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ABSTRACT

UAV-Enabled Wireless Powered Communication Networks

Saif Najmeddin, Ph.D.

Concordia University, 2021

Unmanned aerial vehicles (UAVs), popularly known as drones, have emerged as

a promising solution for providing reliable and cost-effective wireless communications.

The use of UAVs as aerial wireless power transmitters (UAV-WPT), with additional

flexibility and 3D mobility, is expected to provide efficient wireless power supplies to

low-power and hard-to-reach devices. Due to their adjustable altitude and mobility,

efficient line-of-sight (LoS) between UAVs and ground nodes (GNs) could be estab-

lished, thus mitigating signal blockage and shadowing. Based on this feature, UAVs

can be good candidates to charge battery-limited or hard-to-reach devices through

radio frequency (RF) wireless power transfer (WPT), which will significantly improve

the wireless charging efficiency compared to conventional ground charging stations

at fixed locations. Although the deployment of UAVs as wireless power transmit-

ters is promising, it comes with many design challenges and reliability problems. For

instance, the energy efficiency (EE) of UAVs requires careful consideration as it sig-

nificantly impacts the performance of UAV-WPT systems. Thus, there is a need for a

comprehensive framework to optimize such networks, where the devices are wirelessly

powered via UAVs to enable uplink data transmission. In this thesis, we propose a

detailed methodology to optimize the performance of the UAV-enabled WPT net-

works with different topologies and applications. We provide the required steps to be
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followed for most applicable networks, where specific considerations have to be consid-

ered for each case. The optimization problem’s solution has two main steps; firstly, the

path loss of the air-to-ground channels is minimized by optimizing the UAV position

depending on the GNs’ service demands. Secondly, using the optimized positioning

and a closed-form expression for the EE, a resource allocation aiming to maximize EE

is developed using Lagrangian optimization and gradient-descent methods.

We present five different system models, which reflect different practical cases

and setups considering single and multiple UAV scenarios. These models are: UAV-

enabled wireless powered communications network (UAV-WPCN), UAV-enabled wire-

less information and power transfer network (UAV-WIPT), UAV-enabled simultane-

ous wireless information and power transfer network (UAV-SWIPT), multiple UAV-

enabled wireless powered communications network (UAVs-WPCN), and multiple

UAV-enabled simultaneous wireless information and power transfer network (UAVs-

SWIPT). The results of applying the proposed scheme show significant enhancement

in the EE for the non-orthogonal multiple access (NOMA) scheme compared to the

orthogonal multiple access (OMA) scheme in most of the scenarios. However, the

topology and distribution of the ground nodes play a vital role in figuring out the

suitable access scheme to be used, where OMA or hybrid NOMA/OMA schemes

could perform better.
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Chapter 1

Introduction

In this chapter, we first present the motivation of this PhD thesis and the problem

statement. Then, we explain the basic concepts and components of the UAV-based

wireless networks. We present the most relevant related work, followed by our pro-

posed methodology to achieve the primary goal of this thesis. Finally, we outline the

main contributions and the organization of this thesis.

1.1 Motivation

Unmanned aerial vehicles (UAVs), with their high agility and affordable cost, have

been receiving significant attention for many applications, including weather forecast-

ing, traffic control, cargo transport, site fire detection, emergency and rescue situ-

ations, and communication systems [1]. Multiple reports from the federal aviation

administration (FAA) showed that the number of UAVs will be increasing rapidly in

the coming years [2].
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In general, UAVs can be classified according to their altitudes: high altitude plat-

forms (HAPs) and low altitude platforms (LAPs) [3]. HAPs have altitudes around 20

km and are typically quasi-stationary with long endurance. On the other hand, LAPs

can fly at altitudes up to a few kilometers, with more flexible and fast deployment,

however, with shorter flying time [4]. Another classification of the UAVs is based

on their types, i.e., fixed-wing and rotary-wing UAVs. Fixed-wing UAVs have more

weights, higher speed, and have to move forward in order to maintain their flying

heights. In contrast, rotary-wing can hover and remain stationary for a specific time

over a given area [5].

For each application, a suitable type of UAV has to be chosen to meet many

requirements imposed by the application, environment, and governmental regula-

tions [6]. Actually, different factors like UAV capabilities, velocity, and flying alti-

tudes, need to be taken into account for various applications. Among the wide range

of applications enabled by UAVs, their use for different communication applications is

predicted to be an essential part in wireless systems of the future [7]. Along with mas-

sive multiple-input multiple-output (MIMO), energy harvesting (EH), and millimeter

wave (mmWave) communications, it is expected that the use of UAVs will be one

of the most important concepts for the upcoming fifth generation (5G) and beyond,

where high data rates shall be provided with better reliability, lower latency, and

decreased power consumption compared to the state-of-the-art [8]. With the rise of

online shopping and the introduction of new distance working environments, the use

of UAVs has emerged as a promising solution for providing reliable and cost-effective

transportation, monitoring, and communication activities. For wireless communica-

tion applications, the use of UAVs has gained a tremendous attention for its appealing

and flexible solutions [9]. UAV-based aerial base stations can be deployed to enhance

2



the wireless capacity and coverage at temporary events or hotspots, such as sport

stadiums and outdoor events [10]. In some regions or countries, deploying UAVs is

highly beneficial as it removes the need for expensive towers and infrastructure deploy-

ment that terrestrial cellular systems consume [11]. Drones can also be operated as

aerial user equipments (UEs), known as cellular-connected UAVs, along with ground

users. They can also be used in public safety scenarios to support disaster relief

activities and to enable communications when conventional terrestrial networks are

damaged [12]. Another important application of UAVs is in the context of Internet

of Things (IoT) [13], in which the devices have small transmit power and may not be

able to communicate over a long range [14]. Moreover, UAVs can be efficiently used as

wireless power transmitters (WPT) for battery-limited or hard to reach devices [15].

