ideas. For instance, the origins of calculus can

be traced back to the need to correctly describe the motion of bodies. Mathematics

and physics have been closely connected, with mathematical equations playing an

essential role in the formulation of many concepts in physics. However, the scope of

this approach has been significantly expanded by mathematicians and scientists to

encompass nearly all areas of science and technology, which has led to the emergence

of a new field known as mathematical modeling in recent years [1]. A mathematical

model is defined as an equation or a set of equations whose solutions characterize the

physical behavior of a corresponding physical system [2]. Mathematical modeling re-

quires a series of steps, beginning with physical observations and selecting the relevant
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physical variables. This is followed by the formulation of equations, the analysis of

the equations, and simulation. Once these steps have been completed, the model must

be validated. In this context, Partial Differential Equations (PDEs) [3] play a critical

role for modeling dynamic forms in both mathematical and physical problems. Unlike

algebraic expressions, PDEs involve first or higher-order derivatives of multivariate

functions and aim to establish relationships between these functions and their deriva-

tives. Consequently, the solutions must conform to these relationships, describing the

variation of quantities with respect to multiple variables, typically space and time [4].

For instance, the flow of air past the wings of an airplane, the collapse of a star into

a black hole, and the measurement of atmospheric pressure and temperature over

different locations and times can be modeled by PDEs. There is a wide spectrum of

different types of PDEs such as elliptic, hyperbolic, parabolic, linear and non-linear [3].

Notable examples of PDEs are the telegrapher’s equations to represent the behavior of

the voltage and current along a transmission line [5], the Laplace equation to analyze

fluid flow problems [6], the wave equation to describe wave propagation [7], and the

heat equation to model various processes involving diffusion of heat [8].

The study of PDEs can be divided into two main areas, namely, theoretical study

and the construction of solutions for practical applications. The theoretical study of

PDEs is a branch of pure mathematics, rooted in the foundational contributions of

Lagrange, Euler, Bernoulli, Laplace and other pioneering figures from the early era of

modern science [9]. Theoretical approach involves an understanding of the fundamen-

tal properties of PDEs, such as existence and uniqueness theorems, regularity theory,

and the behavior of solutions, e.g., stability, asymptotic behavior, and singularity

formation. On the other hand, the formulation of solutions for practical applications

has required extensive modern mathematical and scientific research, resulting in the
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development of various numerical and analytical solution techniques. It is important

to note that these two areas complement each other, as theoretical research guides

the formulation of practical solutions and formulas, while practical applications drive

new theoretical advancements in the study of PDEs.

Over the years, researchers have worked to develop both analytical and numer-

ical techniques to solve PDEs that govern important problems such as aerodynam-

ics [10], fusion plasmas [11] and climate modeling [12]. Numerical techniques represent

a diverse range of approaches that employ computers to approximate solutions for cer-

tain PDEs. Among the most prominent numerical techniques are Finite Difference [13]

and Finite Element Method [14]. The basic idea behind any numerical techniques to

approximate solutions of PDEs is to replace the continuous problem with a discrete

problem. Since exact solutions are either too complicated to determine in closed-form

or are not known to exist in many cases, numerical techniques are highly effective in

obtaining solutions to many difficult PDEs. However, the accuracy of the results is

inherently constrained by the finite precision and spatial resolution of computer repre-

sentations of the equations. Moreover, numerical solvers can be quite time-consuming

and computationally expensive to run. In contrast to numerical techniques, analytical

methods offer exact solutions to PDEs as they do not involve any approximation of

the associated mathematical expressions. Therefore, they are preferred to numerical

methods in order to guarantee the accuracy of the result. Furthermore, they provide a

better understanding for the physical significance of numerous parameters that affect

the problem. Some commonly used analytical techniques to solve PDEs are separa-

tion of variables [15] and transform methods [16]. The usage of separation of variables

simplifies the process of finding solutions by transforming PDEs into Ordinary Dif-

ferential Equations (ODEs) [17] which are simpler to solve [3]. Transform methods
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are also powerful approaches in solving the initial and boundary value problems for

linear PDEs [18]. An initial value problem involves finding a solution to a PDE that

satisfies specific conditions at the initial time, whereas a boundary value problem re-

quires a solution that meets specified conditions along the boundaries of the spatial

domain boundaries. These methods often yield closed-form solutions through the use

of contour integrals [19].

Traditionally, PDEs have been analyzed using paper-and-pencil proof and

computer-based numerical [20] and symbolic methods [21]. However, human error

can occur in the former method because mathematicians are fallible and may over-

look routine logical steps. Furthermore, not clearly stating all necessary assumptions

in the analysis potentially leads to inaccurate results. Similarly, numerical and sym-

bolic methods are based on approximation of the mathematical results due to the

finite precision of computer arithmetic. Moreover, the core of the tools involved in the

symbolic methods based analysis has a large number of unverified algorithms making

the accuracy of the associated analysis questionable. Given the safety-critical nature

of many systems, such as aerodynamics, telecommunications and transmission lines,

these conventional techniques cannot ensure absolute accuracy of the analysis.

Unlike the above-mentioned approaches, formal methods [22] allow precise and

accurate analysis, and can overcome the aforementioned limitations of traditional

approaches. Formal methods are computer-based techniques used for the mathemat-

ical modeling, analysis, and verification of abstract and physical systems. They are

applied using powerful software that mechanize classical mathematical reasoning pro-

cesses. Two of the widely used formal verification methods are model checking [23]

and theorem proving [24]. Model checking is an efficient and automatic verification

technique for systems that can be expressed as finite-state machines. However, due
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to the complicated analysis of PDEs and expressibility requirements of mathematics

needed for the analysis of PDEs, such as transcendental functions, limits, derivatives,

integrals, etc., model checking is not suitable to analyze PDEs. On the other hand,

theorem proving, in particular higher-order logic (HOL) theorem proving [25] is an

interactive approach that can be used to analyze most systems, thanks to the high ex-

pressive nature of the underlying logic [26]. In fact, the expressiveness of HOL allows

the description of most of the classical mathematical theories, including real num-

bers, multivariate calculus, higher transcendental functions and topological spaces.

However, since HOL is neither complete nor decidable [27], proofs cannot be auto-

mated in general and hence HOL theorem proving requires human interaction with

the computer software.

1.2 State-of-the-Art

Partial differential equations (PDEs) are examined through the analysis of their solu-

tions. Due to the widespread use of PDEs in various fields of science and engineering,

researchers employ a range of valuable techniques to analyze PDEs that model phys-

ical systems. This section provides an overview of these techniques.

1.2.1 Paper-and-Pencil based Proofs

The use of traditional paper-and-pencil proofs represents a fundamental technique and

initial step in the construction of models of physical systems and their associated prop-

erties, based on an understanding of the underlying physical concepts. The behavior

of the system is then analyzed by applying mathematical reasoning to the solution

of PDEs using paper-and-pencil methods. A significant body of work exists in the

literature that utilizes paper-and-pencil proof methods to analyze well-known PDEs
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such as the work in [28–30]. However, proofs done with paper-and-pencil methods

have notable limitations. For instance, mathematicians may omit writing explicitly

all necessary assumptions critical to the soundness of their analysis, particularly dur-

ing long and complicated proofs that include numerous subcases or when dealing with

large-scale systems.

1.2.2 Computers in Analyzing PDEs

In light of recent advancements in computer technology, scientists and engineers have

increasingly used computers to solve mathematical equations and perform operations

with improved efficiency. We now present various ways to use computers for PDE

analysis:

1.2.2.1 Computer Simulation

The advent of computers led to a demand for numerical methods and their practical

applications to offer reliable approximations for solving PDEs that model physical

systems. Traditional approaches such as Finite Difference Method (FDM) [31], Fi-

nite Volume Method (FVM) [32], and Finite Element Method (FEM) [14], have been

extensively developed and applied for this purpose over the years. A successful simula-

tion of a physical system is dependent upon the utilization of both powerful computer

hardware and mathematical algorithms. The former is necessary to facilitate the rapid

calculation of complex numbers, while the latter is essential for accurately and effi-

ciently solving the system of equations that represents the physical system. However,

the presence of unverified symbolic algorithms, along with potential discretization and

numerical errors, raises concerns about the accuracy of the analysis. Consequently,

the potentially inaccurate results make computer-based simulation unreliable, which
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poses significant risks for safety-critical applications that rely on PDEs analysis. For

instance, Alvarez [33] studied a combined approach of computer simulation and for-

mal methods. The author employed Signal Temporal Logic (STL) which is a formal

language used to describe properties of signals over time. The author’s approach in-

volves approximating the PDE with the FEM, which simplifies the problem to the

control synthesis of a discrete-time linear system subject to regular STL constraints.

While this work involves formal methods, it also includes numerical solution of the

PDE. Converting the continuous PDE into a discrete-time linear system may lead to

loss of information or introduce discretization errors. Therefore, the dynamics of the

original PDE might not be perfectly captured in the discrete-time model, affecting

the reliability of the control synthesis.

1.2.2.2 Computer Algebra Systems

Computer algebra is an interdisciplinary field that bridges mathematics and computer

science focusing on the development, implementation, and application of algorithms

designed for the manipulation and analysis of mathematical expressions [34]. Various

computer algebra system (CAS) such as Mathematica [35], Maple [36] have been used

to solve a variety of mathematical equations, particularly the applications relevant to

partial differential equations (PDEs) in applied sciences and engineering. These sys-

tems are highly effective for computing mathematical solutions symbolically. However,

they can be unreliable [37] due to the presence of unverified huge symbolic manipula-

tion algorithms in its core, which are prone to contain errors. Given the importance

and safety-critical nature of physical systems modeled by PDEs, this approach may

not be ideally suited for their analysis.
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1.2.2.3 Machine Learning Algorithms

In recent years, Machine Learning (ML) of differential equations has become a promis-

ing approach for discovering physical laws in complex systems [38]. The development

of ML has introduced a novel approach to solve PDEs, driven by the growing avail-

ability of high-quality data from simulations and experiments [39]. In addition, the

emerging field of scientific ML integrates numerical analysis with ML, and hence

leverages advancements in both disciplines to tackle complex problems with enhanced

precision. Moreover, ML algorithms can complement human mathematical abilities

by automating certain tasks and assisting in mathematical exploration. This collab-

orative interaction between machine and human intelligence has the potential to not

only advance the field of differential equations, but also to expand the possibilities

for scientific discovery. Although these methods show considerable promise, most are

purely data-driven and operate as black boxes, relying heavily on large datasets [40].

Moreover, the accuracy of the machine learning model heavily depends on the quality

and representativeness of the training data. For instance, incomplete, erroneous or

inappropriate training data can lead to inaccurate or unreliable solutions [41]. As a

result, these limitations can present challenges, particularly in the context of safety-

critical systems, where they may conflict with established safety protocols.

1.2.2.4 Proof Assistants

Proof assistants are powerful tools that use a formal language in order to create mathe-

matical concepts. These mathematical concepts are expressed in an appropriate logic,

which might be a propositional [42], first-order [43], or higher-order logic [26] de-

pending on the requirement for expressibility. The decidability of the underlying logic

determines whether theorem proving can be performed automatically or interactively.
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In the case of decidable logics, such as propositional logic, automatic verification can

be achieved through the use of computer programs. In contrast, undecidable logics,

like higher-order logic, require interactive verification, where user involvement is es-

sential to guide the process of proving theorems. Moreover, proof assistants provide

assurance that a logical argument is sound and that all possible cases have been

comprehensively considered. Consequently, they enable the formalization of classical

mathematics and the formal analysis of physical systems modeled by PDEs, thereby

reducing errors and enhancing the reliability of the proofs.

In the next section, we provide more details about the use of proof assistants

for the formalization of mathematics.

1.3 The Formalization of Mathematics

The formalization of mathematics is writing mathematical concepts such as defini-

tions, theorems and proofs in the language of the proof assistant or theorem prover,

to make them suitable for computer processing. There are numerous computer proof

assistants available. One of the pioneering proof system is the de Brujin’s Automath

project, which was introduced in the late 1960s [44]. The project played a pivotal role

in the development of type systems called type theory, which later influenced many

modern proof assistants [45]. For a computer to be able to perform the formal verifi-

cation of a theorem, it is necessary for it to be able to deduce the theorem from the

axioms of the foundational system employed by the proof assistant, which is typically

based on set theory or type theory [46].

Many proof assistants such as HOL4 [47], HOL Light [48], Isabelle/HOL [49],

Coq [50], Lean [51] and PVS [52] utilize type theory as their logical foundation. In this
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context, HOL4, HOL Light and Isabelle/HOL use simple type theory called higher-

order logic, which is rooted in Church’s type theory [53]. In the simple type theory,

terms can be higher-order, meaning that they can represent higher-order values like

sets, relations, and functions [54]. Also, types are constructed inductively, and vari-

ables are assigned fixed types [55]. On the other hand, Lean and Coq use dependent

type theory, enabling both types and elements to be parametrized by elements of

other types. This capability provides a higher level of expressiveness and flexibility.

Other proof assistants such as Mizar [56] and Metamath [57] are based on set theory

to develop mathematical library. Each proof assistants has its own unique features

and strengths. The choice of a proof assistant often depends on several factors in-

cluding the availability of libraries, automation tools, usability and learning curve as

well as the strength of community and support. Among the above-mentioned proof

assistants, Coq, Lean, Isabelle/HOL and HOL Light are the most popular ones.

A large number of mathematical proofs have been formalized using different

proof assistants. For instance, the Prime number theorem has been formalized by

Harrison [58] and Avigad [59] in HOL Light and Isabelle/HOL, respectively. More-

over, Gonthier [60] formally verified the proofs of the four colour theorem in Coq.

Another important work is the proof of the Kepler conjecture that was formalized by

Hales et al. [61] using HOL Light and Isabelle/HOL. Furthermore, Paulson [62] has

formalized another significant theorem, namely, Gödel’s incompleteness theorem in

Isabelle/HOL. There are many other contributions in formalization of mathematics

beside the aforementioned examples. Nonetheless, these examples demonstrate the

power of proof assistants in mathematical proofs, while also revealing their potential

to provide new insights into the proofs.

There are also additional advantages for using computer proof assistants beyond
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the development of formal verification of theorems. Despite the extensive availabil-

ity of printed resources, building a formalized library enables reuse and systematic

updates. In addition, proof assistants can be used for educational purposes. For in-

stance, it might be possible for undergraduate students to verify the correctness of

their proofs and identify any mistakes [46]. Moreover, the process of formalization

can improve the understanding of students in mathematical subjects, even for those

who are already familiar with them. Furthermore, proof assistants enable researchers

from different fields to work together effectively, which in turn leads to novel ideas

and innovations.

As proof assistants become increasingly prevalent in the formalization of math-

ematics, enhancing the precision, explicitness, and reliability of mathematical proofs,

we have opted to use this technology in our research. In particular, we have chosen

the HOL Light proof assistant for the analysis of physical systems governed by partial

differential equations. The reason behind this choice is the availability of a rich set

of libraries for multivariable calculus, such as differential, integration, transcendental

and real analysis [63]. In the following section, we provide an overview of related work

on differential equations based formal analysis in different proof assistants.

1.4 Related Work

There are a number of studies that focus on the formal analysis of engineering and

physical systems using differential equations in various theorem provers. For instance,

Immler et al. [64] formalized Euler’s method to approximate solutions of Ordinary

Differential Equations (ODEs) in Isabelle/HOL. The authors focused on Initial Value

Problems (IVPs) of ODEs and provided a formal verification of the Picard-Lindelöf

theorem, which asserts the existence of a unique solution to the ODE. Similarly,
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Immler et al. [65] presented formal reasoning support for the flow of ODEs using Is-

abelle/HOL. In particular, they provided the formal verification for an ODE solution

with different initial conditions. They also formalized the Poincaré map and formally

verified its differentiability. However, both approaches are based on approximating the

solutions of the differential equations that characterize the dynamical behavior of the

underlying system. Guan et al. [66] used the HOL Light theorem prover to formalize

the Euler-Lagrange equation set that is based on Gâutex derivatives [67]. Further-

more, the authors applied their proposed formalization to the formal verification of

the least resistance problem of gas flow. Similarly, Sanwal et al. [68] formally verified

the solutions of the second-order homogeneous linear differential equations using the

HOL4 theorem prover. Moreover, they used their proposed formalization to formally

verify the damped harmonic oscillator and a second-order op-amp circuit. In another

effort, Rashid et al. formalized the Laplace [69] and the Fourier [70] transforms us-

ing HOL Light and used these formalizations for differential equations based analysis

of many systems, such as an automobile suspension system [70], an unmanned free-

swimming submersible vehicle [71] and a platoon of automated vehicles [72]. However,

existing formalizations of ODEs in HOL4 and HOL Light, do not cater for the formal-

ization of the solutions when dealing with partial differential equations. More recently,

Bobbin et al. [73] formalized chemical physics using the Lean theorem prover. They

constructed a foundational framework for equations related to motion or thermody-

namics such as kinematic equations of motion or gas laws. However, their constructed

proof is limited to ODEs. Park et al. [74] formalized Taylor models and power series

for solving ODEs. The authors expanded their formalization of exact real computation

to encompass precise approximations of classical partial functions using polynomials,

analytic functions, and solutions to initial value problems for nonlinear polynomial
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ODEs. Despite their contributions, their study focuses on univariate functions and is

constrained to the context of ODEs.

Boldo et al. [75] employed the Coq theorem prover to formally verify the nu-

merical solution of one-dimensional acoustic wave equation. The authors used the

second-order centered finite difference scheme, commonly known as the three-point

scheme for convergence of the result. In [76], the same authors mechanically verified

the correctness of a C program implementing a numerical scheme for the solution

of PDE, using both automated and interactive theorem provers. While both of these

works made significant contributions, they approximate the solutions of acoustic wave

equations and do not provide the analytical solution. More recently, Otsuki et al. [77]

formalized the method of separation of variables and superposition principle, and ap-

plied it to the analysis of a one-dimensional wave equation using the Mizar theorem

prover. However, they did not extend the solution for infinite series. To the best of

our knowledge, there is no work that tackles the formalization of PDEs used to model

physical systems, such as the heat, Laplace and telegrapher’s equations, by analyzing

their analytical solutions using HOL theorem proving.

1.5 Proposed Methodology

The objective of this thesis is to develop a theorem proving based framework that

can handle the analysis of PDEs used in real-world systems within the sound core of

the HOL Light theorem prover [48]. We develop foundational libraries for the heat,

Laplace, telegrapher’s and wave equations. Each library involves formalizing the cor-

responding PDEs and the verification of their analytical solutions. This framework

ensures precise modeling and analysis of physical systems.
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Figure 1.1: Proposed Methodology

The proposed methodology shown in Figure 1.1, outlines the main idea behind the the-

orem proving based analysis of systems involving PDEs. The inputs to this framework,

depicted by a rectangle and the rectangle with curved bottom, are purely mathemat-

ical representations of PDEs. They model the dynamics of the underlying systems as

PDEs and initial and boundary conditions used in solving these PDEs. The first step

in the proposed methodology is to construct the corresponding model of the given

PDE in higher-order logic. For this purpose, the foremost requirement is the ability

to formalize these PDEs, in our case, the heat, Laplace, telegrapher’s and wave equa-

tions as higher-order logic functions. The formalization of these PDEs requires the

mathematical theories of real and complex numbers, transcendental, differentiation,

integration which are available in respective HOL Light libraries as shown in Fig-

ure 1.1. The second step is to prove relevant some classical properties of the PDEs,
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such as linearity and homogeneity in HOL. Next, we have to choose appropriate solu-

tion techniques such as the method of separation of variables, transform methods or

another suitable technique, in solving these PDEs analytically. The next step for con-

ducting the formal analysis of the PDEs in a theorem prover is to formally verify the

theorems developed in the previous steps by using pre-verified theorems corresponding

to some commonly used properties of PDEs, such as linearity, differentiability, and

summability. Finally, the output of the theorem proving based framework for PDE

analysis provides the verified solutions of the PDE models. We illustrate the effective-

ness of our proposed framework by conducting a formal analysis of PDEs that model

physical systems, including thermal protection, potential flows, and transmission lines

as depicted in Figure 1.1. This analysis enables a comprehensive understanding of the

dynamic behaviors of these systems through their solutions. In particular, we for-

mally analyze the heat transfer in one-dimensional rectangular slab using the heat

equation [8]. Moreover, we formally model the Laplace equation, whose solutions are

harmonic functions that play a crucial role in potential flow theory and, by exten-

sion, in aerodynamics. For instance, we conduct the formal analysis of the Rankine

oval, potential flow past a circular cylinder, and potential flow past a rotating circular

cylinder [78]. Finally, we formally model the telegrapher’s equations, also referred to

as the transmission line equations, along with their alternative representation in the

form of the wave equations. We then use our formalization for the formal analysis

of a terminated transmission line and its special cases, i.e., short- and open-circuited

transmission lines commonly used in antenna design [79], by formally verifying the

load impedance and the voltage reflection coefficient. In addition, we use our formal-

ization of the telegrapher’s equations to formally analyze more complex case studies,

such as coupled and cascaded transmission lines, which are widely used in practice.
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1.6 Thesis Contributions

The main contribution of this thesis is the development of a methodology and the

required formal framework for conducting a theorem proving approach that can handle

the analysis of PDEs used in real-world systems within the trusted kernel of a higher-

order logic theorem prover. We propose this technique as an alternative approach

to less accurate and/or less scalable techniques like computer simulation and paper-

and-pencil analysis. To achieve this goal, we formalize several fundamental PDEs

including the heat, Laplace, telegrapher’s and wave equations. Each library has the

formalized mathematical foundations for these PDEs, the formal verification of some

of their classical properties, as well as the formal verification of analytical solutions

and associated applications. We list below the main contributions of this work with

references to related publications provided in the Biography section at the end of the

thesis:

• Formalization of the heat conduction problem for a rectangular slab. We for-

mally model the heat transfer as a one-dimensional heat equation for a rectan-

gular slab using the HOL Light theorem prover. Furthermore, the convergence

of the general solution is formally verified, along with the correctness of the

solution. This formalization can also be useful to develop the formal analysis of

a one-dimensional composite slabs [Bio-Cf4].

• Formalization of the Laplace equation and potential flows. The work includes

the formal modeling and verification of the validity of the exact potential flow

solutions for the Laplace equation in HOL Light. In addition, we formally verify

several applications such as the Rankine oval, flow past a circular cylinder and

flow past a rotating circular cylinder, each of which involves combining these

standard flows to model more complex fluid dynamics [Bio-Cf1].
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• Formalization of the telegrapher’s and their alternate representations, in the

form of wave equations in both time and phasor domains. We present the formal

proof for the general solutions of the equations in the phasor domain. The work

also includes the formal verification of the relation between the phasor and the

time-domain functions in order to formally verify the general solutions of the

time-domain PDEs for the current and voltage in an electric transmission line.

Moreover, we conduct a formal analysis of a terminated transmission line and its

special cases, i.e., short- and open-circuited transmission lines commonly used

in antenna design, by formally verifying the load impedance and the voltage

reflection coefficient [Bio-Jr1].

• As a more realistic application of the telegrapher’s equations, we have investi-

gated coupled transmission lines [Bio-Cf2], capturing the voltages, currents, and

their interactions within a system of more complex transmission line configura-

tions. In addition, we have studied the representation of transmission lines using

ABCD parameters, based on Kirchhoff’s Current Law (KCL) and Kirchhoff’s

Voltage Law (KVL). This approach was applied to short, medium, and cascaded

transmission lines [Bio-Cf3].

1.7 Thesis Organization

The structure of this thesis is as follows: Chapter 2 provides an introduction to the

HOL Light theorem prover and its multivariable calculus theories, providing the nec-

essary background for the PDEs analysis of physical systems. This chapter introduces

the essential notation and concepts that will be used throughout the thesis.
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In Chapter 3, we present the formalization of the heat conduction problem in a

rectangular slab, including the one-dimensional heat equation and the formal verifica-

tion of its linearity. This chapter also contains the formal verification of the solutions

of ODEs obtained through the method of separation of variables. Additionally, we

provide the formalization of the infinite series solution, along with a formal proof of

its convergence. The chapter concludes with the formal verification of the correctness

of the general solution of the one-dimensional heat equation.

Chapter 4 presents the formalization of the Laplace equation and potential flows.

We present the formalization of various standard potential flows, such as uniform,

source/sink, doublet, and vortex flows. Additionally, we present the formal verification

of the validity of these exact potential flow solutions for the Laplace equation. To

illustrate the effectiveness of our formalization, we provide the formal analysis of

several practical applications, including the Rankine oval, potential flow around a

circular cylinder, and potential flow past a rotating circular cylinder.

In Chapter 5, we provide the formalization of the telegrapher’s equations and

their alternative representation as wave equations in both the phasor and time do-

mains. The chapter provides a formal verification of the relation between the teleg-

rapher’s and wave equations in the phasor domain, along with the formal verification

of their analytical solutions. It also establishes the relationship between phasor and

time-domain functions to formally verify the general solutions of time-domain PDEs.

We then use our formalization to formally analyze several applications of transmission

lines, including terminated, coupled and cascaded transmission lines.

Finally, Chapter 6 concludes the thesis and outlines some future research direc-

tions.
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Chapter 2

Preliminaries

In this section, we give a brief introduction to the HOL Light theorem prover as well

as an overview of some of the fundamental formal definitions and notations of the

multivariate calculus theories of HOL Light that are necessary for understanding the

rest of the thesis.

2.1 HOL Light Theorem Prover

The HOL Light theorem prover [80] is a mechanized proof-assistant to construct math-

ematical proofs in higher-order logic [26]. It is implemented in OCaml [81], which is

a variant of the Meta-Language functional programming language [82]. HOL Light

has a very small logical kernel, which includes some basic axioms and primitive in-

ference rules. Soundness is guaranteed by ensuring that every new theorem is verified

by applying these basic axioms and inference rules or any other previously verified

theorems/inference rules. In HOL Light, which is based on classical logic, a theory

comprises types, constants, axioms, definitions, and theorems. HOL Light supports

two interactive proof methods: forward and backward. In a forward proof, users begin
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with theorems that have already been proven and apply inference rules to arrive at the

desired theorem. On the other hand, a backward or goal-directed proof method is the

opposite of the forward approach. It relies on the concept of tactics, which are OCaml

functions that reduce the goals into more manageable subgoals, which are verified

to conclude with the proofs of theorems. Furthermore, HOL Light contains lemmas,

which are proved as part of the more extensive proof process for theorems. The user

can choose to either utilize established lemmas or prove new lemmas as they work

towards their main objective of proving the theorems. One of the important features

of HOL Light is the availability of many automatic proof procedures that help users in

conducting proofs in an efficient manner. Table 2.1 summarizes some HOL functions

and symbols and their meanings that are used in this thesis. For better readability,

we use a mix of HOL Light code and mathematical notation.

Table 2.1: HOL Light Symbols

HOL Light Symbols Standard Symbols Description

@x.t(x) εx. t(x) Some x such that t(x) is true
λx.t λx.t Function that maps x to t(x)
&a N → R Type casting from Natural numbers to Reals

&num {0, 1, 2..} Natural numbers data type
∼ not Logical negation
-- -x Unary negation

Cx(a) R → C Type casting from Reals to Complex
real R Real data type

complex C Complex data type
SUC n (n+ 1) Successor of natural number
EL n L element nth element of list L
z$i zi ith component of vector z
exp x ex Exponential function (real-valued)
abs x |x| Absolute function
sqrt x

√
x Real square root function

csqrt x
√
x Complex square root function
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2.2 Mathematical Libraries of HOL Light

Harrison [80] formalized a vast body of analysis and topology using the HOL Light

proof assistant. We now introduce the two main libraries needed for our formalization

of PDEs in HOL Light.

2.2.1 Real Analysis Library

This library includes the formalization of properties of real numbers and a large num-

ber of theorems about N -dimensional Euclidean space [63]. Here, we give some fun-

damental concepts such as real summation, real summability, real differentiation and

infinite summation that will be used in the rest of the thesis.

Definition 2.1. Real Derivative

⊢ ∀f x. real derivative f x =

(@f’. (f has real derivative f’) (atreal x))

The function real derivative accepts a real valued function f that needs to be differ-

entiated and a real number x, and provides the derivative of f with respect to x. It is

formally represented in functional form using the Hilbert choice operator @ [83]. The

function has real derivative expresses the same functionality in relational style.

Definition 2.2. Higher Real Derivative

⊢ ∀f x. higher real derivative 0 (f:real→real) (x:real) = f x ∧

(∀n. higher real derivative (SUC n) (f:real→real) (x:real) =

(real derivative (λx. higher real derivative n f x) x))

The HOL Light function higher real derivative accepts an order n of the deriva-

tive, a real-valued function f and a real number x, and provides a higher-order deriva-

tive of order n for the function f with respect to x.
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The infinite summation over a function f: N → R is formalized in HOL Light as

follows:

Definition 2.3. Real Sums

⊢ ∀s f L. real sums (f real sums l) s ⇔

((λn. sum (s INTER (0..n)) f) 99K l) sequentially

The HOL Light function real sums accepts a set of natural numbers s: N → bool, a

function f: N → R and a limit value l: R, and returns the traditional mathematical

expression
∞∑
k=0

f(k) = l. Here, the symbol 99K is used to denote that as n approaches

infinity, the sequence of sums converges to l. Moreover, INTER captures the intersection

of two sets. Similarly, sequentially represents a net providing a sequential growth

of a function f , i.e., f(k), f(k + 1), f(k + 2), ..., etc. This is mainly used in modeling

the concept of an infinite summation.

We provide the formalization of the summability of a function f: N → R over s:

N→ bool, which ensures that there exist some limit value l: R, such that
∞∑
k=0

f(k) = l

in HOL Light as:

Definition 2.4. Real Summability

⊢ ∀s f. real summable s f = ∃l. (f real sums l) s

Now, we provide a formalization of an infinite summation, which will be used

in the formal analysis of the heat conduction problem in Chapter 3 of the thesis.

Definition 2.5. Real Infsum

⊢ ∀s f. real infsum s f = @l. (f real sums l) s

where the HOL Light function real infsum accepts s: num → bool specifying the

starting point and a function f of data-type N → R, and returns a limit value l: R

to which the infinite summation of f converges from the given s.
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An infinite summation of a real-valued function Definition 2.5 can be mathe-

matically expressed in an alternate form as follows:

∞∑
w=0

fw(x) = lim
N→∞

N∑
w=0

fw(x)

We proved this equivalence in HOL Light as follows:

Theorem 2.1. Alternate Representation of an Infinite Summation

⊢ ∀f k s. real infsum s (λw. f w x) =

reallim sequentially (λk. sum (s INTER (0..k))(λw. f w x))

2.2.2 Complex Analysis Library

This library encompasses the formalization of fundamental concepts in complex anal-

ysis, including complex path integrals and Cauchy’s theorem [84]. We now present

complex versions of the usual transcendental functions and the key concept of complex

differentiability, which we utilize in our formalization.

Definition 2.6. Re and Im

⊢def ∀z. Re z = z$1

⊢def ∀z. Im z = z$2

The functions Re and Im represent the real and imaginary parts of a complex number,

respectively. Here, the notation z$i represents the ith component of a vector z.

Definition 2.7. Cx and ii

⊢def ∀a. Cx a = complex (a, &0)

⊢def ii = complex (&0, &1)

Cx is a type casting function with a data-type Cx: R → C. It accepts a real number

and returns its corresponding complex number with the imaginary part as zero. Also,
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the types R2 and C are synonymous. The & operator has data-type N → R and is used

to map a natural number to a real number. Similarly, the function ii (iota) represents

a complex number with a real part equal to 0 and the magnitude of the imaginary

part equal to 1.

Definition 2.8. Exponential Functions

⊢def ∀x. exp x = Re (cexp (Cx x))

The HOL Light functions exp and cexp with data-types R → R and C → C represent

the real and complex exponential functions, respectively.

Definition 2.9. Complex Derivative

⊢def ∀f x. complex derivative f x =

(@f’. (f has complex derivative f’) (at x))

The function complex derivative describes the complex derivative in functional

form. It accepts a function f: C → C and a complex number x, which is the point

at which f has to be differentiated, and returns a variable of data-type C, providing

the derivative of f at x. Here, the term at indicates a specific point at which the

differentiation is being evaluated, namely, at the value of x.

Definition 2.10. Higher Complex Derivative

⊢def ∀f x.

higher complex derivative 0 f x = f x ∧

(∀n. higher complex derivative (SUC n) f x

= (complex derivative (λx. higher complex derivative n f x) x))

The function higher complex derivative represents the nth-order derivative of the

function f. It accepts an order n of the derivative, a function f: C → C and a complex

number x, and provides the nth derivative of f at x.
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Chapter 3

Formalization of the Heat Equation

This chapter presents the higher-order logic formalization of a one-dimensional heat

equation and the formal verification of the linearity of the heat operator. Addition-

ally, we conduct a formal analysis of the one-dimensional heat conduction problem

in a rectangular slab by formally verifying the analytical solution of the heat equa-

tion. Furthermore, the chapter addresses the formal verification of the convergence of

the generalized solution.

3.1 Heat Equation

The heat equation [8] is one of the most important parabolic PDEs with numerous

applications. The phenomenon of heat transfer/propagation can occur by three dif-

ferent means, namely, heat conduction [8], convection [85], and thermal radiation [86].

Heat conduction or diffusion is the flow of energy in a system/body from the region

of high temperature to the region of low temperature by direct collision of molecules.

Convection, on the other hand, refers to the transfer of the energy due to the physical

movement of a bulk fluid. Thermal radiation is the transfer of energy in the form of
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electromagnetic wave. Heat conduction is the most important type of heat transfer

and it is commonly used to analyze problems arising in the design and operation of

industrial appliances, such as heat exchanger and compressors. In this context, the

heat equation is one of the most well-known PDEs that captures the temperature

distribution and diffusion of heat within a body.

The heat equation can be mathematically expressed as follows:

∂u

∂t
= c

∂2u

∂x2
(3.1)

This can be derived via conservation of energy and Fourier’s law of heat conduc-

tion [87]. The constant c is the material’s thermal diffusivity:

c =
κ0
sρ
, (3.2)

where κ0 = thermal conductivity, s = specific heat and ρ = density. This equation

is also known as the diffusion equation. To completely determine the function u,

which represents the temperature distribution within the medium, it is essential to

specify initial and boundary conditions. Subsequently, applying suitable techniques is

necessary to obtain analytical solutions to this partial differential equation.

In the following section, we provide a brief review of the heat conduction prob-

lem.
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3.2 Brief Review of Heat Conduction

Heat conduction is a phenomenon of energy transfer that occurs due to differences in

temperature in adjacent components of a body/system. This energy disperses from re-

gions of higher temperature to regions of lower temperature until the system reaches

thermal equilibrium. The heat conduction or temperature variation can be mathe-

matically defined as a function of space and time. Generally, the heat conduction

in a body is three dimensional i.e., the conduction is significant in all three dimen-

sions and a temperature variation in a body can be modeled as T = T (x, y, z, t). The

heat conduction is said to be two-dimensional when the conduction is significant in

two-dimensions and negligible in the third dimension. Similarly, it is one-dimensional

when the conduction is significant in one-dimensional only and the temperature vari-

able can be modeled as T = T (x, t). The first step for analyzing the heat conduction

in a given system/body is to construct a mathematical model of the dynamics of the

system, such as heat distribution using the heat equation, which is a PDE. These dy-

namics provide the variation of the temperature as a function of position/space and

time within the heat conducting system/body. The heat distribution (temperature

field) usually depends on boundary conditions, initial conditions, material properties,

and the geometry of the body. The next step in the heat conduction analysis is to find

the solution of the heat equation modeled in the first step that can be obtained by de-

termining a temperature distribution that is consistent with the initial and boundary

conditions.

In the next section, we present our methodology for the formalization of the

heat equation in higher-order logic.
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3.3 Proposed Methodology

The proposed framework, illustrated in Figure 3.1, presents the approach for formally

analyzing the heat conduction problem that is modeled by the heat equation. The

inputs to this framework, represented by a rectangle and a rectangle with a curved

bottom, include the mathematical representation of the heat equation that models the

heat conduction problem, along with the initial and boundary conditions necessary

for solving this PDE. As depicted in Figure 3.1, the first step is to formalize the heat

equation, which captures the heat conduction within the system or body, using the

multivariate calculus theories of the HOL Light theorem prover.

Higher-Order Logic

Multivariate Theories
 of HOL-Light

Formal Model

Verified Solution of 
the Heat Equation

Heat Operator  Heat Equation

The Method of
Seperation of

Variables

Reduced Form
of the PDE

HOL Light Theorem Prover

Verified Convergence
of the Solution

 Heat Equation
Initial and Boundary

Conditions

Additivity Scaling

Linearity

Differential Theory

Theorems

Real Analysis Theory

Integral Theory

Fourier Series Theory

Transcendental Theory

ODEs Solutions

ODEs

Figure 3.1: Proposed Methodology for the Heat Equation

This also requires the formalization of the heat operator, which is the mathematical

operator used in the heat equation. The next step is to formally verify the linearity of

the heat equation by proving its additivity and scaling properties. Subsequently, we

apply the method of separation of variables to formally model the obtaining ordinary
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differential equations (ODEs), which are the reduced form of the PDE and their solu-

tions, as shown in Figure 3.1. The next step is to verify a set of theorems establishing

the solutions for the ODEs. This is followed by the formalization of the generalized

solution, which is a linear combination of the non-trivial solutions. Thereafter, we

conduct a formal proof for the convergence of the generalized solution. The final step

involves the formal verification of the generalized solution. Finally, the output of the

theorem proving based framework of the heat equation provides the verified solution

of the PDE model and its convergence.

3.4 Formalization of the Heat Equation

The heat conduction problem for a rectangular slab having a thickness L is depicted in

Figure 3.2 [88], which is considered it as a one-dimensional heat conduction problem.

Here, the function u(x, t) provides the temperature in the slab at a point x and

time t [89].

u(x,0) = f(x)
Slab

u(x,t)
x

x = 0 x = L

u(0,t) = 0 u(L,t) = 0

Figure 3.2: Heat Conduction Across the Thickness of a Slab

We can mathematically express the one-dimensional heat conduction (temperature
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variation) in the rectangular slab as follows [88]:

∂u(x, t)

∂t
= c

∂2u(x, t)

∂x2
0 < x < L, t > 0 (3.3)

where c is the thermal diffusivity of the slab that depends on the material used for

constructing the slab. Equation (3.3) can be equivalently written as:

∂u(x, t)

∂t
− c

∂2u(x, t)

∂x2
= 0

Moreover, the solution of the heat equation (Equation (3.3)) should satisfy the fol-

lowing initial and boundary conditions.

Initial Condition:

u(x, t) |t=0= u(x, 0) = f(x) (3.4)

Boundary Conditions:

u(x, t) |x=0= u(0, t) = 0 (3.5)

u(x, t) |x=L= u(L, t) = 0 (3.6)

The heat equation (Equation (3.3)) along with Equations (3.4), (3.5) and (3.6) is

known as the initial boundary-value problem [90]. It becomes an initial-value prob-

lem with respect to time that considers the only initial condition represented by

Equation (3.4). Whereas, in the case of its dependence on space only, it represents

a boundary-value problem by incorporating the two boundary conditions expressed

Equations (3.5) and (3.6).

The heat equation (Equation (3.3)) capturing the one-dimensional heat con-

duction in a rectangular slab can be formalized in HOL Light as follows:
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Definition 3.1. The Heat Equation

⊢def heat equation u(x,t) c ⇔ heat operator u(x,t) c = &0

where heat equation accepts a function u of type (R × R → R), a space variable

x:R, a time variable t:R and the thermal diffusivity constant c, and returns the

corresponding heat equation. The function heat operator is formalized as follows:

Definition 3.2. Heat Operator

⊢def ∀u x t. heat−operator u(x,t) c =

higher real derivative 1 (λt. u(x,t)) t -

c * higher real derivative 2 (λx. u(x,t)) x

Linearity of the Heat Operator

The heat equation is a second-order, homogeneous, linear, parabolic partial differential

equation. The linearity of the heat equation is a key property, enabling the use of the

principle of superposition [3]. According to this principle, if u and v are solutions to

a linear homogeneous equation, then any linear combination, au + bv, also satisfies

the linear homogeneous equation [3].

The linearity property can be mathematically expressed as follows:

Linearity: An operator L is linear if and only if

L[au+ bv] = aL[u] + bL[v] (3.7)

for any two functions u and v and constants a and b.

We verify this property as the following HOL Light theorem:

Theorem 3.1. Linearity of the Heat Operator

⊢thm ∀u x a b.

[A1] (∀t. (λt. u(x,t)) real differentiable atreal t) ∧
[A2] (∀t. (λt. v(x,t)) real differentiable atreal t) ∧
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[A3] (∀x. (λx. u(x,t)) real differentiable atreal x) ∧
[A4] (∀x. (λx. v(x,t)) real differentiable atreal x) ∧
[A5] (∀x. (λx. real derivative (λx. u(x,t)) x)

real differentiable atreal x) ∧
[A6] (∀x. (λx. real derivative (λx. v(x,t)) x)

real differentiable atreal x)

⇒ (heat operator (λ(x,t). a * u(x,t) + b * v(x,t)) (x,t) c =

a * heat operator (λ(x,t). u(x,t)) (x,t) c +

b * heat operator (λ(x,t). v(x,t)) (x,t) c)

Assumptions A1 and A2 ensure that the real-valued functions u and v are differentiable

at t, respectively. Assumptions A3 and A4 assert the differentiability of the functions u

and v at x, respectively. Similarly, Assumptions A5 and A6 provide the differentiability

conditions for the derivatives of the functions u and v at x, respectively. The proof of

the above theorem is mainly based on the properties of derivative and differentiability

of real-valued functions.

3.5 Formal Verification of the Solution of the Heat

Equation

When the partial differential equation and the boundary conditions are linear and

homogeneous, the method of separation of variables can be applied. The idea behind

this method is to rewrite the partial differential equation so that the variables are

expressed on separate sides of the equation. Using this approach, partial differential

equations can be transformed into a set of ODEs. In the following, we formally verify

the solutions of ODEs obtained through this technique in HOL.
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3.5.1 Verification of the Solutions of ODEs

To find out the solution of the boundary-value problem, i.e., heat equation alongside

the boundary conditions Equations (3.3), (3.5) and (3.6), we use the method of sep-

aration of variables. By this method, we can mathematically express the solution of

the heat equation u(x, t) as a separable equation as follows:

u(x, t) = X(x)W (t) (3.8)

where X and W are functions of x and t, respectively. We formalize Equation (3.8)

in HOL Light as follows:

Definition 3.3. Separable

⊢def ∀u X W t x. separable u x t X W = X(x) * W(t)

By using Equation (3.8) in the heat equation (Equation (3.3)) and after simpli-

fication, we obtain the following equation:

1

c

∂[X(x)W (t)]

∂t
=
∂2[X(x)W (t)]

∂x2
(3.9)

Next, using the property of the partial derivative of a separable function transforms

the above equation as follows:

1

c

dW (t)

dt
X(x) = W (t)

d2X(x)

dx2
(3.10)

We formally verify the equivalence of the left-hand-sides of Equations (3.9) and

(3.10) as the following HOL Light theorem.
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Theorem 3.2. Equivalence of Partial and Simple Derivatives (Left-hand Side)

⊢thm ∀u X x W t.

[A1] (X real differentiable atreal t) ∧
[A2] (W real differentiable atreal t)

⇒ (real derivative (λt. separable u x t X W) t) =

real derivative W t * X x

Assumptions A1 and A2 provide the differentiability of the functions X and W at t, re-

spectively. The proof process of the above theorem is mainly based on the properties

of derivatives and differentiability of the real-valued functions alongwith some arith-

metic reasoning. Similarly, we formally verify the equivalence of the right-hand-sides

of Equations (3.9) and (3.10) as follows:

Theorem 3.3. Equivalence of Partial and Simple Derivatives (Right-hand Side)

⊢thm ∀u X x W t.

[A1] (∀x. X real differentiable atreal x) ∧
[A2] (∀x. W real differentiable atreal x) ∧
[A3] (λx. real−derivative X x) real differentiable atreal x

⇒ higher real derivative 2 (λx. (separable u x t X W)) x =

W t * higher real derivative 2 (λx. X x) x

Assumptions A1 and A2 are very similar to those of Theorem 3.2. Assumption A3

ensures that the first-order derivative of the real-valued function X is differentiable

at x. The verification of Theorem 3.3 is similar to that of Theorem 3.2.

Now, after rearranging various terms, Equation (3.10) can be expressed as fol-

lows:

1

c

dW (t)

dt

1

W (t)
=

1

X(x)

d2X(x)

dx2
= −β2 (3.11)

where the left- and right-hand sides are functions of only t and x, respectively. The

equivalence of these two functions of different variables is only possible when both are

equal to some constant, which is represented by −β2 in the above equation.
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Equation (3.11) can be equivalently represented by the following two ordinary differ-

ential equations.

d2X(x)

dx2
+ β2X(x) = 0 (3.12)

and

dW (t)

dt
+ c.β2W (t) = 0 (3.13)

Now, our problem of solving a boundary-value problem given by Equations (3.3), (3.5),

and (3.6) has been transformed into solving a set of linear homogeneous differential

equations with constant coefficients, as described by Equations (3.12) and (3.13).

Moreover, the solution of the heat equation (Equation (3.3)) can be obtained by

multiplying the solutions of these two equations.

The solution of Equation (3.12) is mathematically expressed as:

X(x) = Acos(βx) + Bsin(βx) (3.14)

where A and B are the arbitrary constants that can be computed by applying the

boundary conditions. Similarly, the solution of the second differential equation (Equa-

tion (3.13)) is mathematically described as:

W (t) = Ce−β2ct (3.15)

where C is the constant of integration and can be computed by applying the boundary

conditions.

We formalize the two differential equations (Equations (3.12) and (3.13)) in

HOL Light as follows:
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Definition 3.4. Equation (3.12)

⊢def ∀X x b. first equation X x b ⇔

higher real derivative 2 (λx. X (x)) x + b2 * (λx. X(x)) x = 0

Definition 3.5. Equation (3.13)

⊢def ∀W t b c. second equation W t b c ⇔

real derivative (λt. W (t)) t + c * b2 * W(t) = 0

Similarly, we formalize the solutions of these differential equations in HOL Light as:

Definition 3.6. Solution of Equation (3.12)

⊢def ∀A B x b. first equation sol A B x b = A * cos(b * x) + B * sin(b * x)

Definition 3.7. Solution of Equation (3.13)

⊢def ∀C c b t. second equation sol C c b t = C * exp (--c * b2 * t)

Next, we formally verify the solution of the first differential equation (Equation

(3.12)) as the following HOL Light theorem:

Theorem 3.4. Verification of the Solution of Equation (3.12)

⊢thm ∀A B x b. (first equation (λx. first equation sol A B x b)) x b

The proof process of the above theorem is based on Definitions 3.4 and 3.5 and

properties of real derivative alongside some real arithmetic reasoning.

Similarly, we formally verify the solution of the second differential equation

(Equation (3.13)) as follows:

Theorem 3.5. Verification of the Solution of Equation (3.13)

⊢thm ∀C c b t. (second equation (λt. second equation sol C c b t))(t) b c

The proof process of the above theorem is based on Definitions 3.4 and 3.5 and

properties of real derivative alongside some real arithmetic reasoning.
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To find out the values of the arbitrary constants A andB of the solution of the or-

dinary differential equation expressed as Equation (3.14), we apply the corresponding

boundary conditions. Applying the first boundary condition (Equation (3.5)) results

into A = 0. Similarly, the application of the second boundary condition (Equation 3.6)

provides Bsin(βL) = 0. We formally verify values of these arbitrary constants based

on the corresponding boundary conditions in HOL Light as follows:

Theorem 3.6. Verification of the Arbitrary Constant A

⊢thm ∀A B x b. x = &0 ∧ first equation sol A B x b = &0 ⇒ A = &0

Theorem 3.7. Verification of the Arbitrary Constant B

⊢thm ∀A B x b L.

x = L ∧ A = &0 ∧ first equation sol A B x b = &0

⇒ first equation sol x b A B = B * sin(b * L)

The equation Bsin(βL) = 0 holds if B = 0 or sin(βL) = 0. In case of B = 0 alongside

A = 0, it results into X(x) = 0. This further provides u(x, t) = 0 as a solution to the

heat equation, which is an uninteresting trivial solution. This means that B is equal

to some non-zero value, which implies that sin(βL) = 0. Since β can have infinitely

many values for which sin(βL) = 0 holds, namely β = βw = ωπ
L

, this results into a

non-trivial solution of the boundary-value problem as follows:

u(x, t) = uw(x, t) =
[
Bw sin

(wπx
L

)]
e
−
(wπ
L

)2

ct

(3.16)

Now, assume that the function f(x) in the initial condition Equation (3.4) is a linear

combination of the function sin(wπx
L

), i.e., Fourier sine series representation as follows:

f(x) =
∞∑

w=1

Bw sin
(wπx

L

)
(3.17)
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3.5.2 Formalization of the Generalized Solution

We can mathematically express the general solution of the heat equation as the

following equation since it is a linear combination of the non-trivial solutions of

the boundary-value problem that satisfies the initial condition expressed in Equa-

tion (3.17).

u(x, t) =
∞∑

w=1

uw(x, t) =
∞∑

w=1

Bw sin
(wπx

L

)
e
−
(wπ
L

)2

ct

(3.18)

The constant Bw of the Fourier sine series representation of f(x) can be determined

using the orthogonality property of the sine function and is mathematically expressed

as follows:

Bw =
2

L

ˆ L

0

f(x) sin
(wπx

L

)
dx w = 1, 2, 3... (3.19)

We first formalize the Fourier sine coefficient in HOL Light as follows:

Definition 3.8. Fourier Sine Coefficient

⊢def ∀f w L. fourier sine coefficient f w L =

2

L
* (real integral (real interval [0,L])(λx. (f x) *

sin(
w ∗ pi ∗ x

L
)))

where fourier sine coefficient accepts a function f :[0, L] → R, a number w

and the width of the slab L, and returns a real number representing the Fourier sine

coefficient of the function f.