The global UAV payload market, including all types of equipment used by UAVs such

as sensors, cameras, communications equipment, and all other devices, is expected to

expand rapidly in the coming few years [16]. Therefore, the interest from the academia

and industry in UAV-based solutions has become significant. A substantial number

of research projects have studied many different aspects and details related to the

UAV-based networks [17]. Moreover, many large corporations started testing UAVs

on their platforms. For instance, the possibility of deploying HAP-UAVs for Internet

connectivity in remote areas has been investigated by Facebook and Google [18]. Fur-

thermore, Qualcomm is exploring the integration of LAP-UAVs in current long term

evolution (LTE) and future 5G cellular applications [19]. Also, Ericsson has started

multiple projects for the integration of UAVs in the broadband communication ser-

vices. For example, Ericsson and China Mobile jointly established a time division

LTE network in some areas of China which successfully provided broadband com-

munication services through multiple UAVs and terrestrial base stations (BSs) [20].
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On top of that, many other companies started working on deploying UAVs as power

transmitters to charge ground or aerial devices. For instance, Amazon implemented

a method for charging electrical vehicles through drones [21]. Moreover, some other

companies like Festo and SkyCharge are using UAVs as power transmitters in the area

of agriculture and farming to charge ground sensors [22].

1.2 UAV as Wireless Power and Information

Transmitter

Mobile devices (such as low-power sensors) usually are energy-constrained since their

lifetimes are limited by the battery capacity. Energy harvesting (EH) techniques

based on radio frequency (RF) signals have been considered as promising solutions for

extending the lifetime of battery-limited wireless devices [23]. In conventional WPT

systems, dedicated power transmitters (PTs) are usually deployed at fixed locations

to send RF signals to charge distributed power receivers (PRs), such as low-power

sensors or IoT devices. The goal of the WPT is to meet the need of the device for

transmitting its data to the target receiver by using the harvested energy [24].

UAVs as aerial power transmitters, with additional flexibility and 3D mobility,

are expected to provide efficient wireless power supply to low power and hard to reach

devices. Due to their adjustable altitude and mobility, efficient line-of-sight (LoS)

between UAVs and ground nodes (GNs) could be established, and thus mitigating

signal blockage and shadowing. By this feature, UAVs promise to be an interesting

solution to charge battery-limited or hard-to-reach devices through RF WPT. This

will significantly improve the wireless charging efficiency compared to the conventional

ground charging stations at fixed locations and reduce the number of required PTs [25].
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The UAV-WPT network mainly consists of UAVs as wireless power transmitters,

where they could be extended to be power and information transmitters, as shown

in Figure 1.1. The number of UAVs depends on the application of the network, the

covered area, and the required quality of service. In addition, it contains the ground

nodes (GNs), which can be an information receiver (IR) or an energy receiver (ER)

or both at the same time. As a hybrid solution with terrestrial network, UAV-WPT

networks can have terrestrial BSs in their setups, which can be used for receiving the

information from GNs at any time in the process. There are three main transferring

operations in such network, namely, downlink data transfer, downlink power transfer,

and uplink data transfer. The downlink transfers are basically from the UAVs to

their connected GNs, where the uplink could be towards the UAV (same or different)

or towards the terrestrial BS. In many use-cases, UAVs are called to not only charge

devices, but also to send and/or collect information from them [26]. Using the concept

of wireless power and information transfer (WIPT) or simultaneous WIPT (SWIPT),

where the transmitter sends power and information signals towards ERs and IRs,

UAVs can be deployed to provide efficient WPT along with reliable data services when

and where needed. Therefore, the use of UAVs to enable WIPT/SWIPT becomes more

efficient, interesting, and promising to provide stable energy along with reliable data

services for ERs and IRs.

By using different access schemes like non-orthogonal multiple access (NOMA)

or orthogonal multiple access (OMA), the transceiver can separate the data of the

users in the uplink or in the downlink. The superiority of one access scheme over other

is still debatable and cannot be generalized for all cases and applications. Nonetheless,

NOMA recently received significant attention for its promising performance. However,

this comes with additional complexity, where successive interference cancellation (SIC)
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Figure 1.1: General UAV wireless powered communication network (UAV-WPCN).

is performed for reliable uplink and downlink transmissions. [27]. In the downlink,

the user with strong channel condition (i) receives the NOMA signal; (ii) decodes the

symbol of higher power from the received signal; (iii) subtracts it from the received

NOMA signal; and (iv) continues to decode its own symbol. On the other hand, for

the uplink NOMA, messages from different users are combined together and SIC is

conducted at the receiver [28].

1.3 Energy Efficiency for UAV-based Networks

Although the deployment of UAVs in communication networks is promising, it comes

with a lot of design challenges and reliability problems. For instance, since different

network topologies are possible due to the mobility of UAVs, effective coordination

schemes should be put in place to ensure the reliability of the network connections.

Thus, new communication protocols should be designed accordingly [29]. Moreover,
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one of the most critical challenges is the management of the limited on-board en-

ergy resources. In fact, the energy consumption of the UAV mainly originates from

transmission, mobility, control, data processing and payloads purposes [30]. Thus, the

flight duration of the drones is typically short and insufficient for providing long-term,

and continuous wireless errands. The energy consumption of the UAV also depends

on the role/mission of the UAV, weather conditions, and the traveling path.

In wireless communication systems, EE can be quantitatively measured by the

bits of information reliably transferred to a receiver per unit of consumed energy

at the transmitter [31]. Due to its significant impact on the performance of UAV-

communication systems, EE, in the UAV-based communication networks, requires

careful consideration. In fact, the limited on-board energy of UAVs is a key con-

straint for deployment and mobility of UAVs in various applications. Therefore, the

allocation of the resources should be studied in such a way that the overall energy

usage becomes more efficient. However, one must optimize the performance of UAV-

WPT networks under power, time, and position constraints of UAVs and many other

constraints according to the application. Having said that, there is a need for a frame-

work to analyze and optimize the performance of UAV-WPT networks. The main idea

is to efficiently allocate the available resources for reliable downlink/uplink communi-

cations using UAVs. Mostly, this kind of problem, with EE, throughput, and related

constraints, is non-convex and thus difficult to be solved [32]. In this PhD thesis, we

are interested in the optimization of the available resources in UAV-WPT networks,

basically on the UAV side, through the maximization of EE.
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1.4 Related Work