Now, the solution of the heat equation capturing the heat conduction in a rect-

angular slab can be alternatively expressed as:

u(x, t) =
∞∑

w=1

uw(x, t) =
∞∑

w=1

(
2

L

ˆ L

0

f(x) sin
(wπx

L

)
dx

)
sin

(wπx
L

)
e
−
(wπ
L

)2

ct

(3.20)
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Next, we formalize the generalized solution of the heat equation (Equa-

tion (3.20)) in HOL Light as follows:

Definition 3.9. Generalized Solution of the Heat Equation

⊢def ∀f x t c L. heat solution f x t c L = real infsum (from 1)

(λw. (fourier sine coefficient f w L) *

exp(--c * (
w ∗ pi
L

)2 * t) * sin(
w ∗ pi ∗ x

L
))

3.5.3 Convergence of the Generalized Solution

The convergence of the generalized solution of the heat equation depends on the

convergence of the infinite series uw(x, t) and is mathematically expressed as the

following bound on uw(x, t).

|uw(x, t)| ≤Mw (3.21)

where

Mw =

(
2

L

ˆ L

0

|f(x)|dx
)
e
−
(wπ
L

)2

ct

(3.22)

We compute the upper bound Mw using the upper bound on the Fourier coefficient

Bw, and the fact that
∣∣∣sin(wπx

L

)∣∣∣ ≤ 1, along with the following property of the

integral: ∣∣∣∣ˆ b

a

f(x)dx

∣∣∣∣ ≤ ˆ b

a

|f(x)|dx. (3.23)

Next, we formally verify the convergence of the generalized solution of the heat

equation as the following HOL Light theorem.

Theorem 3.8. Convergence of the Generalized Solution

⊢thm ∀f x c L t.

[A1] &0 < L ∧ [A2] &0 < t ∧ [A3] &0 < c ∧
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[A4] f absolutely real integrable on real interval [&0, L]

⇒ ((λw. fourier sine coefficient f w L *

exp(--c * (
w ∗ pi
L

)2 * t) sin(
w ∗ pi ∗ x

L
)))

real sums heat solution f x t c L) (from 1)

Assumptions A1-A3 ensure that the width L, the time t and the constant c are positive

real values. Assumption A4 provides the absolute integrability of the function f over

the interval [0,L]. The conclusion presents the convergence of the generalized solution

of the heat equation. The verification of Theorem 3.8 is mainly based on the following

two important lemmas about the summability of the bound Mw and the generalized

solution alongside some real arithmetic reasoning.

Lemma 3.1. Summability of the Bound Mw

⊢lem ∀f c L t.

[A1] &0 < L ∧ [A2] &0 < t ∧ [A3] &0 < c

⇒ real summable (from 1) (λw.
2

L
* real integral (real interval [&0,L])

(λx. |f(x)|)) * exp(--c * (
w ∗ pi
L

)2 * t))

Assumptions A1-A3 are the same as those of Theorem 3.8. The conclusion of the

above lemma provides the summability of the upper bound Mw. The verification

of Lemma 3.1 is mainly based on the Ratio test, a criterion used to evaluate the

convergence or divergence of an infinite series [91] along with some real arithmetic

reasoning.

Lemma 3.2. Summability of the Generalized Solution

⊢lem ∀f x c L t.

[A1] &0 < L ∧ [A2] &0 < t ∧ [A3] &0 < c ∧
[A4] f absolutely real integrable on real interval [&0, L]

⇒ real summable (from 1)(λw. fourier sine coefficient f w L *

exp(--c * (
w ∗ pi
L

)2 * t) * sin(
w ∗ pi ∗ x

L
)))

40



Assumptions A1-A4 are the same as those of Theorem 3.8. The verification of

Lemma 3.2 is mainly based on the Comparison test, which is used to determine

the convergence or divergence of an infinite series by comparing it to another series

which behavior is already known [91] and Lemma 3.1 along with some real arithmetic

reasoning. More details about the verification of these lemmas and the convergence of

the generalized solution of the heat equation can be found in the related HOL Light

proof script [92].

3.5.4 Verification of the Generalized Solution

In this section, we formally verify some interesting properties involving the derivatives

of the general solution with respect to position x and time t that capture the heat

conduction (variation of temperature) in the rectangular slab with respect to position

and time.

Theorem 3.9. Derivative of the Generalized Solution with Respect to Time

⊢thm ∀f x c L u u’.

[A1] (∀t. ((λw. (fourier sine coefficient f w L) *

exp(--c * (
w ∗ pi
L

)2 * t) * sin(
w ∗ pi ∗ x

L
))

real sums u(x,t)) (from 1)) ∧

[A2] (∀t. ((λw. --c * (
w ∗ pi
L

)2 * (fourier sine coefficient f w L) *

exp(--c * (
w ∗ pi
L

)2 * t) * sin(
w ∗ pi ∗ x

L
))

real sums u’(x,t)) (from 1)) ∧

[A3] ((λt. u(x,t)) has real derivative u’(x,t)) (atreal t)

⇒ real derivative (λt. heat solution f x t c L ) t =

real infsum (from 1) (λw. --c * (
w ∗ pi
L

)2 *

(fourier sine coefficient f w L) * exp(--c * (
w ∗ pi
L

)2 * t) *

sin(
w ∗ pi ∗ x

L
))
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Assumption A1 provides the condition that the infinite series converges to the function

u(x, t). Similarly, Assumption A2 asserts that the derivative of the infinite series with

respect to t converges to the derivative of function u(x, t), i.e. u′(x, t). Assumption A3

ensures the function u has derivative u′(x, t) at point t. The verification of the above

theorem is mainly based on swapping the operation of differentiation and infinite

summation alongwith properties of the infinite summation and derivatives.

Theorem 3.10. First Derivative of the Generalized Solution with Respect to Space

⊢thm ∀f c L u u’.

[A1] (∀t. ((λw. (fourier sine coefficient f w L) *

exp(--c * (
w ∗ pi
L

)2 * t) * sin(
w ∗ pi ∗ x

L
))

real sums u(x,t)) (from 1)) ∧

[A2] ((∀x. ((λw. (fourier sine coefficient f w L) *

exp(--c * (
w ∗ pi
L

)2 * t) * (
w ∗ pi
L

) * cos(
w ∗ pi ∗ x

L
)

real sums u’(x,t))) (from 1) ∧
[A3] ((λx. u(x,t)) has real derivative u’(x,t)) (atreal x)

⇒ real derivative (λx. heat solution f x t c L) x =

real infsum (from 1)(λw. (fourier sine coefficient f w L) *

exp(--c * (
w ∗ pi
L

)2 * t) * (
w ∗ pi
L

) * cos(
w ∗ pi ∗ x

L
)))

The proof process of Theorem 3.10 is very similar to that of Theorem 3.9.

Theorem 3.11. Second Derivative of the General Solution with Respect to Space

⊢ ∀f t c L u u’ u’’.

[A1] (∀x. ((λw. (fourier sine coefficient f w L) * exp(--c * (
w ∗ pi
L

)2 * t) *

sin(
w ∗ pi ∗ x

L
) real sums u(x,t)) (from 1)) ∧

[A2] ((∀x. ((λw. (fourier sine coefficient f w L) * exp(--c * (
w ∗ pi
L

)2 * t)

* (
w ∗ pi
L

) * cos(
w ∗ pi ∗ x

L
)) real sums u’(x,t))) (from 1) ∧

[A3] ((λx. u(x,t)) has−real−derivative u’(x,t)) (atreal x) ∧
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[A4] ((∀x. ((λw. (fourier sine coefficient f w L) * exp(--c * (
w ∗ pi
L

)2 * t)

* (
w ∗ pi
L

)2 * --sin(
w ∗ pi ∗ x

L
) real sums u’’(x,t))) (from 1) ∧

[A5] ((λx. u’(x,t)) has real derivative u’’(x,t)) (atreal x)

⇒ higher real derivative 2 (λx. heat solution f x t c L) x =

real−infsum (from 1) (λw. (fourier sine coefficient f w L) *

exp(--c * (
w ∗ pi
L

)2 * t) * (
w ∗ pi
L

)2 * --sin((
w ∗ pi ∗ x

L
)2))

The verification of the above theorem is mainly based on Theorem 3.10 and properties

of derivatives along with some arithmetic reasoning.

3.6 Summary and Discussion

In this chapter, we presented a higher-order logic formalization of the heat equation

to formally analyze the heat conduction problem in a rectangular slab. We first for-

mally modeled the heat operator and equation using the multivariate theories of HOL

Light. Next, we formally verified the linearity of the heat operator since it is a crucial

property to apply the superposition principle, allowing the generalized solution to be

expressed as an infinite series. Additionally, we formalized the ODEs and their solu-

tions, which were derived using the method of separation of variables, which reduces

the PDEs to a set of ODEs. Furthermore, we formally verified the correctness of

these ODE solutions within HOL Light. Subsequently, we formalized the generalized

solution of the heat equation in the form of infinite series, constructed from the ODE

solutions by applying the superposition principle. Following this, we formally verified

the convergence of the generalized solution using ratio and comparison tests available

in the mathematical libraries of HOL Light. Finally, we conducted a formal proof of

the derivatives for the verification of the generalized solution.

An important aspect of our proposed formal analysis of the heat conduction

problem, as compared to traditional analysis techniques, is that all verified theorems
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are of generic nature, i.e., all functions and variables involved in these theorems are

universally quantified and thus can be specialized based on the requirement of the

analysis of a rectangular slab with any width and corresponding boundary and initial

conditions. Another advantage of our proposed approach is the inherent soundness of

the theorem proving technique. It ensures that all required assumptions are explicitly

present along with the theorem, which are often ignored in conventional simulation

based analysis and hence their absence may affect the accuracy of the corresponding

analysis. One of the major difficulties in the proposed formalization was the swapping

of the infinite summation and the differential operator that is used in the verification

of the derivatives of the general solution. The mathematical proofs available in the

literature for this swap operation were very abstract and we developed our own formal

reasoning. Another challenge was the formal proof of the convergence of the general

solution. Proving the convergence can be difficult even in traditional paper-and-pencil

proofs, and verifying them in HOL necessitated a meticulous process, with every detail

rigorously provided to the system. It is important to note that this is the first formal

work on the formalization of a one-dimensional heat equation and the verification of

its infinite series solution. Moreover, our work can be extended to analyze transient

temperature distribution and heat flux in multi-layer slabs, which are commonly used

in thermal protection systems.

In this chapter, we conducted the formal analysis of the heat conduction prob-

lem. While one-dimensional heat conduction provides a foundational understanding

of thermal behavior, it does not account for other types of physical behaviors, such

as fluid dynamics. In the next chapter, we present the formalization of the Laplace

equation in HOL Light, which is used in the analysis of a wide range of physical

systems.
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Chapter 4

Formalization of the Laplace

Equation

In this chapter, we provide the higher-order logic formalization of the Laplace equation

both in Cartesian and polar coordinates and the formal verification of the linearity of

the Laplace operator. Furthermore, we conduct the formal specification and verifica-

tion of standard potential flows solutions which satisfy the Laplace equation. More-

over, we formally analyze several practical applications, including the Rankine oval,

potential flow past a circular cylinder and a potential flow past a rotating circular

cylinder.

4.1 Laplace Equation

The Laplace equation is a second-order, linear-homogeneous, elliptic partial differen-

tial equation which describes physical phenomena at equilibrium such as a steady state

temperature distribution, electrostatic potential in absence of charges, gravitational

potential in absence of mass [93]. It is arguably one of the most important differential
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equations in all of applied mathematics. The solutions of the Laplace equation are

called harmonic functions which are important in many fields of science, notably fluid

dynamics, electromagnetism and astronomy. There is no time dependence in any of

the problems mentioned above. Since the solution of the Laplace equation does not

depend on time t, the initial conditions are not specified. However, in order to solve

the Laplace equation, certain boundary conditions on the bounding curve or surface of

the region must be satisfied. As with other PDEs, the Laplace equation can be stud-

ied in different coordinate systems such as cartesian, polar, cylindrical, and spherical.

The two-dimensional Laplace equation can be mathematically expressed as follows:

∂2u

∂x2
+
∂2u

∂y2
= 0 (4.1)

It may also be written in the form

∆u = 0 (4.2)

where

∆ =
∂2

∂x2
+

∂2

∂y2
(4.3)

known as the Laplace operator or Laplacian applied to the function u. Note that in

general, the Laplacian for a function u(x1, , xn) in Rn → R is defined to be the sum

of the second partial derivatives:

∆u =
n∑

k=1

∂2u

∂x2k
(4.4)

The physical meaning of the Laplace equation is that it is satisfied by the potential

of any such field in source-free domains D of the Euclidean space Rn(n ≥ 2).
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Since the solutions of the Laplace equation are harmonic functions, they are

pivotal for analyzing various fluid phenomena in potential flow theory, which is a

fundamental aspect of fluid dynamics. In the following section, we provide an overview

of potential flow theory.

4.2 Brief Review of Potential Flow Theory

Potential flow theory is a fundamental concept in fluid dynamics that employs har-

monic functions to analyze a variety of fluid phenomena. A potential flow describes

the velocity field as the gradient of a scalar function known as the velocity potential.

Moreover, it characterizes the flow as irrotational and incompressible and provides

valuable insights into fluid dynamics. This idealization is in close approximation to

real-world scenarios and is highly useful in practice. For example, in aerodynamics,

the potential flow theory has been indispensable for constructing analytical models

that scrutinize the behavior of airflow around airfoils, wings, and other aerodynamic

surfaces, thus facilitating the prediction of crucial aerodynamic forces such as lifts [94].

The foundation for solving aerodynamic problems is rooted in the equations

governing fluid flow. Although the Navier-Stokes (NS) equations [95] govern fluid mo-

tion, their nonlinear nature makes them difficult to solve [78]. As a result, the Laplace

equation emerges as a valuable alternative, providing an exact representation of in-

compressible, inviscid and irrotational flows. This equation forms the cornerstone of

potential flow theory, where the stream function and velocity potential, both algebraic

functions that satisfy Laplace’s equation, are utilized to construct flow fields.

A potential flow can be defined as a steady, incompressible and irrotational flow.

A condition that is necessary and sufficient to identify a flow as irrotational:
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−→
∇ ×

−→
V = 0 (4.5)

This indicates that the velocity field V is a conservative vector field denoted by the

gradient of a scalar velocity potential function (ϕ):

−→
V =

−→
∇ϕ (4.6)

If the velocity potential is known, then the velocity at any point can be determined

using

u =
∂ϕ

∂x
, v =

∂ϕ

∂y
(4.7)

The irrotationality condition for two-dimensional flows vorticity is given by

∂v

∂x
− ∂u

∂y
= ξ (4.8)

Here, ξ = 0 since the flow is irrotational.

Similarly, in the case of an incompressible flow, it follows from the continuity

equation that

−→
∇ .

−→
V =

∂u

∂x
+
∂v

∂y
= 0 (4.9)

The two-dimensional continuous flow is described by the stream function (for incom-

pressible flow) ψ, which determines the velocity at any point as:

u =
∂ψ

∂y
, v = −∂ψ

∂x
(4.10)

Substituting Equations (4.7) and (4.10) into Equations (4.9) and (4.8), respectively,
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yields the conditions for continuous irrotational flow:

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= 0 =

∂2ψ

∂x2
+
∂2ψ

∂y2
(4.11)

which is the Laplace equation in Cartesian coordinates [94]. The Laplace equation for

the stream function can also be written in polar coordinates as:

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2
∂2ψ

∂θ2
= 0 (4.12)

Several techniques are employed to determine both the velocity potential (ϕ) and the

stream function (ψ). For instance, common numerical and analytical techniques such

as Finite Element Method (FEM) [96] and separation of variables [15], respectively are

commonly used to obtain the solution of the Laplace equation with the appropriate

boundary conditions. Furthermore, another efficient technique is to find some simple

functions that satisfy the Laplace equation and to model the flow around the body

of interest, leveraging the linearity of the equation. We focus on this latter method,

which is the most widely used procedure for potential flows.

In the next section, we present our methodology for the formalization of the

Laplace equation as well as standard potential flows.

4.3 Proposed Methodology

The proposed approach for formally analyzing the Laplace equation and standard

potential flows using higher-order logic theorem proving is depicted in Figure 4.1.

The inputs to this framework, represented by a rectangle and an elongated rectangle,

consist of the mathematical formulation of the Laplace equation and its exact potential

flow solutions.
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Figure 4.1: Proposed Methodology for the Laplace Equation

The first step in our methodology involves transforming the Laplace equation into

its corresponding model in both Cartesian and polar coordinates within higher-order

logic, requiring the use of HOL Light’s multivariate calculus libraries. The next step is

to formally verify the linearity of the Laplace operator, including the verification of its

additivity and scaling properties. The linearity property is a critical step for applying

the superposition principle which allows us to combine fundamental potential flow

solutions for the analysis of more complicated aerodynamic configurations. We then

formally model four fundamental potential flows such as the uniform, source/sink,

doublet and vortex flows as depicted in Figure 4.1. Subsequently, we establish theo-

rems to facilitate the formal verification of the validity of these exact potential flow

solutions which satisfy the Laplace equation. Finally, the output of this framework

provides the verified solutions of the Laplace equation. In order to demonstrate the

practical applicability of our formalization, we conduct a formal analysis of several

50



practical scenarios, including the Rankine oval, potential flow past a circular cylinder,

and potential flow past a rotating circular cylinder, by combining these fundamental

flows.

4.4 Formalization of the Laplace Equation

In this section, we present our formalization of the Laplace equation in terms of stream

function in both Cartesian and polar coordinates in HOL Light.

Definition 4.1. Laplace Equation in Cartesian Coordinates

⊢def laplace equation psi(x,y) ⇔ laplace operator psi(x,y) = &0

where laplace equation accepts the real function psi: R × R → R, the space vari-

ables x:R and y:R and returns the corresponding Laplace equation. It is important

to note that the Laplace equation can also be expressed in terms of the velocity po-

tential. Consequently, both the stream function and the velocity potential satisfy the

Laplace equation.

The function Laplace operator is formalized as:

Definition 4.2. Laplace Operator

⊢def ∀psi x y. laplace operator psi(x,y) =

higher real derivative 2 (λx. psi(x,y)) x +

higher real derivative 2 (λy. psi(x,y)) y

Here, higher real derivative represents the nth-order real derivative of a function.

The formal representation of the Laplace equation in polar coordinates for the

stream function, i.e., Equation (4.12) is hence given as follows:
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Definition 4.3. Laplace Equation in Polar Coordinates

⊢def ∀psi r theta. laplace in polar psi r theta =

higher real derivative 2 (λr. psi(r,theta)) r +

1

r
* higher real derivative (λr. psi(r,theta)) r +

1

r2
* higher real derivative (λtheta. psi(r,theta)) theta = &0

where the HOL Light function laplace in polar mainly accepts the function psi

of type R × R → R, the radial distance r and the angle theta and returns the

corresponding equation. It can similarly be defined for the velocity potential as well.

The next step is to formally verify the linearity of the Laplace operator, an

important step for utilizing the superposition principle in the combination of standard

potential flows. The linearity of the Laplace operator can be mathematically expressed

as follows:

∆(aψ + bϕ) = a∆ψ + b∆ϕ (4.13)

where ∆ represents the Laplace operator introduced in Equation 4.3.

Equation (4.13) is formally verified by the following HOL Light theorem:

Theorem 4.1. Linearity of Laplace Operator

⊢thm ∀psi phi a b.

[A1] (∀x. (λx. psi(x,y)) real differentiable atreal x) ∧
[A2] (∀x. (λx. phi(x,y)) real differentiable atreal x) ∧
[A3] (∀y. (λy. psi(x,y)) real differentiable atreal y) ∧
[A4] (∀y. (λy. phi(x,y)) real differentiable atreal y) ∧
[A5] (∀x. (λx. real derivative (λx. psi(x,y)) x)

real differentiable atreal x) ∧
[A6] (∀x. (λx. real derivative (λx. phi(x,y)) x)

real differentiable atreal x) ∧
[A7] (∀y. (λy. real derivative (λx. psi(x,y)) y)

real differentiable atreal y) ∧
[A8] (∀y. (λy. real derivative (λy. phi(x,y)) y)

real differentiable atreal y)
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⇒ laplace operator (λ(x,y). a * psi(x,y) + b * phi(x,y)) (x,y) =

a * laplace operator (λ(x,y). psi(x,y)) (x,y) +

b * laplace operator (λ(x,y). phi(x,y)) (x,y)

Assumptions A1 and A2 ensure that the real-valued functions psi and phi are dif-

ferentiable at x, respectively. Assumptions A3 and A4 assert the differentiability of

the functions psi and phi at y, respectively. Additionally, Assumptions A5 and A6

provide the differentiability conditions for the derivatives of the functions psi and

phi at x, respectively. Similarly, Assumptions A7 and A8 guarantee the differentia-

bility conditions for the derivatives of the functions psi and phi at x, respectively.

The proof of the above theorem relies mainly on the properties of derivatives and the

differentiability of real-valued functions.

4.5 Formalization of Potential Flows

In this section, we present some basic functions which satisfy the Laplace equation.

Any function that satisfies this equation describes a potential flow. It is important

to note that we are interested in employing exact potential flow solutions to formally

validate them for the Laplace equation. Moreover, our aim is to employ these ele-

mentary flows as foundational components for constructing a desired flow field, rather

than deriving the flows themselves.

4.5.1 Uniform Flow

The most basic type of flow is a uniform steady flow as shown in Figure 4.2. A uniform

flow directed in the positive x-direction has the velocity components u = U and v = 0

everywhere.
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Figure 4.2: Uniform Flow

This type of flow is irrotational and therefore possesses a velocity potential ϕ, which

can be shown as follows:

ϕ = Ux (4.14)

Additionally, the stream function can be expressed as:

ψ = Uy (4.15)

The formal representations of a uniform flow for the stream function and the

velocity potential are given as follows:

Definition 4.4. Uniform Flow for the Stream Function and Velocity Potential

⊢def ∀U y. stream uniform U y = U * y

⊢def ∀U x. velocity uniform U x = U * x

4.5.2 Source/Sink Flow

In two-dimensional fluid dynamics, a source is characterized as a point from which

fluid propagates radially outward, whereas a sink is defined as a negative source,
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exhibiting radial inward fluid motion. These flow patterns are represented in Figures

4.3(a) and 4.3(b), respectively.

(a) (b)Source flow Sink flow
(a) Source Flow

(a) (b)Source flow Sink flow
(b) Sink Flow

Figure 4.3: Source/Sink Flow

The exact potential flow solutions centered at point (x0, y0) for the stream function

and the velocity potential are mathematically expressed as [94]:

ψ(x, y) =
m

2π
tan−1

(
y − y0
x− x0

)
(4.16)

ϕ(x, y) =
m

4π
ln((x− x0)

2 + (y − y0)
2) (4.17)

Here, m denotes the strength of the source. A positive m (m > 0) denotes a source

flow, whereas a negative m (m < 0) indicates a sink flow. Note that (x0, y0) represents

the fixed location of the source or sink. When a parameter is fixed for the entire

problem, it is common to treat it as a constant and omit it from the function arguments

for simplicity.

Now, we formalize the above equations, i.e., Equations (4.16) and (4.17) in HOL

Light as follows:
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Definition 4.5. Source Flow for the Stream Function

⊢def ∀m x y x0 y0. stream source m x y x0 y0 =
m

2 ∗ pi
* atn

(
y− y0

x− x0

)
Definition 4.6. Source Flow for the Velocity Potential

⊢def ∀m x y x0 y0. velocity source m x y x0 y0 =

m

4 ∗ pi
* log ((x− x0)2 + (y− y0)2)

Here, atn and log indicate the inverse of the tangent function and the natural loga-

rithm, respectively. It is important to note that, in contrast to the informal definition

of the equations [94], HOL Light definitions explicitly list all arguments.

In the next subsections, we will use the polar coordinates r and θ to describe the

doublet and vortex flows. Note that uniform and source/sink flows can be similarly

represented using polar coordinates, utilizing the relationships x = r cos θ, y = r sin θ.

These transformations are particularly useful for practical examples.

4.5.3 Doublet Flow

As depicted in Figure 4.4, the doublet is a special flow pattern that arises when

a source and a sink of equal strength are constrained to have a constant ratio of

strength to distance (κ), as the distance approaches zero. The resulting solutions for

the stream function and the velocity potential are as follows:

ψ(r, θ) = − κ

2πr
sin θ (4.18)

ϕ(r, θ) =
κ

2πr
cos θ (4.19)

The next step is to formalize the above equations (Equations (4.18) and (4.19))

in HOL Light:
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Figure 4.4: Doublet Flow

Definition 4.7. Doublet Flow for the Stream Function

⊢def ∀K theta r. stream doublet K theta r = − K

2 ∗ pi ∗ r
* sin(theta)

Definition 4.8. Doublet Flow for the Velocity Potential

⊢def ∀K theta r. velocity doublet K theta r =
K

2 ∗ pi ∗ r
* cos(theta)

where stream doublet and velocity doublet accept the strength K, the radius r

and the angle theta and return the corresponding functions.

4.5.4 Vortex Flow

A two-dimensional, steady flow that circulates about a point is known as a line vortex.

In this type of flow, the streamlines form concentric circles around a specific point

as shown in Figure 4.5. It is important to note that the irrotational nature of the

flow is not contradicted by the potential vortex formulation. Fluid elements travel

in a circular path around the vortex center without rotating about their axes, thus

meeting the condition of irrotational flow.
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Figure 4.5: Vortex Flow

The exact potential flow solutions centered at the origin are mathematically expressed

as:

ψ(r, θ) =
Γ

2π
ln(r) (4.20)

ϕ(r, θ) = − Γ

2π
θ (4.21)

where Γ represents the circulation, which is often positive when moving counter-

clockwise.

Next, we formalize the vortex flow for the stream function and the velocity

potential, i.e., Equations (4.20) and (4.21) as:

Definition 4.9. Vortex Flow for the Stream Function

⊢def ∀gamma r. stream vortex gamma r =
gamma

2 ∗ pi
* log(r)

Definition 4.10. Vortex Flow for the Velocity Potential

⊢def ∀gamma theta. velocity vortex gamma theta =
−gamma
2 ∗ pi

* theta
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4.6 Formal Verification of the Solutions of the

Laplace Equation

In this section, we conduct a formal verification of the exact potential flow solutions

of the Laplace equation. The purpose of this verification is to ensure the correctness

of analytical solutions and then establish their fundamental role in describing fluid

behavior and facilitating engineering applications. With the formal definitions out-

lined previously, an important step is to verify that these potential flow solutions

satisfy the Laplace equation. In other words, this is the main condition for potential

flows to be valid, which is fundamental for understanding fluid behavior in various

contexts. We start with the verification of the source flow for the stream function, i.e.,

Equation (4.16) in HOL Light as follows:

Theorem 4.2. Verification of the Source Flow for the Stream Function

⊢thm ∀m x0 y0 psi.

[A1] (∀x. x ̸= x0) ∧ [A2] (∀y. y ̸= y0) ∧

[A3] (∀x y. psi(x,y) = stream source m x y x0 y0)

⇒ laplace equation psi x y

Assumptions A1 and A2 ensure that the points in a Cartesian coordinate system

are different from each other. Assumption A3 provides the solution of the Laplace’s

equation for the source flow, i.e., Equation (4.16). The proof of the above theorem is

mainly based on the real differentiation of the source flow solution with respect to the

parameters x and y.

We now formally verify the source flow of the velocity potential, i.e., Equa-

tion (4.17) satisfy the Laplace equation as follows:
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Theorem 4.3. Verification of the Source Flow for the Velocity Potential

⊢thm ∀m x0 y0 phi.

[A1] (∀x. x ̸= x0) ∧ [A2] (∀y. y ̸= y0) ∧

[A3] (∀x y. phi(x,y) = velocity source m x y x0 y0)

⇒ laplace equation vel phi x y

Assumptions A1 and A2 are the same as those in Theorem 4.2. Assumption A3 pro-

vides the source flow for the velocity potential, as described by Equation (4.17). The

verification of Theorem 4.3 is similar to that of Theorem 4.2.

Our next step is to formally verify the doublet flow (Equation (4.18)) as the

following HOL Light theorem:

Theorem 4.4. Verification of the Doublet Flow for the Stream Function

⊢thm ∀K psi.

[A1] (λr. &0 < r) ∧

[A2] (∀r theta. psi(r,theta) = stream doublet K theta r))

⇒ laplace in polar psi r theta

Assumption A1 is required to ensure that the radial distance is greater than zero.

Assumption A2 provides the solution of the Laplace equation in polar coordinates

(Equation (4.12)) for doublet flow (Equation (4.18)). The verification of Theorem 4.4

is mainly based on the properties of real derivative [97] and some real arithmetic

reasoning.

Next, we verify the doublet flow of velocity potential in HOL Light:

Theorem 4.5. Verification of the Doublet Flow for the Velocity Potential

⊢thm ∀K p hi.

[A1] (λr. &0 < r) ∧

[A2] (∀r theta. phi(r,theta) = velocity doublet K theta r))

⇒ laplace vel polar phi r theta
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Assumption A1 is the same as that of Theorem 4.4. Assumption A2 provides the ve-

locity potential of doublet flow, i.e., Equation (4.19). The verification of Theorem 4.5

is very similar to that of Theorem 4.4.

Finally, we formally verify the vortex flow of the stream function and the velocity

potential, as given in Equations (4.20) and (4.21) satisfy the Laplace equation as the

following HOL Light theorems:

Theorem 4.6. Verification of the Vortex Flow for the Stream Function

⊢thm ∀gamma psi.

[A1] (λr. &0 < r) ∧

[A2] (∀r theta. psi(r,theta) = stream vortex gamma r))

⇒ laplace in polar psi r theta

Assumption A1 is the same as that of Theorem 4.5. Assumption A2 presents the

vortex flow solution for the stream function, i.e., Equation (4.20) . The conclusion of

Theorem 4.6 provides that the vortex flow solution satisfies the Laplace equation. The

proof of Theorem 4.6 is primarily based on the real differentiation of the vortex flow

solution with respect to the parameters r and theta.

Theorem 4.7. Verification of the Vortex Flow for the Velocity Potential

⊢thm ∀gamma phi.

(∀r theta. phi(r,theta) = velocity vortex gamma theta)) ⇒

laplace vel polar phi r theta

The verification of the above theorem is primarily based on the properties about real

derivatives as well as some real arithmetic reasoning.

In the next section, we use these formally verified solutions to build more com-

plicated flows which are widely applied in the analysis of flow patterns around an

airfoil [98].
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4.7 Applications: Formal Analysis of Standard

Flows

Thanks to the linearity of the Laplace’s equation, more complicated flow fields can be

constructed from the superposition of basic solutions. If ψ1 and ψ2 are the solutions

(stream functions) of the Laplace equation, and their linear combination ψ1 + ψ2 will

also be a solution for a two-dimensional incompressible and irrotational flow. This

unique feature makes this equation a powerful tool to analyze fluid flow problems. The

ability to obtain new flow patterns by superimposing known flows is fundamental to

wing theory, as it provides simple solutions to complex problems [99].

4.7.1 The Rankine Oval

By combining the exact solutions for uniform and source/sink flows, we can construct

a flow field around an oval-shaped object. The resultant configuration is known as

the Rankine oval which is depicted in Figure 4.6 [78]. We start by analyzing the flow

pattern around a source and a sink. The source and sink are placed along the x-axis,

separated by a distance of 2a, as depicted in Figure 4.6(a).

source sink

+a-a -a +a. .
source sink

(a) (b)
(a)

source sink

+a-a -a +a. .
source sink

(a) (b)(b)

Figure 4.6: The Rankine Oval
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The origin is situated equidistantly between them. We now superimpose the uniform,

source and sink flows, all positioned in the x-direction, with a line source located

at (−a, 0) and a line sink of equal and opposite strength located at (+a, 0), as de-

picted in Figure 4.6(b). Assume the strengths of the source and the sink are +m and

−m, respectively. The overall stream function (ψ) and velocity potential (ϕ) for this

combination of flows are expressed as:

ψ = ψuniform + ψsource + ψsink (4.22)

ϕ = ϕuniform + ϕsource + ϕsink (4.23)

Mathematically, they are represented by the combination of Equations (4.14), (4.15),

(4.16) and (4.17) for the stream function and the velocity potential:

ψ(x, y) = −Uy +
m

2π

[
arctan

(
y

x+ a

)
− arctan

(
y

x− a

)]
(4.24)

ϕ(x, y) = Ux+
m

4π
ln

(
(x+ a)2 + y2

(x− a)2 + y2

)
(4.25)

Next, we formally verify these combined flows for the stream function as the

following HOL Light theorem:

Theorem 4.8. Verification of the Rankine Oval for the Stream Function

⊢thm ∀U m a psi x0 x1 y0 y1.

[A1] (∀x. x ̸= a) ∧ [A2] (∀x. x ̸= --a) ∧ [A3] x0 = --a ∧

[A4] x1 = a ∧ [A5] y0 = &0 ∧ [A6] y1 = &0 ∧

[A7] (∀x y. psi(x,y) = sum (0..2) (λn. EL n [--stream uniform U y;

stream source m x y x0 y0; stream sink m x y x1 y1]))

⇒ laplace equation psi x y
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Assumptions A1 and A2 guarantee the validity of our expression by specifying that x

must be different from a and --a, respectively. Asssumptions A3 and A4 provide the

distance from the origin. Assumptions A5 and A6 assert that the points y0 and y1

are equal to zero since the flows are oriented in towards the x-direction. Assumption

A7 provides the combined solutions for the stream function, i.e., Equation (4.24).

Here, the function EL n l extracts the nth element from a list l. The verification of

Theorem 4.8 is mainly based on the properties of real derivatives, some real arithmetic

reasoning and the following HOL Light lemma:

Lemma 4.1. Superposition of the Solutions

⊢lem ∀U m x y x0 x1 y0 y1.

sum (0..2) (λn. EL n [--stream uniform U y; stream source m x y x0 y0;

stream sink m x y x1 y1]) = --stream uniform U y +

stream source m x y x0 y0 + stream sink m x y x1 y1

The above lemma states that the summation of the list equals to the linear combina-

tion of uniform, source and sink flows.

Now, we formally verify the combined flows, i.e., Equation (4.25), for the velocity

potential in HOL Light as follows:

Theorem 4.9. Verification of the Rankine Oval for the Velocity Potential

⊢thm ∀U m a phi x0 x1 y y0 y1.

[A1] (∀x. a < x) ∧ [A2] (∀x. --a < x) ∧ [A3] &0 < y ∧

[A4] x0 = --a ∧ [A5] x1 = a ∧ [A6] y0 = &0 ∧ [A7] y1 = &0 ∧

[A8] (∀x y. phi(x,y) = sum (0..2) (λn. EL n [velocity uniform U x;

velocity source m x x0 y y0; velocity sink m x x1 y y1))

⇒ laplace equation vel phi x y

Assumptions A1 and A2 guarantee the validity of our expression by specifying that

x must be greater than a and --a, respectively. Assumptions A4-A7 are similar to
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Assumptions A3-A6 stated in Theorem 4.8. The verification of Theorem 4.9 is also

very similar to that of Theorem 4.8.

4.7.2 Potential Flow Past a Circular Cylinder

As shown in Figure 4.7 [78], we can build a potential flow solution for the flow around

a circular cylinder using the superposition of a uniform (Figure 6(a)) and a doublet

flow (Figure 6(b)) in the x-direction. This combination produces a non-lifting flow

over the cylinder, as represented in Figure 6(c). The resulting stream function and

velocity potential for this particular combination of potential flows can be given as:

ψ = ψuniform + ψdoublet (4.26)

ϕ = ϕuniform + ψdoublet (4.27)

+ =k
R r θ

Uniform flow Doublet flow Non-lifting flow over a cylinder
(a) Uniform Flow

+ =k
R r θ

Uniform flow Doublet flow Non-lifting flow over a cylinder(b) Doublet Flow

+ =k
R r θ

Uniform flow Doublet flow Non-lifting flow over a cylinder(c) Non-Lifting Flow over a
Cylinder

Figure 4.7: Potential Flow Past a Circular Cylinder

We can mathematically express this combination by adding the solutions for uniform

and doublet flow, i.e., Equations (4.14), (4.15), (4.18) and (4.19). It is known that

y = rsinθ in polar coordinates.
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ψ(r, θ) = U
(
r +

κ

2πr

)
sin θ (4.28)

ϕ(r, θ) = U
(
r − κ

2πr

)
cos θ (4.29)

Next, we formally verify Equation (4.28) in HOL Light as follows

Theorem 4.10. Potential Flow Past a Circular Cylinder for the Stream Function

⊢thm ∀U K y psi.

[A1] (∀r. &0 < r) ∧ [A2] (∀r theta. y = r * sin(theta)) ∧

[A3] (∀r theta. psi(r,theta) = sum (0..1) (∀n. EL n [stream uniform U y;

stream doublet K theta r]))

⇒ laplace in polar psi r theta

Assumption A1 ensures that the radial distance is greater than zero, while Assumption

A2 indicates that y = r * sin(theta) in polar coordinates. Assumption A3 provides

the superposition of the uniform and doublet flow solutions for the stream function,

i.e., Equation (4.28). Similar to Theorem 4.8, we proved a lemma regarding the

superposition of the solutions as well as proving the real derivatives of the solution in

order to formally verify this theorem.

Now, we formally verify Equation (4.29) as the following HOL Light theorem:

Theorem 4.11. Potential Flow Past a Circular Cylinder for the Velocity Potential

⊢thm ∀U K x u.

[A1] (∀r. &0 < r) ∧ [A2] (∀r theta. x = r * cos(theta)) ∧

[A3] (∀r theta. phi(r,theta) = sum (0..1) (∀n. EL n [velocity uniform U x;

velocity doublet K theta r]))

⇒ laplace vel polar phi r theta

The verification of the above theorem is similar to that of Theorem 4.10.
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4.7.3 Potential Flow Past a Rotating Circular Cylinder

Figure 4.8(c) [78] illustrates a flow around a rotating circular cylinder. This flow

can be constructed by combining a uniform flow and a doublet flow, as depicted in

Figure 4.8(a), along with a vortex flow, as shown in Figure 4.8(b). In this context,

the stream function and the velocity potential for this combination of potential flows

can, respectively, be given as:

ψ = ψuniform + ψdoublet + ψvortex (4.30)

ϕ = ϕuniform + ϕdoublet + ϕvortex (4.31)

(a) Non-Lifting Flow over a
Cylinder

(b) Vortex Flow (c) Lifting Flow over a Cylinder

Figure 4.8: Potential Flow Past a Rotating Circular Cylinder

It is important to note that combining a uniform flow and a doublet flow effectively

models the flow around a non-rotating circular cylinder, as given by Equations (4.28)

and (4.29). Therefore, we can write the final mathematical expression of these flows for

the stream function and the velocity potential by adding the solutions, i.e., Equations

(4.20), (4.21), (4.28) and (4.29) as:

ψ(r, θ) = U
(
r +

κ

2πr

)
sinθ +

Γ

2π
ln(r) (4.32)
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ϕ(r, θ) = U
(
r − κ

2πr

)
cosθ + − Γ

2π
θ (4.33)

The above equations can be alternatively written as:

ψ(r, θ) = Ursinθ

(
1 − R2

r2

)
+

Γ

2π
ln(r) (4.34)

ϕ(r, θ) = Urcosθ

(
1 − R2

r2

)
+

Γ

2π
θ (4.35)

where R2 =
m

2πU
and m is the strength of the doublet.

Now, we formally verify Equation (4.32) as the following HOL Light theorem:

Theorem 4.12. Flow Past a Rotating Circular Cylinder for the Stream Function

⊢thm ∀U K y gamma psi.

[A1] (∀r. &0 < r) ∧ [A2] (∀r theta. y = r * sin(theta)) ∧

[A3] (∀r theta. psi(r,theta) = sum (0..2) (∀n. EL n [stream uniform U y;

stream doublet K theta r; stream vortex gamma theta r]))

⇒ laplace in polar psi r theta

Assumptions A1-A2 are the same as those of Theorem 4.10. Assumption A3 provides

the combination of the uniform, doublet and vortex flow solutions for the stream

function, i.e., Equation (4.32). The verification of Theorem 4.12 is similar to that of

Theorem 4.10.

Finally, we formally verify Equation (4.33) in HOL Light as follows:

Theorem 4.13. Flow Past a Rotating Circular Cylinder for the Velocity Potential

⊢thm ∀U K gamma x phi r theta.

[A1] (∀r. &0 < r) ∧ [A2] (∀r theta. x = r * cos(theta)) ∧

[A3] (∀r theta. phi(r,theta) = sum (0..2) (∀n. EL n [velocity uniform U x;

velocity doublet K theta r; velocity vortex gamma theta]))

⇒ laplace vel polar phi r theta
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4.7.4 Summary and Discussion

In this chapter, we presented a higher-order logic formalization of the Laplace equation

both in Cartesian and polar coordinates. We formally modeled fundamental flows such

as the uniform, source/sink, doublet, and vortex flows in the HOL Light theorem

prover. We then formally verified the validity of these exact potential flow solutions

for the Laplace equation. Additionally, we presented the formal verification of the

linearity of the Laplace operator, which is an essential property that enables the

superposition of standard potential flows to construct more complex fluid dynamics.

To illustrate the practical utility of our formalization, we formally verified several

applications such as the Rankine oval, flow past a circular cylinder and flow past

a rotating circular cylinder. More details about our formalizations and proofs are

available in the related HOL Light proof script [100].

A significant contribution of this work is the development of the first formal-

ization of potential flows, with broad applications in aerodynamics, particularly in

airfoil theory. An important aspect of our work is the utilization of theorem proving

into a domain that has been traditionally dominated by numerical techniques. While

computational techniques often rely on approximations and can be prone to round-off

errors and convergence issues, using proof assistants in this domain provide a more

precise and reliable alternative. One of the main challenges of this work is its inter-

disciplinary nature, as it requires a deep understanding of aerodynamic principles,

the integration of mathematics, and the meticulous process of interactive theorem

proving. Another significant challenge is verifying exact potential flow solutions and

their linear combinations governed by the Laplace equation. The proof process must

establish the real derivatives of these solutions and their linear combinations. While
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traditional paper-and-pencil proofs can overlook trivial details, theorem proving de-

mands a substantial amount of time due to the undecidable nature of higher-order

logic and requires every detail to be meticulously provided to the computer. One

of the benefits of this work is that it addresses these challenges by formalizing the

core concepts of potential flow theory, allowing available results to be built upon to

minimize user interaction. Furthermore, all of the verified theorems and lemmas are

general, opening the door to future expansions. We believe that our work can be a

significant step towards bridging the gap between theorem proving and the aerospace

engineering communities, thereby enhancing its applicability in industrial settings.

In this chapter, we have provided a formal analysis of potential flows governed

by the Laplace equation to gain insight into flow fields. In the following chapter, we

address a different problem, focusing on the formal analysis of the behavior of voltage

and current in electrical transmission lines, modeled by the telegrapher’s and wave

equations.
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Chapter 5

Formalization of the Telegrapher’s

and Wave Equations

This chapter presents the formalization of the telegrapher’s equations and their alter-

nate representations, i.e., the wave equations as well as the formal verification of their

analytical solutions in higher-order logic theorem proving. This includes the formal

definitions of the telegrapher’s equations and wave equations both in the time-and

phasor-domains by proving the relationship between these equations in the phasor

domain. Moreover, we develop the reasoning steps for the verification of the analyt-

ical solutions of these equations. In addition, we prove some important properties

of special types of transmission lines that are lossless and distortionless. In order to

demonstrate the utilization of our work, we formally analyze terminated, coupled and

cascaded transmission lines.

As the wave equations can be derived from the telegrapher’s equations to provide

insights into electromagnetic wave propagation in electrical transmission lines, we

present both these equations within a single chapter for comprehensive analysis. In

the following section, we provide an overview of transmission line theory.
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5.1 Brief Review of Transmission Line Theory

Transmission lines are a pivotal technology in electromagnetics because their theory

is easy to understand and akin to circuit theory, making it accessible to most elec-

trical engineers. The theory of transmission lines involves the propagation of voltage

and current waves, which are described by coupled PDEs. In this context, voltage

and current waves are represented as functions of two variables, in contrast to circuit

theory where they are expressed as scalar quantities and functions of a single variable

each. Therefore, the transmission line theory extends the scope of circuit theory by

addressing its inadequacy in explaining wave phenomena. In fact, by adopting the

transmission line theory, one can account for wave behavior and its associated physics,

thereby bridging the theoretical gap left by circuit theory alone. Transmission lines

are comprised of a minimum of two conductors that facilitate an efficient and a reliable

transmission of information and energy. A two-conductor transmission line supports a

transverse electromagnetic (TEM) wave [101], where the electric and magnetic fields

are perpendicular to each other and transverse to the direction of propagation of

waves along the transmission line. TEM waves have a fundamental property of estab-

lishing a distinct relationship between the electric E and the magnetic H fields, which

are specifically related to the voltage V and current I, respectively as the following

Maxwell’s equations:

V = −
ˆ
L

E.dl, (5.1)

I =

˛
L

H.dl (5.2)

The analysis of transmission lines can be made simpler by only focusing on the circuit
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quantities, V and I, rather than directly solving the complex line integral based

Maxwell’s equations (Equations (5.1) and (5.2)) and boundary conditions involving

electric and magnetic fields (E and H). In this regard, we employ an equivalent

circuit in order to represent the transmission line’s behavior. The development of an

equivalent circuit model aims to simplify the complex electromagnetic interactions

inherent in transmission lines by reducing them to a set of lumped elements that can

be analyzed using the circuit theory. Once the equivalent circuit is constructed, the

telegrapher’s equations can be derived using circuit analysis techniques. The solutions

of these differential equations allow us to understand the wave propagation (energy

transmission) in the electrical transmission line. In the next section, we explain the

derivation of the telegrapher’s and wave equations from the corresponding circuit

model.

5.2 Telegrapher’s and Wave Equations

The transmission line or telegrapher’s equations [102], used to model the propagation

of electrical signals and energy along transmission lines. These equations were origi-

nally formulated by Oliver Heaviside in the 1880’s and are an important example of

PDEs in electrical engineering. Figure 5.1 [103] depicts an equivalent circuit model

of a two-conductor transmission line. Here, R represents the line parameter resis-

tance, whereas the other line parameters are the inductance L, the capacitance C,

and the conductance G, which are specified per unit length (∆z). Moreover, V (z, t)

and V (z+∆z, t) are the input and output voltages, respectively. Similarly, I(z, t) and

I(z + ∆z, t) are the input and output currents, respectively. Moreover, both voltage

and current are functions of space and time.
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Figure 5.1: Equivalent Circuit of Two-Conductor Transmission Line

5.2.1 Telegrapher’s and Wave Equations in Time-Domain

The Law of Conservation of Energy, attributed to Kirchhoff, asserts that there is

no loss of voltage throughout a closed loop or circuit; instead, one returns to the

initial point within the circuit and, consequently, to the same initial electric poten-

tial. Hence, any reductions in voltage within the circuit must balance out with the

voltage sources encountered along the same route. By applying the Kirchhoff’s volt-

age law to the circuit of two-conductor transmission line of Figure 5.1, we get the

following equations [5]:

V (z + ∆z, t) − V (z, t) = −R∆zI(z, t) − L∆z
∂I(z, t)

∂t
(5.3)

Next, dividing Equation (5.3) by ∆z and applying the limit ∆z → 0, we obtain:

lim
∆z→0

V (z + ∆z, t) − V (z, t)

∆z
=

−R∆zI(z, t)

∆z
− L

∆z

∆z

∂I(z, t)

∂t
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Finally, by using the definition of the partial derivative, we get:

∂V (z, t)

∂z
= −RI(z, t) − L

∂I(z, t)

∂t
(5.4)

Similarly, by applying the Kirchhoff’s current law to the circuit, we find [5]:

I(z +∆z, t)− I(z, t) = −G∆zV (z +∆z, t)− C∆z
∂V (z +∆z, t)

∂t
(5.5)

Next, dividing Equation (5.5) by ∆z and using the definition of the partial derivative,

we get:

∂I(z, t)

∂z
= −GV (z, t) − C

∂V (z, t)

∂t
(5.6)

Equations (5.4) and (5.6) are known as the telegrapher’s equations that provide a

time-domain relationship between the voltage and current in any transmission line.