In this section, we briefly review the most relevant literature in the area of UAV-based

wireless networks in different categories with more focus on UAV-enabled WPT net-

works. Several works in the literature investigate the resource allocation to enhance

the performance of UAV-assisted networks, mainly in the wireless information trans-

mission (WIT) networks [33–36], and network coverage extensions [37–40]. For in-

stance, the authors of [36] suggested a model to characterize the capacity region over

a given UAV flight duration. This was done by jointly optimizing the UAV’s tra-

jectory and transmit power/rate allocations over time aiming to send independent

information to two users at different fixed locations on the ground. On the other

side, a placement algorithm is suggested in [39] to efficiently use the UAV transmit

power and maximize the coverage of GNs. Optimizing the throughput of a relay-based

UAV system is considered in [41] by jointly controlling the UAV trajectory and the

source/relay transmit powers. The authors of [42], explored the uplink coverage per-

formance of an underlay drone cell for temporary events. In addition, [43] investigates

how UAVs can be used to reinforce the communication infrastructure in emergency

and public safety situations during which the existing terrestrial network is damaged

or not fully operational. Also, by exploiting the perfect user location information

(ULI), the authors of [44] and [45], use UAV placements to directly maximize the

system throughput. On the other hand, with no ULI, the authors of [46] investigate

the downlink coverage performance, where maximum ground coverage and minimum

required transmit power for a single small cell drone are derived. Moreover, the au-

thors of [47] optimize the UAV’s trajectory, altitude, velocity, and data links with

ground users to minimize the total mission time while enhancing the data collection.
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Few existing works focus on the resource allocation to enhance the performance

of UAV-assisted power transmission networks. For instance, the work in [48] suggests

a design based on optimization of the UAVs trajectory to enhance throughput while

taking into consideration the energy consumption of the UAV which tries to maxi-

mize the amount of energy transferred to the GNs during a finite charging period.

Throughput maximization of UAV-powered device-to-device (D2D) communication

is investigated in [49], by jointly optimizing the time and power assuring the energy

causality constraint on the transmitter side. A slightly different scenario has been

considered in [50], which focuses on the maximization of the system throughput ex-

ploiting trajectory design, jointly with the wireless resource allocation optimization,

where a single UAV is used to transfer power to multiple ERs ground nodes on a

specific time by changing its position periodically. Moreover, the uplink transmission

of IoT devices, which is enabled through WPT by a single UAV has been investigated

in [51]. The authors formulate and address a secure EE optimization problem to

find the optimal transmit power and location for the UAV. Furthermore, the authors

of [52] consider a UAV-enabled mobile edge computing (MEC) system, where a UAV

powers the IoT nodes via WPT. A new time division multiple access (TDMA) based

workflow model is proposed, which allows parallel transmissions and executions to

minimize the total energy consumption of the UAV.

In addition to that, few studies have investigated the performance of NOMA

and OMA for UAV based communication system. The authors in [53] suggested a

multiple access mode selection (NOMA/OMA) based on the outage probability for

the ground nodes in a system, where a fixed-wing UAV is used to support coverage

for ground nodes located outside the coverage of BS. The minimization of energy

consumption of mobile nodes with accepted quality of service of the offloaded mobile

9



application has been analyzed in [54], where offloading is enabled by uplink and down-

link communications between the nodes and the UAV via NOMA or OMA schemes.

UAV constrained coverage expansion methodology, facilitated by NOMA user rate

gain has been proposed in [55]. Moreover, the authors of [56] proposed a cooperative

NOMA scheme and suggested to maximize the weighted sum-rate of the UAV and

ground users through optimizing the power allocations and UAV’s rate. The authors

of [57] focused on the optimization of the altitude of a rotary-wing UAV-BS aiming

to maximize the individual rate for a two users NOMA scenario. An optimal resource

allocation algorithm was proposed through the maximization of the throughput of

a two ground users, which are enabled via NOMA transmission of UAV-assisted re-

laying systems [58]. The authors of [59] optimized the max-min rate problem for a

large number of ground users served by a single-antenna UAV-BS and NOMA tech-

nique. A path-following algorithm was developed to solve the non-convex problem

by jointly optimizing the UAV’s flying altitude, the transmit antenna beamwidth,

the amount of power and the bandwidth. Furthermore, the authors of [60] proposed

a MIMO-NOMA aided UAV framework, where a multi-antenna UAV communicates

with multiple users equipped with multiple antennas.

A few works have studied the performance of SWIPT for UAV based commu-

nication system. For instance, a resource allocation problem has been studied in an

UAV-assisted SWIPT system with the existence of multiple eavesdroppers [61], where

the secrecy rate has been maximized by jointly optimizing the trajectory and trans-

mit power of the UAV. Also, the authors of [62] have investigated the joint optimiza-

tion of power allocation and trajectory design of the UAV to support infrastructure-

starved IoT services by maximizing the minimum energy harvested among the IoT

devices. Moreover, the end-to-end cooperative throughput maximization problem for
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the amplify-and-forward (AF) protocol for UAV-SWIPT systems has been investi-

gated in [63] by optimizing the decision profile, power profile and trajectory.

In addition to the above mentioned works, a few studies have investigated the

performance of multiple-UAV communication systems. For instance, the authors

of [64] investigated the download coverage probability for a network of multiple UAVs

modeled as a uniform binomial point process (BPP) at the same altitude. The au-

thors in [65] investigated the stochastic modelling of UAV base stations, where differ-

ent coverage models were suggested. Moreover, [66] studied the maximization of the

minimum data rate of GNs by jointly optimizing the 3D locations, user association,

and power allocation in multiple-UAV networks. In addition, [67] investigated the

maximization of the minimum throughput over all ground users in the downlink com-

munication by optimizing the multiuser communication scheduling and association

jointly with the UAV’s trajectory and power control.

Most of the aforementioned works, have some limitations and there is a huge

potential for enhancement and development. For example, many works, e.g. [33,

34, 39, 59], consider single antenna UAV for their models, which basically degrades

the ability of the UAV to meet the goals of the GNs for simultaneous transmissions.