Now, we can combine the telegrapher’s equations (Equations (5.4) and (5.6)) to

obtain their alternate representations that are commonly known as the wave equations,

which are more practical to use and provide some additional physical insights and are

mathematically expressed as follows:

∂2V (z, t)

∂z2
− LC

∂2V (z, t)

∂t2
= (RC +GL)

∂V (z, t)

∂t
+RGV (z, t) (5.7)

∂2I(z, t)

∂z2
− LC

∂2I(z, t)

∂t2
= (RC +GL)

∂I(z, t)

∂t
+RGI(z, t) (5.8)

where
∂2

∂z2
and

∂2

∂t2
capture the second-order partial derivative with respect to z and

t, respectively.

Next, we express the space-time voltage and current functions as phasors in

order to reduce the PDEs to ODEs, which will greatly facilitate the derivation of the
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general solutions of these equations.

The relationship between the space-time voltage and current functions and their

phasors can be mathematically expressed as follows [104]:

V (z, t) = Re{V (z)ejωt}

I(z, t) = Re{I(z)ejωt}

where V (z) and I(z) are the phasor components corresponding to V (z, t) and I(z, t),

respectively.

5.2.2 Telegrapher’s and Wave Equations in Phasor Domain

The principal advantage of the phasor representation of the telegrapher’s equations

over the time-domain versions is that we no longer need the derivatives with respect to

time and are left with the derivatives with respect to distance only. This considerably

simplifies the corresponding equations. For instance, the sinusoidally time-varying

case, the telegrapher’s equations (Equations (5.4) and (5.6)) can be rewritten in terms

of phasor quantities by replacing
∂

∂t
with jω. We can derive the telegrapher equation

for voltage from Equation (5.4) as follows:

∂V (z, t)

∂z
= −RI(z, t) − L

∂I(z, t)

∂t

∂

∂z
[Re{V (z)ejωt}︸ ︷︷ ︸

V (z, t)

] = −R[Re{I(z)ejωt}︸ ︷︷ ︸
I(z, t)

] − L
∂

∂t
[Re{I(z)ejωt}︸ ︷︷ ︸

I(z, t)

]

Re
{
ejωt

dV (z)

dz

}
= Re{−RI(z)ejwt − L(jω)ejωtI(z)}
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dV (z)

dz
= (−R− jωL)I(z)

From the above, we can rewrite the telegrapher’s equations for voltage as:

dV (z)

dz
+ (R + jωL)I(z) = 0 (5.9)

We can also derive the following Equation (5.10) from Equation (5.6) in a similar

manner

dI(z)

dz
+ (G+ jωC)V (z) = 0 (5.10)

Here, Equations (5.9) and (5.10) are ODEs due to the fact that V and I are functions

of the single variable z. Equation (5.9) indicates that the rate of change of the phasor

voltage along the transmission line, as a function of position z, is equal to the series

impedance of the line per unit length multiplied by the phasor current. Similarly,

Equation (5.10) states that the rate of change of phasor current along the transmission

line, as a function of position z, is equal to the shunt admittance of the line per unit

length multiplied by the phasor voltage.

A limitation in using the above form of the telegrapher’s equations (Equations

(5.9) and (5.10)) is that we need to solve each of them for both voltage and current.

To reduce such overhead, we can write the telegrapher’s equations using one function

(V(z) or I(z)) as equivalent wave equations. To do this, we first take the derivative

of Equation (5.9) with respect to z :

d

dz

{
dV (z)

dz
= −(R + jωL)I(z)

}
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which can be written as:

d2V (z)

dz2
= −(R + jωL)

dI(z)

dz
(5.11)

Next, we substitute Equation (5.10) in Equation (5.11), to obtain the following equa-

tion that involves only V(z):

d2V (z)

dz2
= γ2V (z) (5.12)

γ is the complex propagation constant and is mathematically expressed as:

γ = α + jβ =
√

(R + jωL)(G+ jωC). (5.13)

where α is the attenuation coefficient and β is the phase coefficient and both are

mathematically expressed as:

α = Re(γ) = Re{
√

(R + jωL)(G+ jωC)}

β = Im(γ) = Im{
√

(R + jωL)(G+ jωC)}

In a similar manner, we derive the second wave equation by taking the derivative

of Equation (5.10) and substituting Equation (5.9) in the resultant equation:

d2I(z)

dz2
= γ2I(z) (5.14)

We can alternatively represent the wave equations (Equations (5.12) and (5.14)) as:

d2V (z)

dz2
− γ2V (z) = 0 (5.15)
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d2I(z)

dz2
− γ2I(z) = 0 (5.16)

By employing phasor representation, we have reduced the time-domain telegrapher’s

and wave equations to a set of ODEs. These ODEs are then solved in the phasor

domain, enabling us to obtain the solutions for the original time-domain PDEs. In

the following section, we present the details for the formal analysis of the telegrapher’s

and wave equations.

5.3 Proposed Methodology

The proposed approach for formally analyzing the telegrapher’s equations and their

derived form (the wave equations) using higher-order logic theorem proving is depicted

in Figure 5.2. The input to this framework, represented by a rectangle, consist of the

mathematical formulation of the telegrapher’s and wave equations. The first step of

our proposed approach is to formalize the telegrapher’s and the wave equations in

time and phasor domains. The formalization of these equations requires HOL Light’s

libraries of multivariate calculus, such as differential, transcendental and complex

vectors. The next step is to establish theorems that enable the formal verification of

solutions for these equations by leveraging the advantages of the phasor domain rep-

resentation of these equations. Moreover, the relationship between the telegrapher’s

and the wave equations in the phasor domain is formally verified using these theo-

rems. Subsequently, we use the solutions in the phasor domain to verify the PDEs

by establishing a relationship between the corresponding functions in the phasor and

time-domains.
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Figure 5.2: Proposed Methodology for the Telegrapher’s and Wave Equations

All theorems of the proposed framework of the telegrapher’s equations are verified

in HOL Light in a generic way in order to obtain general (universally quantified)

solutions of the related PDEs. The next step is to verify some important properties of

transmission lines, such as the propagation constant and the characteristic impedance

specifically focusing on the case of lossless and distortionless lines as shown in Figure

5.2. Moreover, in order to demonstrate the practical effectiveness of the proposed

formalization, we conduct a formal analysis of terminated, coupled and cascaded

transmission lines.

In the following section, we present the formalization of the telegrapher’s and

wave equations in the HOL Light proof assistant.

80



5.4 Formalization of the Telegrapher’s and Wave

Equations

In this section, we present the formalization of the telegrapher’s equations and the

wave equations for voltage and current in HOL Light in both time- and-phasor do-

mains.

5.4.1 Formalization of the Telegrapher’s and Wave Equations

in Time Domain

We first start the formalization of the telegrapher’s equations (Equations (5.4)

and (5.6)) in time domain as follows:

Definition 5.1. Telegrapher’s Equation for Voltage

⊢def ∀V I R L z t. telegraph equation voltage V I R L z t ⇔

(complex derivative (λz. V z t) z) =

--(Cx L * complex derivative (λt. I z t) t - Cx R * (I z t))

Definition 5.2. Telegrapher’s Equation for Current

⊢def ∀V I G C z t. telegraph equation current V I G C z t ⇔

(complex derivative (λz. I z t) z) =

--(Cx C * complex derivative (λt. V z t) t) - Cx G * (V z t)

where telegraph equation voltage and telegraph equation current mainly ac-

cept the functions V and I of type C × C → C, representing the voltage and current,

respectively, and return the corresponding telegrapher’s equations. The variables R:R,

L:R, G:R C:R, z:C, and t:C represent the resistance, inductance, conductance, ca-

pacitance, the spatial coordinate and the time variable, respectively.
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It is important to note that we use complex derivative to formalize the time-

domain PDEs due to the involvement of the phasor domain representations of the

voltage and current functions in the analysis. Since a phasor domain representation

of a function is a vector in complex plane with some magnitude and angle, the variables

z and t are considered as complex numbers for convenience and the corresponding

voltages and currents equations equally hold under this choice.

To model the wave equations for voltage and current, we need the transmission

line constants, such as R, L, G and C. Therefore, we use the type abbreviation in

HOL Light providing a compact representation of these constants as follows:

Definition 5.3. Transmission Line Constants

new type abbrev ("R",‘:R’)

new type abbrev ("L",‘:R’)

new type abbrev ("G",‘:R’)

new type abbrev ("C",‘:R’)

new type abbrev ("trans line const",‘:R # L # G # C’)

Now, we formalize the wave equations for both voltage (Equation (5.7)) and

current (Equation (5.8)) in time-domain as follows:

Definition 5.4. Wave Equation for Voltage

⊢def ∀V R L G C z t.

wave voltage equation V ((R,L,G,C):trans line const) z t ⇔

higher complex derivative 2 (λz. V z t) z -

Cx L * Cx C * (higher complex derivative 2 (λt. V z t) t =

(Cx R * Cx C + Cx G * Cx L) * (complex derivative (λt. V z t) t) +

Cx R * Cx G * (V z t))
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Definition 5.5. Wave Equation for Current

⊢def ∀I R L G C z t.

wave current equation I ((R,L,G,C):trans line const) z t ⇔

higher complex derivative 2 (λz. I z t) z -

Cx L * Cx C (higher complex derivative 2 (λt. I z t) t =

(Cx R * Cx C + Cx G * Cx L) * (complex derivative (λt. I z t) t) +

Cx R * Cx G * (I z t))

5.4.2 Formalization of the Telegrapher’s and Wave Equations

in Phasor Domain

Now, we formalize the telegrapher’s equation in the phasor domain for voltage (Equa-

tion (5.9)) as:

Definition 5.6. Telegrapher’s Equation

⊢def ∀V I R L w z. telegraph equation phasor voltage V I R L w z ⇔

telegraph voltage V I R L w z = Cx(&0)

where telegraph equation phasor voltage accepts the complex functions V:C →

C and I:C → C, the line parameters R:R and L:R, the angular frequency ω:R, the

spatial coordinate z:C, and returns the corresponding telegrapher’s equation. Here,

the function telegraph voltage models the left-hand side of Equation (5.9), and is

formalized as follows:

Definition 5.7. Left-Hand Side of Equation (5.9)

⊢def ∀V I R L w z. telegraph voltage V I R L w z =

complex derivative (λz. V(z)) z + (Cx R + ii * Cx w * Cx L) * I(z)

Similarly, we formalize Equation (5.10) in HOL Light as follows:

83



Definition 5.8. Telegrapher’s Equation

⊢def ∀V I G C w z. telegraph equation phasor current V I G C w z ⇔

telegraph current V I G C w z = Cx(&0)

with

Definition 5.9. Left-Hand Side of Equation (5.10)

⊢def ∀V I G C w z. telegraph current V I G C w z =

complex derivative (λz. I(z)) z + (Cx G + ii * Cx w * Cx C) * V(z)

where telegraph current models the left-hand side of Equation (5.10).

Now, to verify a relationship between the telegrapher’s and wave equations for

voltage and current in the phasor domain, we first formalize the propagation constant

in HOL Light as follows:

Definition 5.10. Propagation Constant

⊢def ∀R L G C w.

propagation constant ((R,L,G,C):trans line const) w =

csqrt ((Cx R + ii * Cx w * Cx L) * (Cx G + ii * Cx w * Cx C))

The function propagation constant accepts the transmission line parameters R, L,

G, C and angular frequency ω, and returns the corresponding function.

The wave equations (Equations (5.15) and (5.16)) in higher-order logic are for-

malized as:

Definition 5.11. Wave Equation for Voltage

⊢def ∀V tlc w z. wave equation phasor voltage V z tlc w ⇔

wave voltage V z tlc w = Cx(&0)

where the function wave voltage defined as:
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Definition 5.12. Left-Hand Side of Equation (5.15)

⊢def ∀V tlc w z.

wave voltage V z tlc w = higher complex derivative 2 (λz. V(z)) z -

(propagation constant tlc w)2 * V(z)

Definition 5.13. Wave Equation for Current

⊢def ∀I tlc w z. wave equation phasor current I z tlc w z ⇔

wave current I z tlc w = Cx(&0)

where the function wave current defined as:

Definition 5.14. Left-Hand Side of Equation (5.16)

⊢def ∀I tlc w z.

wave current I z tlc w = higher complex derivative 2 (λz. I(z)) z -

(propagation constant tlc w)2 * I(z)

5.4.3 Relationship between Telegrapher’s and Wave Equa-

tions in Phasor Domain

In this section, we formally verify the relationship between the telegrapher’s and wave

equations for voltage and current in the phasor domain as the following HOL Light

theorems:

Theorem 5.1. Relationship between Telegrapher’s and Wave Equations for Voltage

⊢thm ∀V I R L G C w z.

let tlc = ((R,L,G,C):trans line const) in

[A1] (λz. complex derivative (λz. V z) z) complex differentiable at z ∧

[A2] I complex differentiable at z ∧

[A3] telegraph current V I G C w z = Cx(&0)

⇒ complex derivative (λz. telegraph voltage V I R L w z) z =

wave voltage V z tlc w
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Assumption A1 ensures that the first-order derivative of the function V is differentiable

at z. Assumption A2 asserts the differentiability of the function I at z. Assumption

A3 provides the telegrapher’s equation for current, i.e., Equation (5.10). The proof of

Theorem 5.1 is mainly based on the definitions of the telegrapher’s and wave equations

and some classical properties of the complex derivative along with some complex

arithmetic reasoning. Similarly, we formally verify this relationship for the current in

phasor domain.

Theorem 5.2. Relationship between Telegrapher’s and Wave Equations for Current

⊢thm ∀V I R L G C w z.

let tlc = ((R,L,G,C):trans line const) in

[A1] (λz. complex derivative (λz. I z) z) complex differentiable at z ∧

[A2] V complex differentiable at z ∧

[A3] telegraph voltage V I R L w z = Cx(&0)

⇒ complex derivative (λz. telegraph current V I G C w z) z =

wave current I z tlc w

The verification of Theorem 5.2 is very similar to that of Theorem 5.1. More details

about their verification can be found at [105].

5.5 Formal Verification of the Solutions of the

Telegrapher’s and Wave Equations

Analyzing transmission lines is mainly based on finding out solutions of these PDE

based telegrapher’s and wave equations that are further used to analyze various as-

pects of signal propagation, such as attenuation, distortion, reflection, and dispersion

along the transmission line. One of the examples is to understand the behavior of
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high-frequency signals, where the distributed parameters of the transmission line sig-

nificantly affect the signal integrity. In this section, we formally verify the correctness

of the analytical solutions of the telegrapher’s equations and their alternate repre-

sentations, i,e., wave equations in the phasor domain pertaining to sinusoidal steady

state and in the time-domain that are concerned with arbitrary variations over time.

5.5.1 Verification of the Solutions in Phasor Domain

We can mathematically express the general solutions of the wave equations (and thus

the telegrapher’s equations) (Equations (5.15) and (5.16)) as follows:

V (z) = V +(z) + V −(z) = V +
0 e

−γz + V −
0 e

γz (5.17)

I(z) = I+(z) + I−(z) = I+0 e
−γz + I−0 e

γz (5.18)

Here, V +
0 , V −

0 , I+0 , I−0 are the complex constants that can be determined by boundary

conditions. Similarly, the transmission line voltage V +(z) and current I+(z) represent

the forward-going waves (propagating in the +z direction) and voltage V −(z) and

current I−(z) are the backward-going waves (propagating in the −z direction).

If we insert the solution for V (z) in Equation (5.9), we get:

dV (z)

dz
= −γV +

0 e
−γz + γV −

0 e
γz = −(R + jωL)I(z) (5.19)

Next, we rearrange the above equation to obtain the current I(z):

I(z) =
γ

R + jωL
(V +

0 e
−γz − V −

0 e
γz) (5.20)

Note that both expressions (Equations (5.18) and (5.20)) for the current are

the same. The characteristic impedance, which is the ratio of the line voltage and
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current, is an important characteristic of transmission line and can be mathematically

expressed as follows:

Z0 =
V +
0

I+0
=

−V −
0

I−0
=

√
R + jωL

G+ jωC
=
R + jωL

γ
= R0 + jX0 (5.21)

where R0 and X0 are the real and imaginary parts of Z0. The characteristic impedance

Z0 and the propagation constant γ are two important properties of the transmission

line due to their direct dependence on the line parameters R, L, G, C and the phasor

of the operation.

Next, we define the characteristic impedance in HOL Light as follows:

Definition 5.15. Characteristic Impedance

⊢def ∀R L G C w. characteristic impedance (R,L,G,C) w =

(let tlc = ((R,L,G,C):trans line const) in
Cx R+ ii ∗ Cx w ∗ Cx L

propagation constant tlc w

The next step is to formalize the general solutions (Equations (5.17) and (5.20))

in HOL Light:

Definition 5.16. Wave Solution for Voltage

⊢def ∀V1 V2 tlc w z. wave solution voltage phasor V1 V2 tlc w z =

V1 * cexp(--(propagation constant tlc w) * z) +

V2 * cexp((propagation constant tlc w) * z)

where V1 and V2 in the formalization refer to the complex constants V +
0 and V −

0 in

Equation (5.17), respectively. The parameters w and z represent the angular frequency

and the spatial coordinate, respectively.
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Definition 5.17. Wave Solution for Current

⊢def ∀V1 V2 tlc w z. wave solution current phasor V1 V2 tlc w z =

Cx(&1)

characteristic impedance tlc w
*

(V1 * cexp(--(propagation constant tlc w) * z) -

V2 * cexp((propagation constant tlc w) * z))

Next, we formally verify the general solutions (Equations (5.18) and (5.20)) of

the wave equations for voltage and current, (represented by Equations (5.15) and

(5.16)), in the HOL Light theorem prover as follows:

Theorem 5.3. Correctness of the Solution of the Wave Equation for Voltage

⊢thm ∀V1 V2 V R L G C w z.

let tlc = ((R,L,G,C):trans line const) in

wave equation voltage phasor

(λz. wave solution voltage phasor V1 V2 tlc w z) V tlc w

Theorem 5.4. Correctness of the Solution of the Wave Equation for Current

⊢thm ∀V1 V2 I R L G C w z.

let tlc = ((R,L,G,C):trans line const) in

wave equation current phasor

(λz. wave solution current phasor V1 V2 tlc w z) I tlc w

The verification of Theorems 5.3 and 5.4 is mainly based on four lemmas about the

complex differentiation of the solutions, given in Table 5.1.

Since there exists a relationship between the telegrapher’s and wave equations,

as proven in Section 5.4, the solutions of the wave equations also satisfy the telegra-

pher’s equations. We now formally verify the general solution (Equation 5.17) of the

telegrapher’s equation for the voltage, i.e. Equation (5.9).
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Table 5.1: Lemmas of the Derivatives of General Solutions in Phasor Domain

Mathematical Form Formalized Form

dV (z)

dz
= −γV1e

−γz + γV2e
γz

Lemma 1 (First-Order Derivative of General Solution for Voltage):

∀V1 V2 R L G C w z.

let tlc = ((R,L,G,C):trans line const) in
complex derivative (λz.

wave solution voltage phasor V1 V2 tlc w z) z =

V1 * (--(propagation constant tlc w)) *

cexp (--(propagation constant tlc w) * z) +

V2 * (propagation constant tlc w) *

cexp ((propagation constant tlc w) * z)

d2V (z)

dz2
= γ2V1e

−γz + γ2V2e
γz

Lemma 2 (Second-Order Derivative of General Solution for Voltage):

∀V1 V2 R L G C w z.

let tlc = ((R,L,G,C):trans line const) in
higher complex derivative 2 (λz.

wave solution voltage phasor V1 V2 tlc w z) z =

V1 * (propagation constant tlc w)2 *

cexp (--(propagation constant tlc w) * z) +

V2 * (propagation constant tlc w)2 *

cexp ((propagation constant tlc w) * z

dI(z)

dz
=

1

Z0
(−γV1e

−γz − γV2e
γz)

Lemma 3 (First-Order Derivative of General Solution for Current):

∀V1 V2 R L G C w z.

let tlc = ((R,L,G,C):trans line const) in
complex derivative (λz.

wave solution current phasor V1 V2 tlc w z) z =

Cx(&1)

characteristic impedance tlc w
*

(V1 * (--propagation constant tlc w) *

cexp (--(propagation constant tlc w) * z) -

V2 * (propagation constant tlc w) *

cexp ((propagation constant tlc w) * z))

d2I(z)

dz2
=

1

Z0
(γ2V1e

−γz − γ2V2e
γz)

Lemma 4 (Second-Order Derivative of General Solution for Current):

∀V1 V2 R L G C w z.

let tlc = ((R,L,G,C):trans line const) in
higher complex derivative 2 (λz.

wave solution current phasor V1 V2 tlc w z) z =

Cx(&1)

characteristic impedance tlc w
*

(V1 * (propagation constant tlc w)2 *

cexp (--(propagation constant tlc w) * z) -

V2 * (propagation constant tlc w)2 *

cexp ((propagation constant tlc w) * z))

Theorem 5.5. Correctness of the Solution of the Telegrapher’s Equation for Voltage

⊢thm ∀V1 V2 V I R L G C w.

let tlc = ((R,L,G,C):trans line const) in

[A1] Cx R + ii * Cx w * Cx L ̸= Cx(&0) ∧
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[A2] (∀z. V z = wave solution voltage phasor V1 V2 tlc w z) ∧

[A3] (∀z. I z = wave solution current phasor V1 V2 tlc w z)

⇒ telegraph equation phasor voltage V I R L w z

Assumption A1 ensures that expression R+ jωL is not equal to zero. Assumptions A2

and A3 provide the solutions of the wave equations for the voltage and the current,

respectively. The verification of the above theorem is based on the properties of the

complex differentiation along with some complex arithmetic reasoning.

Theorem 5.6. Correctness of the Solution of the Telegrapher’s Equation for Current

⊢thm ∀V1 V2 V I R L G C w.

let tlc = ((R,L,G,C):trans line const) in

[A1] Cx R + ii * Cx w * Cx L ̸= Cx(&0) ∧

[A2] (∀z. V z = wave solution voltage phasor V1 V2 tlc w z) ∧

[A3] (∀z. I z = wave solution current phasor V1 V2 tlc w z)

⇒ telegraph equation phasor current V I G C w z

Assumptions A1-A3 are the same as those of Theorem 5.5. The conclusion of the

theorem provides the telegrapher’s equation for the current, i.e., Equation 5.10. The

verification of the above theorem is similar to that of Theorem 5.5.

5.5.2 Verification of Properties of Transmission Lines

A transmission line is characterized by two essential properties, namely its propaga-

tion constant γ and characteristic impedance Z0. These properties are specified by

the angular frequency ω and the line parameters R, L, G and C. Understanding

and optimizing the transmission line characteristics help engineers and designers to

achieve efficient signal transmission, maintain signal integrity, and ensure the reliable

operation of these systems. In the following, we formally verify these transmission

line properties for the case of lossless and distortionless lines.
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5.5.2.1 Lossless Line

The main purpose of a transmission line is to facilitate the transmission of information

between distant locations with minimal signal degradation that can be achieved by

reducing the signal loss. This is one of the crucial requirements in the construction

of an efficient and a reliable transmission line. In the case of a lossless transmission

line, the elements R (resistance) and G (conductance) can be considered as negligible

or effectively zero:

R = G = 0

The characteristic impedance of a lossless transmission line can now be expressed in

a simplified form by using the above values of R and G in Equation (5.21) as:

Z0 =

√
jωL

jωC
=

√
L

C

We now formally verify the characteristic impedance for a lossless line as the

following HOL Light theorem:

Theorem 5.7. Characteristic Impedance for a Lossless Line

⊢thm ∀R L G C w.

let tlc = ((R,L,G,C):trans line const) in

[A1] w > &0 ∧ [A2] L > &0 ∧ [A3] C > &0

[A4] R = &0 ∧ [A5] G = &0

[A6] Cx G + ii * Cx w * Cx C ̸= Cx(&0)

[A7] csqrt(Cx L * Cx C) ̸= Cx(&0)

⇒ characteristic impedance tlc w =
csqrt(Cx(L) ∗ Cx(C))

Cx(C)

Assumptions A1-A3 guarantee that the angular frequency ω, the line parameters L and

C are positive real values. Assumptions A4-A5 assert that the line parameters R and G
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are equal to zero, which is an assumption for a lossless transmission line. Assumptions

A6 and A7 ensure that the expressions G+ jωC and
√
LC are not equal to zero. The

proof of the above theorem is mainly based on complex arithmetic reasoning.