Furthermore, some systems, e.g. [35,40,41,49,52], are based only on the OMA scheme,

and there is no consideration for NOMA. Moreover, many works, e.g. [50,56,63,66,67],

ignored the most important aspect in this particular setup, i.e., energy efficiency,

which is extremely important since we are dealing with power transfer. Some works,

e.g. [36, 53, 55], consider one or two GNs for getting more insights to the problem,

which is reasonable, however, more general examples have to be introduced. On top

of that, the very general scenario including multiple UAVs to enable SWIPT for a

general number of ERs and IRs for NOMA/OMA schemes has not been address by
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any of the publicly available related work.

1.5 Proposed Methodology

Motivated by the need for a comprehensive framework to deal with the optimization of

UAV wireless powered communication networks (UAV-WPCN). The main objective of

this thesis is to develop the analytical foundations and algorithms to be able to exploit

the available UAV-WPCN resources efficiently while maximizing the system’s EE. To

meet this goal, we propose a detailed methodology, as shown in Figure 1.2, which

is general enough to deal with different topologies and applications. We provide the

required steps to be followed for all applicable networks, where specific considerations

have to be accounted for in each case.

Figure 1.2: Proposed methodology

The inputs of this methodology are: network topology and system specifications,

from which we construct the system EE and the related constraints. The constraints
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related to the network topology are mainly about user location information (ULI),

the maximum and minimum allowable height of the UAV (HUAV), the radius of each

cluster in the network (rC), etc. On the other hand, the constrains related to the

system specifications are basically pertained to the type of access scheme (AS), quality

of service (QoS), SIC thresholds, transmit power (P), etc. We then construct the

respective EE formula subject to the related constraints of the system specifications

and network topology. After that, we conduct the optimization process, where we

figure out the suitable strategies to be taken into account depending on the application

and its constraints. Hence, this kind of problem with multiple highly coupled variables

in the objective function and constraints is mainly non-convex and hard to be solved

directly.

As a general understanding of the UAV-WPT networks, we propose first to op-

timize the positions (paths) of the UAVs before any transmission steps. Thereafter,

we optimize the available resources; transmit power towards GNs and the switch-

ing/charging time. Both optimization steps will require the construction of algorithms

depending on the system parameters and derived formulations. We construct these al-

gorithms efficiently through conventional optimization methods which are suitable to

handle such problems after relaxation. At the end, the optimal positions (X∗,Y∗,Z∗),

transmit power (P∗) and time (t∗) will be obtained for the given setup.

To reach to the final general configuration, we investigated four main scenarios

(see Figure 1.3) that will collectively provide a comprehensive study for the UAV-

enabled WPT networks:

• Single UAV-enabled wireless powered communications network (UAV-WPCN).

• Single UAV-enabled simultaneous wireless power and information transfer net-

work (UAV-SWIPT).
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• Multiple UAV-enabled wireless powered communications network (MUAV-

WPCN).

• Multiple UAV-enabled simultaneous wireless power and information transfer

network (MUAV-SWIPT).

Figure 1.3: Proposed topologies

It is worth mentioning that the single UAV scenarios can be considered as special

cases for the multiple UAV scenario, however, one can consider each scenario as an

independent deployment that can reflect a practical setup, where the number of UAVs

could vary according to the requirements. For example, it can be used to serve in a

sports stadium with different gates where the sensors (light, humidity, etc.) around

the stadium need to be charged by the UAVs and the UAVs also have to send ticketing

information to the electronic gates around the stadium (one scenario is to have the
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number of UAVs as the number of gates). Another possible application is to use the

UAVs in the context of serving hard-to-reach devices like sensors on bridges and at

the same time sending information to some advertising screens that are fixed on those

bridges (one scenario is to have the number of UAVs reflecting the required sides of

the bridge that need to be served). Note that for applications, where the area to be

covered is small or the load can be handled without a need for multiple UAVs, one of

the proposed single UAV scenario can be deployed.

1.6 Thesis Contributions

Unmanned aerial vehicles are becoming more reachable and available to be used in

numerous applications. One of the most appealing and interesting application is the

use of UAVs as wireless power transmitters for low-power or hard-to-reach devices to

enable their communications using the harvested energy. However, this comes with

many challenges related to the limited power budget, the UAV placement, the quality

of service, and many other complexities. Intuitively, many other challenges are added

when using multiple UAVs, which is becoming essential in many cases in order to

enhance the coverage of the network. Therefore, the main objective of this thesis is to

develop the analytical foundations and algorithms to be able to exploit the available

UAV-WPT-based networks resources efficiently while maximizing the system’s EE.

In the following, we list the main contributions of this thesis along with references to

related publications provided in the Biography section at the end of this document.

• A design and optimization of a UAV-WPCN assisted terrestrial network. The

proposed design uses a multiple-antenna UAV for charging ground nodes through

RF WPT to assist their uplink data communication with a terrestrial BS. We
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formulate and solve the optimization problem by exploiting the movement flex-

ibility of the UAV, which allows minimizing the path loss on the A2G channels

according to the nodes’ demands, and optimizing the transmit powers towards

the maximization of the system’s EE. [Bio-Cf3].

• An energy-efficient resource allocation scheme for NOMA-based UAV-WIPT

networks. We propose a system model where a fixed position single UAV de-

ploys information and power transfer towards co-located IRs and ERs to enable

downlink and uplink data transmission through NOMA scheme. We propose

an algorithm, which jointly takes into account the downlink and uplink stages

using Lagrangian optimization and gradient decent methods. [Bio-Cf2].

• A general framework for maximizing the system’s EE of UAV-SWIPT networks

through different access schemes. We construct the system’s EE and develop a

general optimization problem that considers a general number of ERs and IRs

for two main scenarios; linear and circular. We propose two different hybrid

access schemes depending on the NOMA and OMA schemes, namely, hybrid

downlink OMA uplink NOMA (HDOUN) and hybrid downlink NOMA uplink

OMA (HDNUO). We derive the optimization formulation for transmitting the

power towards each ER and IR and provide comprehensive comparisons between

several combinations of the suggested scenarios and schemes [Bio-Jr1].

• A general setup of MUAV-WPCN systems for partial ULI of a general number of

ERs. The proposed setup consists of multiple UAVs that deploy WPT towards

several ERs to enable their uplink data transmissions through NOMA scheme.

We consider different cases depending on the ERs’ service demands. We develop

two algorithms to handle the 3D position optimization of the UAVs, and the
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transmit power allocation towards each ER [Bio-Cf1].

• A general framework for optimizing the MUAV-SWIPT networks for a general

number of ERs and IRs. We address the optimization of the EE of a wireless

network, where multiple-antenna UAVs serve as simultaneous power and infor-

mation transmitters towards ERs and IRs, respectively. We consider the partial

ULI approach of ERs and IRs, and we present accordingly a user distribution

and association model for each cluster in the network. We also propose collision

avoidance constraints to avoid UAVs’ collisions as they move to enhance the

links for the ERs and IRs. We finally consider the required QoS of the ERs as

well as IRs on the downlink, and the uplink thresholds to enable SIC. [Bio-Jr2]

1.7 Thesis Organization

The rest of the thesis is organized as follows: In Chapter 2, we present the design

and the optimization of the UAV-WPCN. We detail its system and channel models

and discuss the simulation results by comparing different setups. In Chapter 3, we

introduce the integration of the NOMA scheme in the UAV-WIPT networks. We

present the formulation and the optimization of the system’s EE and conduct a

comparison between the performance of OMA and NOMA schemes. In Chapter 4, we

extend the approach of Chapter 3 to handle the position optimization along with the

resource allocation for the UAV-SWIPT networks. We describe different scenarios

and propose several access schemes.

In Chapter 5, we detail the system and channel models of the MUAV-WPCN

systems. We describe the distribution of the ERs within each cluster and explain the
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steps for maximizing the system’s EE. In Chapter 6, we present the details of the

general scenario of MUAV-SWIPT. We explain the constructions of the system’s EE

and the formulation of the optimization problem. We present the suggested collision

avoidance constraints to avoid UAVs’ collisions and discuss the several constraints on

the main system parameters. Finally, we conclude the thesis in Chapter 7 and provide

future research directions.
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Chapter 2

Single UAV-Enabled Wireless

Powered Communication Networks

This chapter presents the system and channel models details for the first suggested

topology, i.e., UAV-WPCN scenario. In this scenario, we consider two ERs that re-

ceive energy signals from a single UAV to allow its uplink communications toward

a terrestrial BS. We formulate and describe the optimization problem within the

suggested methodology that we presented in Chapter 1. First, the path loss of the

air-to-ground channels is minimized by optimizing the position of the UAV depending

on the ground nodes’ service demands. Then, using the optimized positioning and a

closed-form expression for the energy efficiency, a resource allocation aiming at max-

imizing the energy efficiency is developed. To this end, two algorithms are proposed

using Lagrangian optimization and gradient descent methods.

19



2.1 UAV-WPCN System Model

The hovering UAV, equipped with Nu antennas, transmits power wirelessly to ERs

during a duration τ which is repeated every time slot T . For simplicity, the 2-user

case is considered in this work. From a time slot to the other, the position of the UAV

can vary according to the demands of the ERs. Within a time slot, each ER harvests

energy from the UAV during time τ , and by applying the harvest-then-transmit pro-

tocol consumes the harvested energy to transmit its always-available data to the BS

during the remaining slot time of T − τ , according to a TDMA-based OMA scheme,

as shown in Figure 2.1. The BS is equipped with a massive antenna array of Nb

elements, and its position is denoted (Xb, Yb, hb). Without loss of generality, the po-

sitions of the ERs are set to (X1, Y1, h1) = (R/2, 0, 0) and (X2, Y2, h2) = (−R/2, 0, 0),

as shown in Figure 2.1. d1 and d2 are the distances between the UAV and each ER,

respectively. A quantized level of minimum required rate on the uplink is sent from

the ER to the UAV to initiate the link and to indicate its power demand. Based on

this side information, the UAV determines the relative demand of each ER, denoted

µj, such that
∑

j µj = 1. Here, if ERj has a larger value of µj, then it has a higher

rate demand which means a higher priority in the WPT.

2.1.1 Channel Models

Let hj and gj, j = 1, 2, be the complex channel vectors corresponding to the UAV-

ERj and ERj-BS links, respectively. hj is a row vector and gj is a column vector.

On the UAV side, we have hj = h′j/
√
Ld,j, where Ld,j and h′j = [h′j,1, h

′
j,2, . . . , h

′
j,Nu

]

denote the average path-loss and the normalized channel fading vector corresponding

to UAV-ERj link, respectively. For the case of Rician fading, the normalized channel
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Figure 2.1: UAV-WPCN system model.

vector h′j can be written as [68]

h′j = hLoS, j + hNLoS, j

=

√
K

K + 1
11×Nu +

√
1

K + 1
hw,j, (2.1)

where K denotes the Rice factor, 11×Nu denotes a unity row vector, hw,j is a row

vector whose elements are independent and identically distributed (i.i.d.) complex

Gaussian random variables with zero mean and unit variance; and it is assumed that

the UAV antennas are sufficiently apart for the no spatial correlation assumption to

hold in defining hNLoS, j’s [69]. Further, the average air-to-ground (A2G) free-space

distance-dependent path loss of ERs, Ld,j in dB, is obtained as follows [70]:

Ld,j = pLoS, j LLoS, j + (1− pLoS, j) LNLoS, j , (2.2)
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where the LoS and NLoS path losses are given by

LLoS, j = 10 n log10

(
4πfdj
c

)
+ ξLoS, j, (2.3)

LNLoS, j = 10 n log10

(
4πfdj
c

)
+ ξNLoS, j , (2.4)

where n denotes the path loss exponent, f is the carrier frequency, c denotes the speed

of light; and ξLoS, j and ξNLoS, j are the average environment-dependent excessive path

losses in dB [71] corresponding to ERj. pLoS, j in (2.2) denotes the probability that

the UAV has a LoS to ERj, and is given by [72]

pLoS, j =
1

1 + a exp
(
−b

(
180
π
θj − a

)) , (2.5)

where a and b are constant values related to the environment, and θj is the elevation

angle in radian related to node ERj. We have θj = arccos(hu/dj), where hu is the

altitude of the UAV and dj is the Euclidean distance between the UAV and ERj (see

Figure 1). Using (2.2)–(2.5), we obtain

Ld,j =
ξLoS, j − ξNLoS, j

1 + a exp
(
−b

(
180
π θj − a

)) + 20 log

(
4πfdj
c

)
+ ξNLoS, j , (2.6)

where the distance dj is given by

dj =
√

(Xu −Xj)2 + (Yu − Yj)2 + (hu − hj)2, (2.7)

where (Xu, Yu, hu) indicates the position of the UAV in sky.