Similarly, the attenuation and phase constants expressed in Equation (5.13)

becomes:
α = 0 (5.22)

β = ω
√
LC (5.23)

This implies that the transmission line has no signal attenuation, and as a result, the

propagation constant can be represented by a purely imaginary number:

γ = jβ = jω
√
LC

Next, we verify the attenuation and phase constants (Equations (5.22) and (5.23))

in HOL Light as follows:

Theorem 5.8. Attenuation Constant for a Lossless Line

⊢thm ∀R L G C w.

let tlc = ((R,L,G,C):trans line const) in

[A1] w > &0 ∧ [A2] L > &0 ∧ [A3] C > &0

[A4] R = &0 ∧ [A5] G = &0

⇒ Re(propagation constant tlc w) = 0

Asummptions A1-A5 are the same as those of Theorem 5.7. The proof of this theorem

requires complex arithmetic simplification.

Theorem 5.9. Phase Constant for a Lossless Line

⊢thm ∀R L G C w.

let tlc = ((R,L,G,C):trans line const) in

[A1] w > &0 ̸= Cx(&0) ∧ [A2] L > &0 ∧ [A3] C > &0

[A4] R = &0 ∧ [A5] G = &0

⇒ Im(propagation constant tlc w) = w * sqrt(L * C)
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Asummptions A1-A5 are the same as those of Theorem 5.8. The proof of this theorem

is also similar to that of Theorem 5.8.

5.5.2.2 Distortionless Line

A distortionless line refers to a transmission medium characterized by an attenua-

tion constant α that exhibits no variation with changes in frequency while the phase

constant β is linearly dependent on frequency.

For a distortionless transmission line, the elements R and G are related as:

R

L
=
G

C

Now, the characteristic impedance of the transmission line is expressed as:

Z0 =

√
R(1 + jωL/R)

R(1 + jωC/G)
=

√
R

G
=

√
L

C

Now, formally verify the characteristic impedance for a distortionless line in

HOL Light as follows:

Theorem 5.10. Characteristic Impedance

⊢thm ∀R L G C w.

let tlc = ((R,L,G,C):trans line const) in

[A1] L > &0 ∧ [A2] C > &0 [A2] R > &0

[A4] G > &0 ∧ [A5] Cx G + ii * Cx w * Cx C ̸= Cx(&0)

[A6]
R

L
=

G

C

⇒ characteristic impedance tlc w =
csqrt(Cx(L) ∗ Cx(C))

Cx(C)

Assumptions A1-A4 assert that the transmission line parameters are positive. As-

sumption A5 indicates that the expression G+ jωC is not equal to zero. Assumption
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A6 is an assumption for a distortionless line. The proof of this theorem is primarily

based on complex arithmetic reasoning and complex arithmetic simplification.

The propagation constant (Equation (5.13)) becomes:

γ =

√
RG

(
1 +

jωL

R

)(
1 +

jωC

G

)

γ =
√
RG

(
1 +

jωC

G

)
= α + jβ

or

α =
√
RG, β = ω

√
LC (5.24)

We can see that the attenuation constant α is independent of the frequency, whereas

β is a linear function of frequency.

Next, we formally verify the attenuation and phase constants as the following

HOL Light theorems, respectively:

Theorem 5.11. Attenuation Constant for Distortionless Line

⊢thm ∀R L G C w.

let tlc = ((R,L,G,C):trans line const) in

[A1] L > &0 ∧ [A2] R > &0 [A3] G > &0 [A4]
R

L
=

G

C

⇒ Re(propagation constant tlc w) = sqrt(R * G)

Assumptions A1-A4 are the same as those of Theorem 5.10. The verification of the

above theorem is similar to that of Theorem 5.10.

Theorem 5.12. Phase Constant for Distortionless Line

⊢thm ∀R L G C w. let tlc = ((R,L,G,C):trans line const) in

[A1] L > &0 ∧ [A2] R > &0 [A3] G > &0

[A4] C > &0 ∧ [A5]
R

L
=

G

C

⇒ Im(propagation constant tlc w) = w * sqrt(L * C)
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In the following section, we verify the general solutions of the time-domain PDEs

by considering a lossless line, where we assume both resistance R and conductance G

to be zero.

5.5.3 Verification of the PDEs Solutions in Time-Domain

It is useful to examine the complete time functions for understanding the nature of

the voltage and current within a transmission line. We can find the corresponding

time-domain expressions for voltage and current (solution in the time-domain) on the

line by multiplying the phasor of the voltage and current with the harmonic time

variation term ejwt and taking its real part as follows:

V (z, t) = Re{V (z)ejωt} (5.25)

I(z, t) = Re{I(z)ejωt} (5.26)

Next, we use Equation (5.17) in the time-domain solution (Equation (5.25)) and get:

V (z, t) = Re{(V +
0 e

−γz + V −
0 e

γz)ejωt}

V (z, t) = Re{V +
0 e

−γzejωt + V −
0 e

γzejωt}

By splitting the propagation constant in real and imaginary parts, i.e., γ = α + jβ,

we can write the above equation for voltage as follows:

V (z, t) = Re{V +
0 e

−(α+jβ)zejωt + V −
0 e

(α+jβ)zejωt}

We know that α is equal to zero for a lossless transmission line. Thus, we get:

V (z, t) = Re{V +
0 e

j(ωt−βz) + V −
0 e

j(ωt+βz)} (5.27)
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After applying Euler’s formula to the above equation and taking the real part of the

solution, we have:

V (z, t) = V +
0 cos(ωt− βz) + V −

0 cos(ωt+ βz) (5.28)

where we assume V +
0 and V −

0 to be real.

Using Definition 5.16, we formalize the general solution (Equation (5.25)) in the time-

domain for voltage as follows:

Definition 5.18. General Solution for Voltage in Time-Domain

⊢def ∀V1 V2 tlc w z t.

wave solution voltage time V1 V2 tlc w z t =

Re((wave solution voltage phasor V1 V2 tlc w z) * cexp(ii * Cx w * t))

where the function wave solution voltage time uses the phasor given by the volt-

age function wave solution voltage phasor to construct the formal definition of

Equation (5.25).

Next, we formally verify the general solution for voltage in the time-domain in

HOL Light as follows:

Theorem 5.13. General Solution of Wave Equation for Voltage

⊢thm ∀V1 V2 R L G C w.

let tlc = ((R,L,G,C):trans line const) in

[A1] w > &0 ∧ [A2] L > &0 ∧ [A3] C > &0 ∧

[A4] R = &0 ∧ [A5] G = &0 ∧ [A6] (∀t. Im t = &0) ∧

[A7] (∀z. Im z = &0) ∧ [A8] Im V1 = &0 ∧ [A9] Im V2 = &0 ∧

[A10](∀z t. V z t = Cx(wave solution voltage time V1 V2 tlc w z t))

⇒ wave voltage equation V tlc z t
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Assumptions A1-A3 ensure that the angular frequency ω, the line parameters L and C

are positive real values. Assumptions A4-A5 assert that the line parameters R and G

are equal to zero, which is an assumption for a lossless transmission line. Assumptions

A6-A7 ensure that the imaginary parts of the variables z and t are equal to zero in

the time-domain. Assumptions A8-A9 guarantee that the coefficients V1 and V2 are

real. Assumption A10 provides the solution of the wave equation for voltage, i.e.,

Equation (5.28). The proof of the above theorem is mainly based on the following

Lemma 5.1 which gives the relationship between phasor and time-domain functions as

well as four important lemmas about the complex differentiation of the time-domain

solution with respect to the parameters z and t, which are given in Table 5.2.

Lemma 5.1. Relationship between Phasor and Time-Domain Functions for Voltage

⊢lem ∀V1 V2 R C L G w z t.

let tlc = ((R,L,G,C):trans line const) in

[A1] w > &0 ∧ [A2] L > &0 ∧ [A3] C > &0 ∧

[A4] R = &0 ∧ [A5] G = &0

⇒ wave solution voltage time V1 V2 tlc w z t =

Re(V1) * (cos(w * Re t - (Im(propagation constant tlc w)) * Re z)) +

Re(V2) * (cos(w * Re t + Im((propagation constant tlc w)) * Re z))

Assumptions A1-A5 are the same as those of Theorem 5.13. The verification of

Lemma 5.1 is mainly based on Theorem 5.8 and the properties of transcendental

functions alongside some complex arithmetic reasoning.
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Table 5.2: Lemmas of the Derivatives of General Solutions for Voltage in Time-Domain

Mathematical Form Formalized Form

∂V (z, t)

∂z
= V1 sin(ωt− βz)β−

V2 sin(ωt + βz)β

Lemma 1
(First-Order Partial Derivative of General Solution

for Voltage with respect to distance):

∀V1 V2 R L G C w.

let tlc = ((R,L,G,C):trans line const)

[A1] w > &0 ∧ [A2] L > &0 ∧ [A3] C > &0 ∧
[A4] R = &0 [A5] G = &0 ∧ [A6] (∀t. Im t = &0) ∧
[A7] (∀z. Im z = &0) ∧ [A8] Im V1 = &0 ∧ [A9] Im V2 = &0 ∧
⇒ complex derivative (λz.

wave solution voltage time V1 V2 tlc w z t) z =

Cx (Re V1 * (--sin (w * Re t - (w * sqrt (L * C)) * Re z)) *

(--(w * sqrt (L * C)))) + Re V2 * (--sin (w * Re t +

(w * sqrt (L * C)) * Re z))* ((w * sqrt (L * C)))

∂2V (z, t)

∂z2
= −V1 cos(ωt− βz)β2−

V2 cos(ωt + βz)β2

Lemma 2
(Second-Order Partial Derivative of General Solution

for Voltage with respect to distance):

∀V1 V2 R L G C w.

let tlc = ((R,L,G,C):trans line const)

[A1] w > &0 ∧ [A2] L > &0 ∧ [A3] C > &0 ∧
[A4] R = &0 [A5] G = &0 ∧ [A6] (∀t. Im t = &0) ∧
[A7] (∀z. Im z = &0) ∧ [A8] Im V1 = &0 ∧ [A9] Im V2 = &0 ∧
⇒ higher complex derivative 2 (λz.

wave solution voltage time V1 V2 tlc w z t) z =

Cx (Re V1 * (--cos (w * Re t - (w * sqrt (L * C)) * Re z)) *

(w * sqrt (L * C))2 + Re V2 * (--cos (w * Re t +

(w * sqrt (L * C)) * Re z)) * ((w * sqrt (L * C))2))

∂V (z, t)

∂t
= −V1 sin(ωt− βz)ω−

V2 sin(ωt + βz)ω

Lemma 3
(First-Order Partial Derivative of General Solution

for Voltage with respect to time):

∀V1 V2 R L G C w.
let tlc = ((R,L,G,C):trans line const)

[A1] w > &0 ∧ [A2] L > &0 ∧ [A3] C > &0 ∧
[A4] R = &0 [A5] G = &0 ∧ [A6] (∀t. Im t = &0) ∧
[A7] (∀z. Im z = &0) ∧ [A8] Im V1 = &0 ∧ [A9] Im V2 = &0 ∧
⇒ complex derivative (λt.

wave solution voltage time V1 V2 tlc w z t) t =

Cx (Re V1 * (--sin (w * Re t - (w * sqrt (L * C)) * Re z)) * w +

Re V2 * (--sin (w * Re t + (w * sqrt (L * C)) * Re z)) * w)

∂2V (z, t)

∂t2
= −V1 cos(ωt− βz)ω2−

V2 cos(ωt + βz)ω2

Lemma 4
(Second-Order Partial Derivative of General Solution

for Voltage with respect to time):

∀V1 V2 R C L G w.

let tlc = ((R,L,G,C):trans line const)

[A1] w > &0 ∧ [A2] L > &0 ∧ [A3] C > &0 ∧
[A4] R = &0 [A5] G = &0 ∧ [A6] (∀t. Im t = &0) ∧
[A7] (∀z. Im z = &0) ∧ [A8] Im V1 = &0 ∧ [A9] Im V2 = &0 ∧
⇒ higher complex derivative 2 (λt.

wave solution voltage time V1 V2 tlc w z t) t =

Cx (Re V1 * (--cos (w * Re t - (w * sqrt (L * C)) * Re z)) * w2 +

Re V2 * (--cos (w * Re t + (w * sqrt (L * C)) * Re z)) * w2)
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Similarly, we use Equation (5.20) in the time-domain solution (Equation (5.26))

for current as follows:

I(z, t) = Re{ γ

R + jωL
(V +

0 e
−γz − V −

0 e
γz)ejωt}

After rearranging the above equation, we have:

I(z, t) = Re{ γ

R + jωL
(V +

0 e
j(ωt−βz) − V −

0 e
j(ωt+βz))} (5.29)

Next, by applying Euler’s formula and taking the real part of the solution, we get:

I(z, t) =
γ

R + jωL
(V +

0 cos(ωt− βz) − V −
0 cos(ωt+ βz)) (5.30)

Now, using Definition 5.17, we formalize the general solution (Equation (5.26)) in the

time-domain for current as follows:

Definition 5.19. General Solution for Current in Time-Domain

⊢def ∀V1 V2 tlc w z t.

wave solution current time V1 V2 tlc w z t =

Re((wave solution current phasor V1 V2 tlc w z) * cexp(ii * Cx w * t))

where wave solution current time accepts the phasor solution of the current

wave solution current phasor that is multiplied with the harmonic time varia-

tion term and returns its real part.

Theorem 5.14. General Solution of Wave Equation for Current

⊢thm ∀V1 V2 R L G C w.

let tlc = ((R,L,G,C):trans line const) in

[A1] w > &0 ∧ [A2] L > &0 ∧ [A3] C > &0 ∧
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[A4] R = &0 ∧ [A5] G = &0 ∧ [A6] (∀t. Im t = &0) ∧

[A7] (∀z. Im z = &0) ∧ [A8] Im V1 = &0 ∧ [A9] Im V2 = &0 ∧

[A10]
Cx(&1)

characteristic impedance tlc w
= &0 ∧

[A11] (∀z t. I z t = Cx(wave solution current time V1 V2 tlc w z t))

⇒ wave current equation I tlc z t

Assumptions A1-A9 are the same as those of Theorem 5.13. Assumption A10 ensures

that the imaginary part of the inverse characteristic impedance is equal to zero. As-

sumption A11 provides the solution of the wave equation for current, i.e., Equation

(5.30). Similarly, the proof of Theorem 5.14 is primarily based on the formally veri-

fied lemmas about the relationship between phasor and time-domain functions, i.e.,

Lemma 5.2 and derivatives of the general solution for current as given in Table 5.3.

Lemma 5.2. Relationship between Phasor and Time-Domain Functions for Current

⊢lem ∀V1 V2 R L G C w z t.

let tlc = ((R,L,G,C):trans line const) in

[A1] w > &0 ∧ [A2] L > &0 ∧ [A3] C > &0 ∧

[A4] R = &0 ∧ [A5] G = &0

⇒ wave solution current time V1 V2 tlc w z t =

Re(
Cx(&1)

characteristic impedance tlc w
) *

(Re V1 * cos(w * Re t - Im(propagation constant tlc w) * Re z) -

Re V2 * cos(w * Re t + Im(propagation constant tlc w) * Re z))

Assumptions A1-A5 are the same as those of Lemma 5.1. The verification of the above

lemma is similar to that of Lemma 5.1.
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Table 5.3: Lemmas of the Derivatives of General Solutions for Current in Time-Domain

Mathematical Form Formalized Form

∂I(z, t)

∂z
=

1

Z0
(V1 sin(ωt− βz)β+

V2 sin(ωt + βz)β)

Lemma 1 (First-Order Differentiation of General Solution
for Current with respect to distance):

∀V1 V2 R L G C w.
let tlc = ((R,L,G,C):trans line const) in
[A1] w > &0 ∧ [A2] L > &0 ∧ [A3] C > &0 ∧
[A4] R = &0 ∧ [A5] G = &0 ∧ [A6] (∀t. Im t = &0) ∧
[A7] (∀z. Im z = &0) ∧ [A8] Im V1 = &0 ∧ [A9] Im V2 = &0

⇒ complex derivative (λz.
wave solution current time V1 V2 tlc w z t) z =

Cx (Re (
Cx(&1)

characteristic impedance tlc w
) *

(Re V1 * --sin (w * Re t - (w * sqrt (L * C)) * Re z) *
--(w * sqrt (L * C)) + Re V2 * sin (w * Re t +

(w * sqrt (L * C)) * Re z) * (w * sqrt (L * C))))

∂2I(z, t)

∂z2
=

1

Z0
(−V1 cos(ωt− βz)β2+

V2 cos(ωt + βz)β2)

Lemma 2 (Second-Order Differentiation of General Solution
for Current with respect to distance):

∀V1 V2 R L G C w.
let tlc = ((R,L,G,C):trans line const) in
[A1] w > &0 ∧ [A2] L > &0 ∧ [A3] C > &0 ∧
[A4] R = &0 [A5] G = &0 ∧ [A6] (∀t. Im t = &0) ∧
[A7] (∀z. Im z = &0) ∧ [A8] Im V1 = &0 ∧ [A9] Im V2 = &0 ∧
⇒ higher complex derivative 2 (λz.

wave solution current time V1 V2 tlc w z t) z =

Cx (Re (
Cx(&1)

characteristic impedance tlc w
) *

(Re V1 * --cos (w * Re t - (w * sqrt (L * C)) * Re z) *

(w * sqrt (L * C))2 + Re V2 * cos (w * Re t +

(w * sqrt (L * C)) * Re z) * (w * sqrt (L * C))2))

∂I(z, t)

∂t
=

1

Z0
(−V1 sin(ωt− βz)ω+

V2 sin(ωt + βz)ω)

Lemma 3 (First-Order Differentiation of General Solution
for Current with respect to time):

∀V1 V2 R L G C w.
let tlc = ((R,L,G,C):trans line const) in
[A1] w > &0 ∧ [A2] L > &0 ∧ [A3] C > &0 ∧
[A4] R = &0 [A5] G = &0 ∧ [A6] (∀t. Im t = &0) ∧
[A7] (∀z. Im z = &0) ∧ [A8] Im V1 = &0 ∧ [A9] Im V2 = &0 ∧
⇒ complex derivative (λt.

wave solution current time V1 V2 tlc w z t) t =

Cx (Re (
Cx(&1)

characteristic impedance tlc w
) *

Cx (Re V1 * (--sin (w * Re t - (w * sqrt (L * C)) *

Re z)) * w + Re V2 * (sin (w * Re t +

(w * sqrt (L * C)) * Re z)) * w)

∂2I(z, t)

∂t2
=

1

Z0
(−V1 cos(ωt− βz)ω2+

V2 cos(ωt + βz)ω2)

Lemma 4 (Second-Order Differentiation of General Solution
for Current with respect to time):

∀V1 V2 R L G C w.
let tlc = ((R,L,G,C):trans line const) in
[A1] w > &0 ∧ [A2] L > &0 ∧ [A3] C > &0 ∧
[A4] R = &0 [A5] G = &0 ∧ [A6] (∀t. Im t = &0) ∧
[A7] (∀z. Im z = &0) ∧ [A8] Im V1 = &0 ∧ [A9] Im V2 = &0 ∧
⇒ higher complex derivative 2 (λt.
wave solution current time V1 V2 tlc w z t) t =

Cx (Re (
Cx(&1)

characteristic impedance tlc w
) * (Re V1 *

--cos (w * Re t - (w * sqrt (L * C)) * Re z) *

(w * sqrt (L * C))2 + Re V2 * cos (w * Re t +

(w * sqrt (L * C)) * Re z) * (w * sqrt (L * C))2))
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Since the wave and telegrapher’s equations are related to each other, the general

solutions of the wave equations satisfy the telegrapher’s equations in the time-domain

and is verified as the following HOL Light theorems:

Theorem 5.15. General Solution of Telegrapher’s Equation for Voltage

⊢thm ∀V1 V2 V I R L G C w.

let tlc = ((R,L,G,C):trans line const) in

[A1] w > &0 ∧ [A2] L > &0 ∧ [A3] C > &0 ∧

[A4] R = &0 ∧ [A5] G = &0 ∧ [A7] (∀t. Im t = &0) ∧

[A8] (∀z. Im z = &0) ∧ [A9] Im V1 = &0 ∧ [A10] Im V2 = &0 ∧

[A11] (∀z t. V z t = Cx(wave solution voltage time V1 V2 tlc w z t))

⇒ telegraph equation voltage V I R L z t

Theorem 5.16. General Solution of Telegrapher’s Equation for Current

⊢thm ∀V1 V2 V I R L G C w.

let tlc = ((R,L,G,C):trans line const) in

[A1] w > &0 ∧ [A2] L > &0 ∧ [A3] C > &0 ∧

[A4] R = &0 ∧ [A5] G = &0 ∧ [A6] (∀t. Im t = &0) ∧

[A7] (∀z. Im z = &0) ∧ [A8] Im V1 = &0 ∧ [A9] Im V2 = &0 ∧

[A10] Im(
Cx(&1)

characteristic impedance tlc w
) = &0 ∧

[A11] (∀z t. I z t = Cx(wave solution current time V1 V2 tlc w z t))

⇒ telegraph equation current V I G C z t

The assumptions of the above theorems are the same as those of Theorems 5.14 and

5.13. Similar to the verification of the solutions of the wave equations in the time-

domain, we used Lemmas 5.1 and 5.2 as well as the verified lemmas of the derivatives

for voltage and current in order to verify the correctness of the wave solutions for the

telegrapher’s equations. More details about the verification of the time-domain PDEs

can be found in our proof script [105].
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5.6 Applications

In this section, we illustrate the practical effectiveness of our proposed approach by

conducting the formal analysis of the behavior of various types of transmission lines.

5.6.1 Terminated Transmission Lines

Terminated transmission lines are a type of electrical transmission line where the end

is connected to a termination component, such as a resistor or an impedance-matching

network. In this section, we perform a formal analysis of a terminated transmission

line by formally verifying the load impedance and the voltage reflection coefficient.

Moreover, we formally analyze short-circuited and open-circuited transmission lines

that are commonly used in the construction of resonant circuits and matching stubs.

These lines correspond to the special cases of the load impedance: ZL = 0 for a

short-circuited line and ZL = ∞ for an open-circuited line.

Terminated transmission lines in arbitrary complex load impedances are used in

the majority of sinusoidal steady-state applications. They play a vital role in ensuring

a smooth transfer of signals or power, especially in applications where signal quality

and system performance are critical. We consider the essential behavior of line voltage,

current, and impedance for a portion of a lossless transmission line terminated with a

load ZL, as shown in Figure 5.3 [5] . In this section, we formally analyze a terminated

transmission line by formally verifying in HOL Light various important properties,

such as load impedance and voltage reflection coefficient.

Consider a line terminated by the load ZL at z = 0 as depicted in Figure 5.3.

The characteristic impedance is the ratio of the traveling voltage and current waves:

V +
0

I+0
= Z0
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Source

𝑧

𝑧 = 0

𝐼(𝑧)
𝐼𝐿

𝑉𝐿

+

-

+

-

Z(𝑧)

𝑉+𝑒−𝑗𝛽𝑧

𝑉−𝑒+𝑗𝛽𝑧
𝑍0 𝑍𝐿

Figure 5.3: A Terminated Transmission Line

Substituting the boundary condition z = 0, in Equations (5.17) and (5.20), we get

V (0) = V +
0 + V −

0 (5.31)

I(0) =
V +
0

Z0

− V −
0

Z0

(5.32)

We can define the line impedance Z(z) at any position z on the line as seen in

Figure 5.3:

Z(z) =
V (z)

I(z)
= Z0

V +
0 e

−γz + V −
0 e

γz

V +
0 e

−γz − V −
0 e

γz
(5.33)

Here, the line impedance is not equal to Z0 when the line is terminated, i.e., a leftward-

traveling reflected wave exists. We can find the line impedance at the load position,

i.e., ZL, by dividing above two equations:

V (z)

I(z)
|z=0 =

V (0)

I(0)
= ZL = Z0

V +
0 + V −

0

V +
0 − V −

0

(5.34)

Now, we define the line impedance in HOL Light as follows:

Definition 5.20. Line Impedance

⊢def ∀V1 V2 tlc w z.

line impedance V1 V2 tlc w z =
wave solution voltage phasor V1 V2 tlc w z

wave solution current phasor V1 V2 tlc w z
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where the HOL Light function line impedance represents the ratio of the total volt-

age V (z) to the total current I(z) at any position z along the line.

Next, we formally verify that the voltage and current on the transmission line

at point z = 0 have to abide to the boundary condition imposed by the load.

Theorem 5.17. Line Impedance at the Load Position (z = 0)

⊢thm ∀V1 V2 R L G C w z.

let tlc = ((R,L,G,C):trans line const) in

[A1] z = Cx(&0)

⇒ line impedance V1 V2 tlc w z =

characteristic impedance tlc w *
V1+ V2

V1− V2

The verification of Theorem 5.17 is based on the formalizations of line and character-

istic impedances alongside some complex arithmetic reasoning.

We can rearrange Equation (5.34) as the ratio of the reflected voltage amplitude to

the incident voltage amplitude

V −
0

V +
0

=
ZL − Z0

ZL + Z0

(5.35)

This ratio of the phasors of the reverse and forward waves at the load position (z = 0)

is defined as voltage reflection coefficient.

ΓL =
V −
0 (0)

V +
0 (0)

=
V −
0

V +
0

=
ZL − Z0

ZL + Z0

(5.36)

Next, we define the voltage reflection coefficient in HOL Light as follows:

Definition 5.21. Voltage Reflection Coefficient

⊢def ∀V1 V2 tlc w z.

voltage reflection coefficient V1 V2 tlc w z =

line impedance V1 V2 tlc w z− characteristic impedancetlc w

line impedance V1 V2 tlc w z+ characteristic impedance tlc w
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Now, we verify that the voltage reflection coefficient is equal to the ratio of

reflected voltage to the incident voltage as the following HOL Light theorem:

Theorem 5.18. Relating Forward-Going Voltage to Reflected Voltage

⊢thm ∀V1 V2 R L G C w z.

let tlc = ((R,L,G,C):trans line const) in

[A1] V1 ̸= V2 ∧ [A2] z = Cx(&0)

[A3] characteristic impedance tlc w ̸= Cx(&0)

⇒ voltage reflection coefficient V1 V2 tlc w z =
V2

V1

Assumption A1 ensures that voltages are different from each other. Assumption A2

represents the boundary condition z = 0. Assumption A3 guarantees that the charac-

teristic impedance is nonzero. The verification of the above theorem is mainly based

on Theorem 5.17 along with some complex arithmetic reasoning.

We can also obtain the line impedance at the load (z = 0) from the reflection

coefficient by rewriting the relationship in Equation (5.36):

ZL = Z0
1 + ΓL

1 − ΓL

(5.37)

Here, the quantity ΓL is known as the voltage reflection coefficient. Now, we verify

the above relationship as the following HOL Light theorem.

Theorem 5.19. Final Equation for Line Impedance at the Load Position

⊢thm ∀V1 V2 R L G C w z.

let tlc = ((R,L,G,C):trans line const) in

[A1] V1 ̸= V2 ∧ [A2] z = Cx(&0) ∧

[A3] characteristic impedance tlc w ̸= Cx(&0)

⇒ line impedance V1 V2 tlc w z = characteristic impedance tlc w *

Cx(&1) + voltage reflection coefficient V1 V2 tlc w z

Cx(&1)− voltage reflection coefficient V1 V2 tlc w z
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Assumptions A1-A3 are the same as those of Theorem 5.18. The verification of the

above theorem is primarily based on Theorems 5.17 and 5.18 alongside some complex

arithmetic reasoning.

In the following subsections, we formally analyze short-circuited and open-

circuited transmission lines as special cases of a terminated transmission line.

5.6.1.1 Short-Circuited Line

When the load end of a transmission line is connected in such a way that it creates

a short circuit, it is referred to as a short-circuited transmission line. These lines

are extensively used in microwave engineering and Radio-Frequency (RF) systems to

ensure a proper impedance matching, which is essential for an efficient power trans-

mission and preserving the integrity of signals. Figure 5.4 [5] depicts a transmission

line of length l that is terminated by a short circuit ensuring a zero load impedance,

i.e., ZL = 0.

𝑍𝑠𝑐

𝑧 = - 𝑙 𝑧 = 0

𝑙

𝑍0

𝐼𝐿

𝑉𝐿 = 0

Figure 5.4: Short-Circuited Line

Moreover, the short-circuited termination forces the load voltage VL to zero. There-

fore, from Equation (5.17), we have:

VL = V (z)|z=0 = 0
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V +e−jβz + V −ejβz|z=0 = 0

V + + V − = 0

This implies

V − = −V + (5.38)

We employ Equation (5.20) to find the load current flowing through the short circuit

by utilizing Equation (5.38) as:

IL = I(z)|z=0

=
1

Z0

[V + − V −|z=0

=
2V +

Z0

(5.39)

Everywhere else on the transmission line, the voltage and current are mathematically

expressed as [5]:

V (z) = V +(e−jβz − ejβz) = −2V +j sin(βz)

I(z) =
V +

Z0

(e−jβz + ejβz) =
2V +

Z0

cos(βz)
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The line impedance observed when looking towards the far end (short-circuited loca-

tion) on the transmission line is:

Z(z) =
V (z)

I(z)
= Z0

−2V +j sin(βz)

2V + cos(βz)
= −jZ0 tan(βz)

Next, we formally verify the short-circuited line in HOL Light as follows:

Theorem 5.20. Short-Circuited Line

⊢thm ∀V1 V2 R L G C w z.

let tlc = ((R,L,G,C):trans line const) in

[A1] (V2 = --V1) ∧ [A2] w > &0 ∧ [A3] L > &0 ∧

[A4] C > &0 ∧ [A5] R = &0 ∧ [A6] G = &0 ∧ [A7] V1 ̸= Cx (&0)

⇒ line impedance V1 V2 tlc w z =

--ii * characteristic impedance tlc w *

ctan(Cx(Im(propagation constant tlc w)) * z)

Assumption A1 provides the condition for the short-circuited line. Assumptions A2-A4

guarantee that the angular frequency ω and the parameters L and C cannot be negative

or zero, respectively. Assumptions A5-A6 assert that the line parameters R and G are

equal to zero, which are assumptions for a lossless transmission line. Assumption A7

provides that the coefficient V1 is different than zero. The verification of Theorem

5.20 is primarily based on the following lemma:

Lemma 5.3. Lemma for Short-Circuited Line

⊢lem ∀V1 V2 R L G C w z.

let tlc = ((R,L,G,C):trans line const) in

[A1] V2 = --V1 ∧ [A2] w > &0 ∧ [A3] L > &0 ∧

[A4] C > &0 ∧ [A5] R = &0 ∧ [A6] G = &0 ∧ [A7] V1 ̸= Cx(&0)

⇒ line impedance V1 V2 tlc w z = characteristic impedance tlc w *

--Cx(&2) ∗ ii ∗ V1 ∗ csin(Cx(Im(propagation constant tlc w)) ∗ z)
Cx(&2) ∗ V1 ∗ ccos(Cx(Im(propagation constant tlc w)) ∗ z)
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Every assumption in the above lemma is the same as that of Theorem 5.20. The proof

of Lemma 5.3 is mainly based on Theorems 5.8 and 5.9, properties of the trancendental

functions along with some complex arithmetic reasoning.

5.6.1.2 Open-Circuited Line

When a transmission line is open at the load end, it is referred to as an open-circuited

transmission line. Since the terminal is characterized by an open circuit configuration,

the signal or current is unable to propagate beyond the open-circuited point. Open-

circuited transmission lines are employed in antenna design to model the behavior of

open-ended radiating devices. Figure 5.5 [5] depicts an open-circuited transmission

line with an infinite load impedance, i.e., ZL = ∞.

𝑍𝑜𝑐

𝑧 = - 𝑙 𝑧 = 0

𝑙

𝑍0

𝐼𝐿= 0

𝑉𝐿

+

-

Figure 5.5: Open-Circuited Line

An open-circuited transmission line forces the load current IL to be zero. Therefore,

by using Equation (5.20) we have:

IL = I(z)|z=0 = 0

V +

Z0

e−jβz − V −

Z0

ejβz|z=0 = 0

V + + V −

Z0

= 0
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Thus,

V − = V + (5.40)

Note that the load voltage VL appearing across the open circuit can be found from

Equation (5.17) using Equation (5.40):

VL = V (z)|z=0

= V +e−jβz + V −ejβz|z=0

= V + + V − = 2V + (5.41)

Everywhere else on the transmission line, the voltage and current are mathematically

expressed as [5]:

V (z) = V +(e−jβz + ejβz) = 2V + cos(βz)

I(z) =
V +

Z0

(e−jβz − ejβz) = −2V +

Z0

j sin(βz) =
2V +

Z0

e−jπ/2 sin(βz)

Next, we formally verify the open-circuited line in HOL Light as follows:

Theorem 5.21. Open-Circuited Line

⊢thm ∀V1 V2 R L G C w z.

let tlc = ((R,L,G,C):trans line const) in

[A1] (V2 = V1) ∧ [A2] w > &0 ∧ [A3] L > &0 ∧

[A4] C > &0 ∧ [A5] R = &0 ∧ [A6] G = &0 ∧ [A7] V1 ̸= Cx(&0)

⇒ line impedance V1 V2 tlc w z = ii * characteristic impedance tlc w *

ccot (Cx(Im(propagation constant tlc w)) * z)
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Assumption A1 ensures the condition for the open-circuited line. The rest of the as-

sumptions are the same as that of Theorem 5.20.

Similar to Theorem 5.20, the proof of the above theorem is mainly based on the

following lemma:

Lemma 5.4. Lemma for Open-Circuited Line

⊢lem ∀V1 V2 R L G C w z.

let tlc = ((R,L,G,C):trans line const) in

[A1] (V2 = V1) ∧ [A2] w > &0 ∧ [A3] L > &0 ∧

[A4] C > &0 ∧ [A5] R = &0 ∧ [A6] G = &0 ∧ [A7] V1 ̸= Cx (&0) ∧

⇒ line impedance V1 V2 tlc w z = characteristic impedance tlc w *

Cx(&2) ∗ ii ∗ V1 ∗ ccos(Cx(Im(propagation constant tlc w)) ∗ z)
--Cx(&2) ∗ V1 ∗ csin(Cx(Im(propagation constant tlc w)) ∗ z)

The proof of the above lemma is mainly based on the formally verified lemmas

about the exponential functions alongwith some complex arithmetic reasoning. This

completes the formal analysis of the terminated, short-circuited and open-circuited

transmission lines. The details about the analysis can be found in the related proof

script [105].

5.6.2 Coupled Transmission Lines

In various transmission line applications, the proximity of neighboring lines often re-

sults in a level of coupling. This close proximity leads to modifications in the electro-

magnetic fields, consequently influencing the propagating voltage and current waves

and in turn, altering the characteristic impedance of the transmission line. While this

coupling may pose a drawback where it leads to undesired signals, commonly referred

to as cross-talk, it can also serve as a mean of intentionally transferring a set amount

of signal to another circuit for various purposes such as monitoring, measurement,
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or signal processing [106]. There exist two forms of coupling, namely electric and

magnetic. The electric coupling results from charges on one line inducing charges on

another, often explained by mutual capacitance. The magnetic coupling, on the other

hand, arises from the interaction of magnetic flux between the lines and is typically

described by mutual inductance. Figure 5.6 [107] shows a generic circuit model for

Coupled Transmission Lines (CTLs). Under the assumption of lossless conditions, we

consider two isolated transmission lines characterized by distributed inductances and

capacitances per unit length, represented as Li and Ci for i = 1, 2. The respective

propagation velocities and characteristic impedances are defined as vi = 1/
√
LiCi

and Zi =
√
Li/Ci, respectively. To model the interaction between these lines, mutual

inductance and capacitance per unit length, denoted as Lm and Cm, are introduced.

VG1

G2V

ZL1

ZL2

G1Z

ZG2

Z1

2Z

l

Figure 5.6: Coupled Transmission Lines

The dynamics of the CTLs can then be mathematically described as follows [106]:

∂V1
∂z

= −L1
∂I1
∂t

− Lm
∂I2
∂t

(5.42)

∂V2
∂z

= −L2
∂I2
∂t

− Lm
∂I1
∂t

(5.43)
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∂I1
∂z

= −C1
∂V1
∂t

+ Cm
∂V2
∂t

(5.44)

∂I2
∂z

= −C2
∂V2
∂t

+ Cm
∂V1
∂t

(5.45)

These equations are generalizations of the telegrapher’s equations incorporating the

mutual inductance and capacitance, which were originally developed for a single trans-

mission line.

To overcome the considerable challenges of solving time-domain PDEs, we utilize

the phasor concept to transform them into a set of coupled Ordinary Differential

Equations (ODEs) for the voltages and currents. For sinusoidal steady-state (phasor)

excitation of the lines, we obtain by replacing ∂/∂t⇒ jω [108]:

dV1
dz

= −jωL1I1(z) − jωLmI2(z) (5.46)

dV2
dz

= −jωLmI1(z) − jωL2I2(z) (5.47)

dI1
dz

= −jωC1V1(z) + jωCmV2(z) (5.48)

dI2
dz

= jωCmV1(z) − jωC2V2(z) (5.49)

In the next subsections, we briefly present the formal modeling and verification of

coupled transmission lines using the generalized telegrapher’s equations. More details

regarding the formalization of this application and the verification of the solutions of

the related equations are available in [109].
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5.6.2.1 Formal Modeling of Coupled Transmission Lines

We first formalize Equations (5.46) and (5.47) capturing the voltages on CTLs in HOL

Light as follows:

Definition 5.22. First Equation for Voltage

⊢def ∀V1 V2 I1 I2 L1 L2 Lm w z.

coupled vol ode fst ((V1,V2),(I1,I2))(L1,L2),Lm) z ⇔

complex derivative (λz. V1(z)) z =

--ii * Cx w * (Cx L1 * I1(z) + Cx Lm * I2(z))

Definition 5.23. Second Equation for Voltage

⊢def ∀V1 V2 I1 I2 L1 L2 Lm w z.

coupled vol ode snd ((V1,V2),(I1,I2))(L1,L2),Lm) z ⇔

complex derivative (λz. V2(z)) z =

--ii * Cx w * (Cx Lm * I1(z) + Cx L2 * I2(z))

where coupled vol ode fst and coupled vol ode snd use the complex-derivative

function in HOL Light to model the telegrapher’s equations.

The variables L1:R and Lm:R represent the distributed and mutual inductance per

unit length, respectively. Here, the variables z:C, and w:R denote the spatial coor-

dinate and the angular frequency, respectively.

Similarly, we can formalize Equations (5.48) and (5.49) capturing the currents

on CTLs as:

Definition 5.24. First Equation for Current

⊢def ∀V1 V2 I1 I2 C1 C2 Cm w z.

coupled cur ode fst ((V1,V2),(I1,I2))(C1,C2),Cm) z ⇔
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complex derivative (λz. I1(z)) z =

--ii * Cx w * (Cx (C1) * V1(z) - Cx (Cm) * V2(z))

Definition 5.25. Second Equation for Current

⊢def ∀V1 V2 I1 I2 C1 C2 Cm w z.

coupled cur ode snd ((V1,V2),(I1,I2))(C1,C2),Cm) z ⇔

complex derivative (λz. I2(z)) z =

--ii * Cx w * (--Cx (Cm) * V1(z) + Cx (C2) * V2(z))

5.6.2.2 Formal Verification of Coupled Transmission Lines

To simplify the analysis of the telegrapher’s equations, we consider the scenario of the

identical transmission lines. In this case, we have L1 = L2 ≡ L0 and C1 = C2 ≡ C0,

so that β1 = β2 = ω
√
L0C0 ≡ β and Z1 = Z2 =

√
L0/C0 ≡ Z0. Additionally, the

wave propagation speed is defined as v0 = 1/
√
L0C0. If two lossless coupled lines have

the same self-inductance parameters L1 = L2 ≡ L0 and self-capacitance parameters

C1 = C2 ≡ C0, the coupled-line structure is considered symmetric. The final solution

for symmetric coupled lines can be efficiently derived by combining two single-line

scenarios. This is achieved by applying two specific types of excitations: even and odd

modes. In the even mode, currents in the conductors exhibit equal magnitudes and

flow in parallel directions, while in the odd mode, currents in the conductors possess

equal magnitudes but flow in opposite directions.

We now mathematically express the solutions of the telegrapher’s equations for

the CTLs in terms of even and odd modes for the voltages and currents as follows:

V1(z) =
e−jβ+z + ΓL+e

−2jβ+lejβ+z

1 − ΓG+ΓL+e−2jβ+l
V+︸ ︷︷ ︸

even

+
e−jβ−z + ΓL−e

−2jβ−lejβ−z

1 − ΓG−ΓL−e−2jβ−l
V−︸ ︷︷ ︸

odd

(5.50)
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V2(z) =
e−jβ+z + ΓL+e

−2jβ+lejβ+z

1 − ΓG+ΓL+e−2jβ+l
V+︸ ︷︷ ︸

even

− e−jβ−z + ΓL−e
−2jβ−lejβ−z

1 − ΓG−ΓL−e−2jβ−l
V−︸ ︷︷ ︸

odd

(5.51)

Similarly, the general solutions for the currents can be mathematically express as:

I1(z) =
1

Z+

e−jβ+z − ΓL+e
−2jβ+lejβ+z

1 − ΓG+ΓL+e−2jβ+l
V+︸ ︷︷ ︸

even

+
e−jβ−z − ΓL−e

−2jβ−lejβ−z

1 − ΓG−ΓL−e−2jβ−l
V−︸ ︷︷ ︸

odd

 (5.52)

I2(z) =
1

Z−

e−jβ+z − ΓL+e
−2jβ+lejβ+z

1 − ΓG+ΓL+e−2jβ+l
V+︸ ︷︷ ︸

even

− e−jβ−z − ΓL−e
−2jβ−lejβ−z

1 − ΓG−ΓL−e−2jβ−l
V−︸ ︷︷ ︸

odd

 (5.53)

In this context, the parameters β± and Z± indicate the wave numbers and the

impedances, respectively and they can be mathematically express as follows:

β+ = ω
√

(L0 + Lm)(C0) − Cm

β− = ω
√

(L0 − Lm)(C0) + Cm

(5.54)

and

Z+ =

√
L0 + Lm

C0 − Cm

Z− =

√
L0 − Lm

C0 + Cm

(5.55)

To formalize the general solutions of the telegrapher’s equations for voltages and

currents, we first define the reflection coefficients g1, g2, g3, and g4, corresponding

to ΓL+, ΓG+, ΓL−, and ΓG−. We also define the transmission line parameters L1, L2,
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C1, and C2 for identical lines as 4-tuples, along with the complex constants Vp and

Vm, associated with V+ and V−, in HOL Light.

new type abbrev (‘‘ref coef’’,‘: (g1 × g2 × g3 × g4)’)

new type abbrev (‘‘ind cap’’,‘: (L1 × L2 × C1 × C2)’)

new type abbrev (‘‘vol cons’’,‘: (Vp × Vm )’)

In addition, the types of coefficients are given in Table 5.4.

Table 5.4: Data Types of Coefficients

Parameter
Description

Standard
Symbol

HOL Light
Symbol: Type

Reflection coefficient at the load in even
mode

ΓL+ g1: C

Reflection coefficient at the generator in even
mode

ΓG+ g2: C

Reflection coefficient at the load in odd mode ΓL− g3: C
Reflection coefficient at the generator in odd
mode

ΓG− g4: C

Complex constant V+ Vm: C
Complex constant V− Vp: C

We now present the formalization of the general solutions of the telegrapher’s

equations (Equations (5.46)-(5.49)) for voltage and current in vector form. For brevity,

we only provide the solutions for the first voltage and current, i.e., Equations (5.50)

and (5.52). These solutions are formalized in HOL Light as follows:

Definition 5.26. Vector Form of the General Solutions for the Voltages

⊢def ∀Vm Vp V1 V2 L0 Lm C0 Cm I1 I2 g1 g2 g3 g4 z l w.

vol sol vec ((V1,V2),(I1,I2))(Vm,Vp)((L0,Lm),(C0,Cm))(g1,g2,g3,g4) z l w ⇔

(let vlcr = ((V1,V2),(I1,I2)) and tlc = ((L0,Lm),(C0,Cm)) and

rc = (g1,g2,g3,g4) and vc = (Vm,Vp) in
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vector[V1 z; V2 z] = vector[vol sol fst vc tlc rc z l w;

vol sol snd vc tlc rc z l w])

Here, vol sol fst and vol sol snd represent the formalization of the general solu-

tions for the voltages.

Definition 5.27. Vector Form of the General Solutions for the Currents

⊢def ∀Vm Vp V1 V2 L0 Lm C0 Cm I1 I2 g1 g2 g3 g4 z l w.

vol sol vec ((V1,V2),(I1,I2))(Vm,Vp)((L0,Lm),(C0,Cm))(g1,g2,g3,g4) z l w ⇔

(let vlcr = ((V1,V2),(I1,I2)) and tlc = ((L0,Lm),(C0,Cm)) and

rc = (g1,g2,g3,g4) and vc = (Vm,Vp) in

vector[I1 z; I2 z] = vector[cur sol fst vc tlc rc z l w;

cur sol snd vc tlc rc z l w])

Similarly, cur sol fst and cur sol snd represent the formalization of the general

solutions for the currents. The final step is to formally verify the correctness of the so-

lutions of the generalized telegrapher’s equations as the following HOL Light theorem:

Theorem 5.22. Verification of the General Solutions of the Telegrapher’s Equation

⊢thm ∀V1 V2 I1 I2 C1 C2 L1 L2 Vm Vp L0 Lm C0 Cm g1 g2 g3 g4 l w.

let tlc = ((L0,Lm),(C0,Cm)) and ind = ((L1,L2),Lm) and

cap = (C1,C2),Cm) and vlcr = ((V1,V2),(I1,I2)) and

rc = (g1,g2,g3,g4) and vc = (Vm,Vp) in

[A1] &0 < L1 ∧ [A2] &0 < L2 ∧ [A3] &0 < C1 ∧ [A4] &0 < C2

[A5] Cm < C0 ∧ [A6] Lm < L0 ∧ [A7] &0 < Cm ∧ [A8] &0 < Lm

[A9] L1 = L0 ∧ [A10] L2 = L0 ∧ [A11] C1 = C0 ∧ [A12] C2 = C0

[A13] (∀z. vol sol vec vlcr tlc rc z l w) ∧

[A14] (∀z. cur sol vec vlcr tlc rc z l w)

⇒ vol ode mat rep vlcr ind w z ∧ cur ode mat rep vlcr cap w z
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Assumptions A1-A4 ensure that the inductances and capacitances are positive quan-

tities. Assumptions A5-A6 indicate that the distributed capacitance and inductance

are greater than the mutual inductance and capacitance, respectively. Assumptions

A7-A8 guarantee that the mutual capacitance and inductance are greater than zero.

Assumptions A9-A12 model the conditions pertaining identical transmission lines. As-

sumptions A13 and A14 provide the general solutions of the telegrapher’s equations

for the voltages and the currents in vector form. Finally, the conclusion of the theo-

rem presents the generalized telegrapher’s equations, i.e., Equations (5.46)-(5.49). The

verification of Theorem 5.22 is mainly based on the following four important formally

verified lemmas about the complex derivatives of the general solutions. Details about

these lemmas and their proofs can be found in the related HOL Light script [110].

5.6.3 Cascaded Transmission Lines

The applications presented in the previous sections regarding terminated and cou-

pled transmission lines may reveal some limitations such as impedance mismatch

and crosstalk, which complicates their design and analysis. In general, transmission

lines are categorized as short, medium or long transmission lines. For instance, long

transmission lines are essential for effective power and data transmission over long

distances. Furthermore, to represent some scenarios, like impedance matching and

operational flexibility, a single classification may not be adequate, necessitating the

use of cascaded transmission lines, where these lines are connected in series, such

as short-short or short-medium and vice versa [108]. These lines are generally repre-

sented as two-port networks that are electrical circuits comprising of lumped elements,

such as resistors, capacitors and inductors, with pairs of terminals on sending and re-

ceiving ends, enabling a connection to the external networks [111]. Such two-port
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networks are traditionally modeled using, so-called, ABCD parameters [112], which

are closely related to the telegrapher’s equations as both are used to describe the

behavior of transmission lines in electrical networks. For example, long transmission

lines are modeled using the telegrapher’s equations to account for distributed electrical

properties, and their behavior is compactly represented by ABCD parameters. This

representation provide a more comprehensive and versatile framework that can accom-

modate various transmission lines configurations, particularly in complex, multi-line,

or long-distance systems. After a brief overview of ABCD parameters based models

for short, medium transmission and cascaded transmission lines, in the rest of this

section, we present the formal modeling and analysis of cascaded transmission lines

in HOL Light. For the sake of conciseness, we omitted the details of the analysis of

these transmission lines where more details can be found in [113].