22



2.1.2 Energy and Information Transmissions

The unmodulated transmit signal vector x(t) from the Nu UAV antennas is x(t) =

<{
∑J

j=1

√
Pjwje

i2πft}, where wj is the energy beamforming complex vector with unit

norm—assuming availability of perfect channel state information (CSI) on the UAV

side—and Pj is the transmit power destined for ERj, where P =
∑J

j=1 Pj is the

transmit power of the UAV. The maximum harvested energy by ERj from the UAV

during τ dedicated for WPT operation is given by

Ej = ηjP |hjw?
j |2τ = ηjP‖hj‖2τ = ηj

P

Ld,j
‖h′j‖2τ, (2.8)

where 0 < ηj ≤ 1 is the energy-harvesting circuit efficiency [73]. The optimal weight

vector w?
j is equal to h†j/‖hj‖ with † denoting Hermitian transposition; thus leading

to the energy expression as in (2.8).

The ground nodes use the harvested energy for the uplink communication with

the BS. Without loss of generality, we assume that the time slot duration T is unity.

The received data signal at the BS from node j is given by

yj =

√
Ej/Lb,j
1− τ

gj sj + nj, (2.9)

where s ∈ C is the normalized data symbol with zero mean and unit magnitude,

yj ∈ CNb×1, and nj ∈ CNb×1 is the additive Gaussian noise with zero mean and

covariance matrix E{njn†j} = σ2
j INb . Further, gj denotes the normalized uplink small-

scale fading channel vector distributed as CN ∼ (0, INb), and Lb,j is the distance-

dependent path loss of the ERj-BS link. With perfect CSI at the BS, maximum

ratio combining (MRC) is implemented [74]. Assuming that the channel coefficients
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hj and gj are constant during each time slot, the transmission rate related to ERj,

considering the OMA scheme, is given by

Rj(Pj, τ, dj, θj) =
1− τ

2
Wj log2

(
1 +

2Ej‖gj‖2/Lb,j
(1− τ)Γjσ2

j

)
=

1− τ
2

Wj log2

(
1 +

2ηjPj‖h′j‖2‖gj‖2τ

Lb,jLd,j(1− τ)Γjσ2
j

)
(2.10)

where Wj is the bandwidth related to ERj, Γj > 1 is the signal-to-noise ratio (SNR)

gap to account for the lower performance of physically realizable encoding systems

compared to the ideal Shannon-capacity reaching ones. Note that Ld,j is itself a

function of dj and θj as per (2.6). The UAV can also adjust its charging power Pj

and charging time duration τ .

Exploiting the idea of channel hardening [75], namely that limNb→∞
‖gj‖2
Nb

= 1 in

large-scale MIMO, (2.10) becomes

Rj(Pj , τ, dj , θj) =
1− τ

2
Wj log2

(
1 +

2ηjPj‖h′j‖2Nbτ

Lb,jLd,j(1− τ)Γjσ2
j

)
. (2.11)

By using the Jensen’s inequality, we can write

E
[

1− τ
2

Wj log2

(
1 +

2ηjPj‖h′j‖2Nbτ

Lb,jLd,j(1− τ)Γjσ2
j

)]
≤ 1− τ

2
Wj log2

(
1 +

2ηjPjE
[
‖h′j‖2

]
Nbτ

Lb,jLd,j(1− τ)Γjσ2
j

)
(a)
=

1− τ
2

Wj log2

(
1 +

2ηjPjNbτ

Lb,jLd,j(1− τ)Γjσ2
j

)
, (2.12)

where (a) in (2.12) gives an upper-bound for the average transmission rate of ERj.
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Let us define the throughput as the sum-rate of the system:

R(P, τ,d, θθθ) =
2∑
j=1

Rj(Pj, τ, dj, θj). (2.13)

where P = [P1, P2], d = [d1, d2], and θθθ = [θ1, θ2].

2.2 Energy Efficiency Maximization

The energy efficiency of the wireless powered communication system can be evaluated

by defining the energy efficiency coefficient

ρE =
R(P, τ,d, θθθ)

P0τ + Pτ
, (2.14)

where P0 is the constant power consumption of the UAV which significantly includes

the electrical power to keep the UAV moving in air, and P = P1 + P2 is the transmit

power. Having assumed spherical coordinates (dj, θj, φj) and noticing that Ld,j does

not depend on φj, we try to solve the below optimization problem to decide first on

the optimized position of the UAV in the sky according to the demand parameters, µ1

and µ2. Then, optimization of the transmit powers, P1, P2, and the harvesting time

τ by both nodes is tackled. The problem is formulated as follows:

max
P,τ,dj ,θj

ρE

subject to: P1 + P2 ≤ Pu,max,

Ej
1− τ

≤ PERj ,max, j = 1, 2,

τ < 1,

rj,min ≤ Rj(Pj, τ, dj, θj), j = 1, 2,
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hu,min ≤ dj cos(θj), j = 1, 2, (2.15)

where PERj ,max and Pu,max are the maximum transmit power of ERj and the UAV,

respectively; rj,min denotes the minimum expected transmission rate of node ERj

during each time slot, and hu,min is the minimum allowed height for the UAV. Note

that dj cos(θj) = hu.

We split the optimization problem into two sub-problems. In the first one (OP1),

we aim to find the optimum position of the UAV, i.e., the optimal distances and

elevation angles with respect to the ERs according to their demands. In the second

problem (OP2), and after getting the optimum position of the UAV, we determine

the optimal power and switching time.