5.6.3.1 ABCD Parameters of a Transmission Line

ABCD parameters enable developing the mathematical models (system of equations)

of transmission networks capturing a relationship between the sending and receiv-

ing quantities, i.e., voltages and currents, by incorporating their characteristics like

impedance and admittance. Moreover, these mathematical models can also be derived

from the application of the physical laws, such as the Kirchhoff’s Current Law (KCL)

and the Kirchhoff’s Voltage Law (KVL) on the two-port networks corresponding to

the transmission lines. Figure 5.7 illustrates a generic two-port network, which is to

be characterized using ABCD parameters.
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Figure 5.7: Two-port Network

In the context of the two-port transmission line model, port 1 is characterized by an

input current, denoted as I1, and a corresponding input voltage, V1. The resulting

output voltage and current at port 2 are labeled as V2 and I2, respectively. It is

essential to note that the chosen current directions designate I1 as entering and I2

as leaving the two-port network. Here, V1 and I1 are dependent variables whereas V2

and I2 are considered independent. Let A, B, C and D be constants that characterize

the above network. These ABCD parameters relate the input variables V1 and I1 as

functions of the output variables V2 and I2 as follows:

V1 = AV2 + BI2

I1 = CV2 + DI2

The above equations can be written in matrix form:

V1
I1

 =

A B

C D


V2
I2


These parameters play an important role in the analysis and comprehension of the

transmission of electrical signals through intricate networks. It is also utilized to eval-

uate the performance of input, output voltage, and current within the transmission

network.
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Now, we model the ABCD parameters and transmission line constants as 4-

tuples in HOL Light as:

new type abbrev (‘‘abcd param’’,‘:(A × B × C × D)’)

new type abbrev (‘‘trans lines const’’,‘:(R × L × Ca × G)’)

Similarly, we model the types of the sending and receiving end quantities as follows:

new type abbrev (‘‘send end quan’’,‘:(Vs × Is)’)

new type abbrev (‘‘receive end quan’’,‘:(VR × IR)’)

where the types of A, B, C, D, R, L, Ca, G, Vs, Is, VR and IR are given in Table 5.5.

Table 5.5: Parameters, and their Standard and HOL Light Symbols

Parameter
Description

Standard
Symbol

HOL Light
Symbol:Type

Parameter
Description

Standard
Symbol

HOL Light
Symbol:Type

Parameter A A A:R Parameter B B B:R
Parameter C C C:R Parameter D D D:R
Resistance R R:R Inductance L L:R
Capacitance Ca Ca:R Conductance G G:R
Sending End
Voltage

Vs Vs:C → C Sending End
Current

Is Is:C → C

Receiving End
Voltage

VR VR:C → C Receiving End
Current

IR IR:C → C

In the following subsection, we briefly present the formalization of transmission

lines in the HOL Light proof assistant.

5.6.3.2 Formalization of the Transmission Lines Models

Now, we present the formalization of the ABCD matrices for the lumped circuits

models such as short and medium transmission lines. In our formalization, we present

these transmission lines models, based on their type, as an enumerated type definition

in HOL Light as:
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define type ‘‘tl models = ShortTL SerImp | ShortTL ShuAdm |

MediumTL TCir | MediumTL PiCir’’

A transmission line is valid if it is represented by a valid ABCD parameters based

model and satisfies various constraints on transmission line constants.

We formalize the validity of a transmission line in HOL Light as follows:

Definition 5.28. Valid Transmission Line

⊢def ∀tlc tlm. valid transmission line (tlm,tlc) ⇔

valid transm line model tlm ∧ valid tl const tlc

where the function valid transm line model accepts a transmission line model, i.e.,

short or medium and provides its validity. This is formalized as:

Definition 5.29. Valid Transmission Line Models

⊢def (valid transm line model (ShortTL SerImp) ⇔ T) ∧

(valid transm line model (ShortTL ShuAdm) ⇔ T) ∧

(valid transm line model (MediumTL TCir) ⇔ T) ∧

(valid transm line model (MediumTL PiCir) ⇔ T)

Similarly, the function valid tl const in Definition 5.28 models the validity of

the transmission line constants as follows:

Definition 5.30. Valid Transmission Line Constants

⊢def ∀R L Ca G. valid tl const ((R,L,Ca,G):trans lines const) ⇔

&0 < R ∧ &0 < L ∧ &0 < Ca ∧ &0 < G

The verification of a relationship between the sending and receiving end quantities

(voltages and currents) ensures the correct working of the ABCD parameters based

models of transmission lines. To verify this relationship, we first model the generalized

ABCD matrix as follows:
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Definition 5.31. Generalized ABCD Matrix

⊢def ∀A B C D. abcd mat gen ((A,B,C,D):abcd param) =

A B

C D


Next, we model the sending and receiving quantities as two-dimensional vectors

in HOL Light:

Definition 5.32. Sending End Vector

⊢def ∀Vs Is z. send end vec ((Vs,Is):send end quan) z =

Vs(z)
Is(z)


Definition 5.33. Receiving End Vector

⊢def ∀VR IR z. recei end vec ((Vs,Is):recei end quan) z =

VR(z)
IR(z)


Now, we use Definitions 5.31, 5.32 and 5.33 to formalize a generalized relationship

between the sending and receiving quantities of transmission lines as:

Definition 5.34. Relationship Between Sending/Receiving Quantities

⊢def ∀Vs Is VR IR A B C D.

relat send receive quan gen (Vs,Is) (VR,IR) (A,B,C,D) z ⇔

(send end vec (Vs,Is) z = ((abcd mat gen (A,B,C,D)):comp mat) ∗∗

recei end vec (VR,IR) z)

Finally, we formalize KCL and KVL, capturing the dynamics of voltage and current

in the circuit models, as follows:

Definition 5.35. KCL and KVL

⊢def ∀cur list z. kcl (cur list:cur fun list) (z:complex) =

((vsum (0..(LENGTH (cur list) - 1)) (λn. EL n cur list z)) = Cx (&0))

⊢def ∀vol list z. kvl (vol list:vol fun list) (z:complex) =

((vsum (0..(LENGTH (vol list) - 1)) (λn. EL n vol list z)) = Cx (&0))
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where the functions kcl and kvl accept lists of currents and voltages across the compo-

nents of circuits, cur list and vol list, a complex variable z, and return the implemen-

tations of KCL and KVL, respectively. For example, kcl ensures that the sum of all

currents leaving a particular node is zero. Here, the function vsum accepts a vector-

valued function f and provides the summation
∑n

i=0 f(i). Similarly, the function EL

n l extracts the nth element from a list l.

Next, we formalize the ABCD matrices for the lumped circuits models, namely,

short and medium transmission lines in HOL Light as follows:

Definition 5.36. ABCD Matrices of Transmission Lines Models

⊢def ∀R L Ca G w.

abcd mat ShortTL SerImp ((R,L,Ca,G):trans lines const) w =1 R+ ii ∗ w ∗ L

0 1

 ∧

abcd mat ShortTL ShuAdm ((R,L,Ca,G):trans lines const) w = 1 0

1

R
+ ii ∗ w ∗ Ca 1

 ∧

abcd mat MediumTL PiCir ((R,L,Ca,G):trans lines const) w =1+ (w ∗ Ca)(R + ii ∗ w ∗ L)
2

0

1

R
+ ii ∗ w ∗ Ca 1

 ∧

abcd mat MediumTL TCir ((R,L,Ca,G):trans lines const) w =T
(
1+

(w ∗ Ca)T
4

)
w ∗ Ca(

1

R

)
+ ii ∗ w ∗ Ca

(
1+

(w ∗ Ca)T
2

)


where T = R + ii∗w∗L. The function abcd mat accepts the model, transmission line

constants and a variable w, and returns the ABCD matrix corresponding to the given

model. Here, the symbol “ii” is used to represent the imaginary part.
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It is important to note that single transmission line models can be categorized

based on the arrangement of various lumped components of the circuits. For example,

a short circuit representation, where a resistor R is connected in series to a capacitor

Ca is commonly known as a series impedance model for the short transmission line.

Similarly, medium transmission lines can be represented by their Π or T models based

on the connection of various circuit components [111]. Therefore, it is sufficient to

model single transmission lines that can further be used in the cascaded transmission

lines, connected in series.

5.6.3.3 Formalization of Cascaded Transmission Lines

When multiple transmission lines models are connected in series, it results into a

cascaded transmission line as depicted in Figure 5.8. Here, n transmission lines are

connected in series and a relationship between the sending and receiving end quantities

is mathematically expressed as follows:

A1B C D1 11 An B C Dn nn

+

- -

++ +

--
VS VR

IS IR

Figure 5.8: Cascaded Transmission Lines

VS
IS

 =

A1 B1

C1 D1

 ...
An Bn

Cn Dn


VR
IR

 (5.56)

where the ABCD matrix for the cascaded transmission line is a multiplication of

matrices for each of the individual transmission line models.

Next, we formalize the ABCD matrix for the cascaded transmission line in HOL

Light as follows:
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Definition 5.37. Cascaded ABCD Matrix

⊢def ∀tlms tlmpa w R L Ca G. cascaded abcd matrix ([ ],w) = cidentity mat ∧

cascaded abcd matrix (CONS (tlms,(R,L,Ca,G)) tlmpa,w) =

(abcd mat tlms (R,L,Ca,G) w) ∗∗ cascaded abcd matrix (tlmpa,w)

where the HOL Light function cascaded abcd matrix uses a variable of type

tl models param all and models the ABCD matrix of the cascaded transmission

line using a recursive definition in HOL Light. We use the above definition to verify

the ABCD matrix of a cascaded transmission line (medium and short transmission

lines) as:

Theorem 5.23. ABCD Matrix of Cascaded Two Port Circuit/Transmission Line

⊢thm ∀R1 R2 L1 L2 Ca1 Ca2 G1 G2 w.

let tlc1 = ((R1,L1,Ca1,G1):trans lines const) and

tlc2 = ((R2,L2,Ca2,G2):trans lines const) in

[A] valid cascaded tl ([MediumTL PiCir,tlc1; ShortTL SerImp,tlc2], w)

⇒ cascaded abcd matrix ([MediumTL PiCir,tlc1; ShortTL SerImp,tlc2], w) = T3 T3 ∗ T2 + T1

w ∗ Ca1 ∗ T4 w ∗ Ca1 ∗ T4 ∗ T2 + T3


where, T1 = R1 + ii ∗ w ∗ L1, T2 = R2 + ii ∗ w ∗ L2

T3 = 1 +
w ∗ Ca1 ∗ T1

2
T4 = 1 +

w ∗ Ca1 ∗ T1
4

The only assumption A ensures the validity of the cascaded transmission line. The

proof process of the above theorem is mainly based on Definition 5.37, properties of

lists and matrices, alongside some complex arithmetic reasoning.

In the following subsection, we present the formal analysis of a Wireless Power

Transfer system, as a real-world application, where we use our formalization of trans-

mission lines presented earlier.

129



5.6.3.4 Wireless Power Transfer System

A Wireless Power Transfer (WPT) system enables the transmission of electrical en-

ergy from source to destination without establishing a physical connection [114]. A

WPT system uses the phenomenon of electromagnetic fields based on the induction

coils to send energy from the transmitter to the receiver. It has been widely used in

Electrical Vehicles (EVs) [115] and implantable medical devices [116]. For example,

it is used for charging batteries in EVs, where the placement of wires is not possible

due to a restricted space. To analyze the process of the energy transmission, the

WPT system is represented as a T-shape transmission line lumped model [117]. Next,

the ABCD parameters are analyzed to study the relationship between the voltages

and current on the sending and receiving ends. The T-shape lumped medium trans-

mission line model for the series-series compensation WPT system is depicted in

Figure 5.9 [117]. Here, R1, C1 and Lk1 model the resistance, capacitance and leakage

inductance on the sending end. Similarly, R2, C2 and Lk2 capture the same quantities

on the receiving end. M12 is the mutual inductance between the sending and receiving

coils. Similarly, V1, I1, V2 and I2 represent the sending and receiving end voltages and

currents, respectively.

+ +

- -

V1 V2

I1
R1 C1

mI

M12

Lk1 k2L 2C R2 I2

Figure 5.9: T-Model for WPT System
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Here, for simplicity, we consider the sending and receiving coils are identical. There-

fore, the resistance, capacitance and leakage inductance on the sending and receiving

ends are equal to each other, i.e., R1 = R2 = R, C1 = C2 = C and Lk1 = Lk2 = L.

Now, we can express the relationship between the sending and receiving quantities for

T-shaped lumped model for the WPT system as follows [117]:

V1
I1

 =

1 + K1

K2
K1

(
2 + K1

K2

)
1
K2

1 + K1

K2


V2
I2

 (5.57)

where,

K1 = R + jwLk + 1
jwC

, K2 = jwM12

We formally verify the above ABCD parameters based model of the WPT sys-

tem (Equation (5.57)) based on the KCL and KVL implementations as the following

theorem in HOL Light:

Theorem 5.24. ABCD Matrix of WPT System

⊢thm ∀Vs Is VR IR R Lk Ca G M12 w.

let se = ((Vs,Is):send end quan) and

re = ((VR,IR):recei end quan) and

tlc = ((R,Lk,Ca,G):trans lines const) in

[A] valid transmission line (MediumTL TCir,tlc)

⇒ (kvl implem wpt MediumTL TCir se re tlc w z ∧

kcl implem wpt MediumTL TCir se re tlc M12 w z) ⇔

(relat sr wpt MediumTL TCir se re tlc M12 w z)

The proof process of the above theorem is straightforward, thanks to our formalization

of ABCD parameters based models. The HOL Light script for the ABCD parameters

based models of transmission lines’ formalizations and proofs is available at [118].
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5.7 Summary and Discussion

In this chapter, we presented a higher-order logic formalization of the telegrapher’s

and wave equations. We first formalized the telegrapher’s equations and their alter-

nate representations, i.e., wave equations in time and phasor domains using HOL

Light. Furthermore, we verified the relationship between the telegrapher’s and wave

equations in the phasor domain. We then constructed the formal proof for the gen-

eral solutions of the telegrapher’s equations in the phasor domain. Subsequently, we

proved the relation between the phasor and the time-domain functions to formally

verify the general solutions for the time-domain PDEs. Finally, we presented several

practical applications of the telegrapher’s equations such as terminated, coupled and

cascaded transmission lines. The main purpose of this work is the formal development

of a transmission line theory within the sound core of a higher-order logic theorem

prover to analyze transmission systems. For our constructive formalization, we first

formally analyzed the variations of the line voltage and current utilizing the phasor

representations of the telegrapher’s equations because the phasor approach reduces

the time domain PDEs to ODEs. In the verification of the ODEs, we proved lemmas

about the derivatives of the general solutions. One of the main challenges of the pre-

sented work was to formally verify the general solutions for the time-domain PDEs.

The process began by translating solutions from the phasor domain, where they are

articulated as complex-valued functions of frequency, into the time domain as real-

valued functions to establish solutions for PDEs. In the HOL Light proof process, we

subsequently faced the requirement to transform the time-domain functions back into

complex-valued forms. This was essential because the time-domain PDEs are defined

using complex derivatives, and the challenge lays in adeptly employing these complex

derivatives during the proof procedure. We also proved the necessary lemmas about
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the complex differentions of the general solutions with respect to the parameters z

and t. In addition, we provided proofs of the attenuation and phase constants for the

lossless line and some other theorems regarding exponential functions and complex

numbers in order to verify the correctness of the wave solutions for the time-domain

PDEs. Once we proved the required theorems and lemmas, the verification of the

correctness of the equations just took several lines of proof steps. For example, the

proofs of the general solutions of the wave equations for voltage and current just took

19 and 22 lines, which clearly illustrates the benefit of the formally verified lemmas

and theorems. Another difficulty encountered in this formalization pertains to the

considerable level of user intervention. However, we developed several tactics that

automate certain parts of our proofs resulting in a reduction of the length of proof

scripts in many instances (e.g., reducing part of the code by around 240 lines) and

make the proofs simpler and more compact. Examples of such tactics are SHORT TAC

and EQ DIFF SIMP, which allowed us to simplify complex arithmetics involved in the

proof of the time-domain solutions. For instance, EQ DIFF SIMP is constructed to effi-

ciently deal with the repetitive patterns in our proof procedure by consolidating them

into a single tactic. This proves to be efficient in refining and optimizing our overall

approach. The main advantage of the conducted formal proofs of the telegrapher’s

equations is that all the underlying assumptions can be explicitly written contrary

to the case of paper-and-pencil proofs and proof-steps that are mechanically verified

using a theorem prover.

In terms of practical applications, the analysis of coupled transmission lines

posed significant challenges, as it required an understanding of various fundamental

aspects, including electromagnetic theory and microwave engineering. In particular,

for those of us who are not experts in electromagnetics, it has been challenging to
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comprehend the formal definitions used to model transmission systems and phenom-

ena. Another challenge encountered during this formalization was the mathematical

proof itself. We relied on snippets of proofs gathered from the literature including

textbooks, articles and courses. However, we frequently found these traditional pen-

and-paper proofs to be somewhat incomplete or lack rigorous details. Due to the

nature of the analysis, we had to develop our own proof with all necessary details for

the verification process. The primary benefit of this work includes the accuracy of

verified results and the revelation of hidden assumptions, which are often omitted in

textbooks and engineering literature. For the ABCD parameter-based models of cas-

caded transmission lines, our proposed formalization included a systematic approach

that is easy to follow, even for non-HOL users. One of the challenging parts was the

development of the deep embedding based formalization of the transmission lines,

where we needed to gather all details about the parameters that contribute to the

dynamics of the two-port models of transmission lines and packaging them into our

formalization. In conclusion, the formalization of the transmission line theory pro-

vides mathematicians and engineers with the ability to modify and reuse the formal

library in HOL Light, in contrast to conventional manual mathematical analysis.
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Chapter 6

Conclusion and Future Work

This thesis presented methodologies and libraries for the formalization of partial dif-

ferential equations used to model physical systems, along with the formal verification

of their analytical solutions in simple type theory. This chapter concludes the thesis

with a summary of the main contributions and suggestions for future work.

6.1 Conclusion

PDEs are fundamental for modeling the mathematical laws underlying physical sys-

tems. They play a critical role in the analysis, prediction, and control of various

processes by providing a formal mathematical infrastructure for relating the changes

in quantities of interest with respect to multiple variables, mainly space and time.

Given their role in modeling the dynamics of safety-critical systems, such as trans-

mission lines and thermal protection, an accurate analysis of PDEs is vital. However,

this analysis is often conducted using informal techniques, such as numerical simula-

tions and manual proofs, which can lead to errors. In the past few decades, formal

verification techniques have increasingly been utilized for the rigorous analysis of var-

ious engineering and physical systems. However, a comprehensive formal analysis
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of partial differential equations and the formal verification of their applications in

safety-critical domain using proof assistants are quite rare.

In this thesis, we proposed to develop a framework utilizing higher-order logic

theorem proving for the mathematical modeling, analysis, and verification of physi-

cal systems governed by partial differential equations. In particular, the framework

we provided consists in a higher-order logic formalization of four partial differential

equations, namely, the heat, the Laplace, the telegrapher’s and the wave equations

as well as the formal verification of their analytical solutions using the HOL Light

theorem prover. Firstly, we focused on the formalization of the one-dimensional heat

conduction problem. In particular, we formally modeled the temperature variation

in an one-dimensional rectangular slab using a PDE as a heat equation and formally

verified its analytical solution employing the method of separation of variables based

on various boundary and initial conditions. We also formally verified the convergence

of the general solution.

Secondly, we formalized the Laplace equation in both Cartesian and polar co-

ordinates, along with standard potential flows, namely, uniform, source/sink, doublet

and vortex flows. Subsequently, we formally verified the linearity of the Laplace oper-

ator which is crucial to construct more complicated flow fields by superimposing these

standard potential flows. We then provided the formal verification of the validity of

exact potential flow solutions for the Laplace equation for aerodynamic applications.

The strength of the proposed formalization is demonstrated by conducting the formal

analysis of different practical applications such as the Rankine oval, potential flow

past a circular cylinder and potential flow past a rotating circular cylinder.

Finally, we developed a formal model of the telegrapher’s equations and their

alternative form, the wave equations, in both time and phasor domains. We also
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formally verified the solutions of the wave and telegrapher’s equations in the pha-

sor domain. These phasor-domain solutions were then employed to formally verify

the time-domain partial differential equations for current and voltage in an electrical

transmission lines. To demonstrate the practical applicability of our formalization,

we conducted a formal analysis of a terminated transmission line by verifying key

properties such as load impedance and voltage reflection coefficient. Additionally, we

performed a formal analysis of short- and open-circuited transmission lines, which

are frequently used in antenna design. Furthermore, we formally analyzed coupled

and cascaded transmission lines as a more realistic applications of the telegrapher’s

equations.

This study was conducted using the HOL Light theorem prover, chosen primar-

ily for its support of higher-order logic formalizations and the availability of necessary

theories. Moreover, HOL Light provides some valuable automated tactics, such as

REAL DIFF TAC and COMPLEX DIFF TAC, which can automatically compute the real

and complex differentiation of basic functions, significantly reducing user interaction

time during theorem proving. Despite some of these automated tactics, HOL Light

still requires considerable manual guidance due to the undecidability nature of higher-

order logic. This need for extensive user interaction represents a key limitation of the

approach employed in this work. The methodologies developed in this research rep-

resent a foundational contribution to the formal development of theories relevant to

practical and widely used real-world systems that are modeled by PDEs. Addition-

ally, our approach offers potential cost reductions associated with integrating theorem

proving into the critical phases of designing and verifying physical systems. Further-

more, our work can have a broader impact on future formalization efforts related to

partial differential equations and their applications.
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6.2 Future Work

The formalization and verification results presented in this thesis pave the way for

utilizing theorem proving to conduct the precise analysis of physical systems modeled

by partial differential equations, complementing traditional paper-and-pencil and sim-

ulation approaches. This work can be extended to further refine the rigorous analysis

of PDEs in modeling physical problems and dynamic behaviors in critical engineering

systems. In the following, we outline several potential directions for future research

based on the experiences and lessons learned during this thesis:

• Formal analysis of transient heat conduction in one-dimensional composite slabs:

The current model focuses on heat transfer in a rectangular slab, with the for-

mal verification of the closed-form solution for this specific case. This work can

be extended to address transient thermal problems in multi-layered structures,

allowing for more comprehensive thermal analysis in the context of thermal pro-

tection systems. This extension involves applying the method of separation of

variables to the heat conduction equation in each region of the solid. During

this process, the thermal diffusivity of each layer is preserved in the part of the

modified heat conduction equation associated with the time-dependent function,

similar to the approach used for a single-region problem [119].

• Extension of formalization of standard potential flows to complex potential flows

for the Laplace equation: The current formalization covers the validation of

real potential flows for the Laplace equation and their applications. One can

extend these real flows to complex-valued potential flows, enabling the analysis

of more complicated aerodynamic problems, such as flow around aerofoils. This

requires the formal proof of the Cauchy-Riemann equations [120] for both the
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stream function and the velocity potential, as well as the symmetry of partial

derivatives (Clairaut’s Theorem [15]). It is also interesting to consider the formal

verification of the relationship between the Laplace equation in Cartesian and

polar coordinates, which needs the development of formal theorems for the chain

rule of partial derivatives.

• Extension of the formal analysis of the telegrapher’s and the wave equations

to account for deviations in real circuits from idealized models. The current

analysis simplifies the telegrapher’s and the wave equations by using idealized

circuit components. A future research, one could extend this work to incorporate

non-idealized models, enabling a better representation of practical applications

in real-world scenarios. Real circuits often exhibit behaviors that change with

frequency, such as dispersion. Addressing these would require moving to the

phasor domain through Fourier analysis, which decomposes the signal into its

frequency components. To obtain the complete solution, formalizing the inverse

Fourier transform may also be necessary.

• Extension of the formal analysis of coupled transmission lines. The current work

models coupled line behavior using the generalized telegrapher’s equations and

verifies these equations in the phasor domain. Future efforts could extend this

verification by translating the phasor domain solutions back to the time domain

and ensuring their correctness for the time-domain partial differential equations.

This may require formalizing the Fourier and inverse Fourier transforms, or

employing an alternative method. Additionally, the formal analysis could be

expanded to investigate crosstalk in communication circuits.
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• Formalization of long transmission line. The current work with ABCD

parameter-based models includes the formal analysis of short, medium, and cas-

caded lines. In a future research, one could derive the governing telegrapher’s

equations for long transmission lines by applying Kirchhoff’s Current Law (KCL)

and Kirchhoff’s Voltage Law (KVL) to the circuit and formally verify the ABCD

parameters based models of long transmission line.

• Development of a formal library for existence and uniqueness theorems for the

solutions of PDEs: While the current work has focused on the formal verification

of closed-form solutions for practical applications, constructing such a library

would provide a rigorous foundation for addressing more general theoretical

aspects of PDEs. This would not only enhance the scope of formal analysis but

also contribute to the verification of broader classes of PDE problems in various

domains.
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