2.2.1 UAV Position Optimization

In OP1, we care about θj and dj which are given in (2.6) for both nodes at the same

time. This can be achieved by connecting the path losses for two A2G channels related

to each node by the parameters pertaining to the nodes’ demands. So, OP1 will be

as follows:

OP1: min
dj ,θj

µ1Ld,1 + µ2Ld,2

subject to: hu,min ≤ dj cos(θj), j = 1, 2. (2.16)

This optimization problem can be solved by introducing the vector of Lagrangian

multipliers λλλ = [λ1, λ2]. The objective function then becomes

L1(λλλ,d, θθθ) = µ1Ld,1 + µ2Ld,2 − λ1hu,min − λ2hu,min
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− λ1d1 cos(θ1)− λ2d2 cos(θ2). (2.17)

Exploiting the Karush–Kuhn–Tucker (KKT) conditions [76], one can get the optimal

position of the UAV by solving the first derivatives of L1 with respect to dj and θj,

respectively, as follows:

∂L1

∂dj
= µj

∂Ld,j
∂dj

− λj

=
20µj

dj ln(10)
− λj cos(θj)

= 0, j ∈ {1, 2}, (2.18)

∂L1

∂θj
=
∂Ld,j
∂θj

+ λjdj sin(θj)

=
ab

180

π
(ξLoS, j − ξNLoS, j) exp

(
−b (180

π
θj − a)

)
(
1 + a exp

(
−b (180

π
θj − a)

))2

+ λjdj sin(θj)

= 0, j ∈ {1, 2}. (2.19)

The new value of λj can be simply calculated using the gradient decent method as

follows [77]:

λj(i+ 1) = [λj(i)−4λj(hu,min − dj cos(θj))]
+, (2.20)

where λj(i), j ∈ {1, 2}, is the value of λj at the ith iteration, 4λj is the iteration

step, and [x]+ = max(0, x). As a starting point, we set λj = 0 for j ∈ {1, 2} as

mentioned in Algorithm 2.1 and then update it in each iteration. The output of the

optimization will be the optimum position of the UAV, i.e. θ∗j and d∗j , corresponding

to ERj, j ∈ {1, 2}. Algorithm 2.1 summarizes the procedure for finding the optimal
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positioning of the UAV. Notice that the position of the ERs are known. The results

will be used in the second optimization problem.

Algorithm 2.1. 3D Position Optimization (X∗u,Y ∗u ,h∗u)
Input: [Xj,Yj,hj], µj, ξLoS, j , ξNLoS, j for j ∈ {1, 2}; a, b, hu,min, f .
Output: [X∗u,Y ∗u ,h∗u]

Initialization : [Xu0,Yu0,hu0], λj = 0 for j ∈ {1, 2}.
1: Update λj’s according to (2.20).
2: Solve (2.18) for dj, j ∈ {1, 2}.
3: Solve (2.19) for θj, j ∈ {1, 2}.
4: Compute the optimal [X∗u,Y ∗u ,h∗u] by solving (2.16)

2.2.2 Energy-Efficient Resource Allocation

In OP2, we eliminate the last constraint in (2.15) which is already covered by OP1.

With the remaining constraints, the optimization problem is formulated as follows:

OP2: max
P1,P2,τ

ρE

subject to: P1 + P2 ≤ Pu,max,

Ej
1− τ

≤ PERj ,max, j = 1, 2,

τ < 1,

rj,min ≤ Rj(Pj, τ, d
∗
j , θ
∗
j ), j = 1, 2. (2.21)

From the first and second constraints in (2.21), and by substituting (2.8) in the second

constraint in (2.21); and assuming that both ERs have the same maximum transmit

power PER,max and energy-harvesting efficiency η, we can deduce that τ ≤ τmax, where

τmax =
PER,maxLd,1Ld,2

ηPu,max(µ1Ld,2 + µ2Ld,1) + Ld,1Ld,2PER,max

. (2.22)
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It is obvious that the objective function of OP2 is a fractional optimization problem

with variables P1, P2, and τ , which is generally non-convex. Exploiting the idea

in [78], the fractional programming problem is transformed into a convex problem by

introducing the variable z∗ as the optimal energy efficiency when we have the optimal

powers and optimal switching time, P ∗1 , P ∗2 and τ ∗, respectively. Thus, OP2 is now

described as

OP2*: max
P,τ

R(P, τ,d∗, θθθ∗)− z∗(P0τ + Pτ)

subject to: P1 + P2 ≤ Pu,max,

τ ≤ τmax,

τ < 1,

Rj(Pj, τ, d
∗
j , θ
∗
j ), j = 1, 2, (2.23)

Basically OP2∗ can be efficiently proved to be a convex optimization problem by

assuring that the second derivatives of R(P, τ,d∗, θθθ∗) with respect to Pj and τ , are

less than zero.

By introducing ϑ ≥ 0, ς ≥ 0, ε ≥ 0, ϕ1 ≥ 0, and ϕ2 ≥ 0 as the Lagrange

multipliers associated with the four constraints in OP2∗, respectively, the Lagrangian

function of OP2∗ can be formulated as

L2(ϑ, ς, ε, ϕ1, ϕ2, P1, P2, τ) = R1(P1, τ, d
∗
1, θ
∗
1) + R2(P2, τ, d

∗
2, θ
∗
2)

− z∗(P0τ + Pτ)− ϑ(P1 + P2) + ϑPu,max

− ςτ + ςτmax − ετ + ε− ϕ1r1,min − ϕ2r2,min

+ ϕ1R1(P1, τ, d
∗
1, θ
∗
1) + ϕ2R2(P2, τ, d

∗
2, θ
∗
2). (2.24)
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To find the optimal transmit powers P ∗1 and P ∗2 from the UAV towards ER1 and ER2,

respectively, we assume that the UAV will use its maximum power during the WPT

period, which simply means that P ∗2 = Pu,max − P ∗1 . Our aim now is to get P ∗1 which

also implicitly means P ∗2 and the optimal WPT time τ ∗. Taking into consideration

that OP2∗ is a nonlinear programming problem, this can be done through derivation

of the Lagrangian function with respect to P1 and τ , respectively, as follows:

∂L2(ϑ, ς, ε, ϕ1, ϕ2, P1, τ)

∂P1

= (1 + ϕ1)
∂R1(P1, τ, d

∗
1, θ
∗
1)

∂P1

+ (1 + ϕ2)
∂R2(P1, τ, d

∗
2, θ
∗
2)

∂P1

− z∗τ − ϑ

=
(1 + ϕ1)(1− τ)W1

2P1 ln 2
− (1 + ϕ2)(1− τ)W2P1

2(Pu,max − P1) ln 2

− z∗τ − ϑ

= 0, (2.25)

∂L2(ϑ, ς, ε, ϕ1, ϕ2, P1, τ)

∂τ

= (1 + ϕ1)
∂R1(P1, τ, d

∗
1, θ
∗
1)

∂τ
+ (1 + ϕ2)

∂R2(P1, τ, d
∗
2, θ
∗
2)

∂τ

− z∗Pu,max − z∗P0 − ς − ε

=
(1 + ϕ1)W1

2

(
(1− τ)

τ ln 2
− log2

(
η1P1Nbτ

Lb,1Ld,1(1− τ)Γ1σ2
1

))
+

(1 + ϕ2)W2

2

(
(1− τ)

τ ln 2
− log2

(
η2(Pu,max − P1)Nbτ

Lb,2Ld,2(1− τ)Γ2σ2
2

))
− z∗Pu,max − z∗P0 − ς − ε

= 0. (2.26)

The updating of the Lagrangian variables ϑ, ς , ε, ϕ1 and ϕ2 can be done using the
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gradient method as follows:

ϑ(i+ 1) = [ϑ(i)−4ϑ(Pu,max − P )]+ (2.27)

ς(i+ 1) = [ς(i)−4ς(τmax − τ)]+ (2.28)

ε(i+ 1) = [ε(i)−4ε(1− τ)]+ (2.29)

ϕ1(i+ 1) = [ϕ1(i)−4ϕ1(R1(P1, τ, θ
∗
1, d
∗
1)− r1,min)]+ (2.30)

ϕ2(i+ 1) = [ϕ2(i)−4ϕ2(R2(P1, τ, θ
∗
2, d
∗
2)− r2,min)]+, (2.31)

where i is the iteration index, and the 4ϑ, 4ς , 4ε, 4ϕ1 , and 4ϕ2 are the iteration

steps.

The solution of OP2, by depending on the expressions (2.21)–(2.31) and the

output of Algorithm 2.1, is summarized in Algorithm 2.2.

Algorithm 2.2. Energy-Efficient Resource Allocation
Input: Output of Algorithm (2.1) [X∗u,Y ∗u ,h∗u], [X1,Y1,h1],

[X2,Y2,h2], [Xb,Yb,hb], hu,min, a, b, ξLoS, j , ξNLoS, j , f , Nu, Nb, Ld,j, Lb,j, ηj,
Γj, σj, r1,min, r2,min, 4ϑ ,4ς , 4ε, 4ϕ1 , 4ϕ2 , and z∗.

Output: [P ∗1 ,P ∗2 ,τ ∗].
Initialization: [P10 ,τ0], ϑ = 0, ς = 0 , ε = 0, ϕ1 = 0, ϕ2 = 0 .

1: Update ϑ, ς , ε, ϕ1, and ϕ2 based on (2.27), (2.28), (2.29), (2.30), and (2.31),
respectively.

2: Solve (2.25) and (2.26) jointly to obtain P1 and τ .
3: Compute the optimal [P ∗1 ,P ∗2 ,τ ∗] by solving (2.23).

2.2.3 Complexity Analysis

In the proposed methodology, we decomposed the problem into two sub-problems

and were able to solve them efficiently through two algorithms. Both algorithms

depend on the gradient descent method where the worst complexity of such method

31



is O(n× 1
ε
) [79], where n is the number of optimization variables, and ε is the solution

accuracy. Thus, for Algorithm 2.1, the complexity depends on the 3D plane size that

the UAV considers for moving, i.e., (X × Y × (hmax− hmin)), where the (hmax− hmin)

is the allowable altitude range for moving. This could be eliminated to (X × Y ) only

as the UAV will mostly hover at the minimum allowable height to provide better links

to the ERs and IRs. For Algorithm 2.2, the complexity depends on the number of

ERs (J). Accordingly, the total complexity for both algorithms is O(X×Y × (hmax−

hmin)× 1
ε
) +O((J)× 1

ε
).

2.3 Simulation Results

In the simulations, we assume the propagation parameters to correspond to an urban

environment [72], unless stated otherwise. We choose a = 9.6, b = 0.28, ξLoS,j = 1

dB, ξNLoS,j = 20 dB, f = 2 GHz, Γj = 1.2, Wj = 200 kHz, ηj = 0.8, σ2
j = 1; for

j = 1, 2. The coordinates of ER1, ER2 and the BS are set to [500 0 0], [-500 0 0] and

[0 100 25], respectively. The UAV position is the output of OP1 with hu,min = 100

m. Moreover, we set P0 = 10 Watt, Pu,max = 3 Watt, Nu = 5 and Nb = 100, unless

stated otherwise.

2.3.1 3D Position of the UAV

The proposed algorithm for finding the optimal 3D position of the UAV, i.e., Algo-

rithm 2.1, efficiently converges to the optimal position with respect to dj and θj where

j = 1, 2, after no more than 10 iterations for different initial settings. Afterwards,

this output is used in OP2.

With two ERs, we have three cases: (i) the demand of ER1 is larger than the

demand of ER2, i.e., µ1 > µ2; (ii) the demand of ER2 is larger than that of ER1, i.e.,
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µ2 > µ1; and (iii) both have the same demand, i.e., µ1 = µ2. These three cases are

clearly illustrated in Figure 2.2, which represents the optimal horizontal location of

the UAV depending on the values of µ1 and µ2. For instance, when µ1 = 0.8 and

µ2 = 0.2, the UAV hovers at the position of [300 0 100]. In the extreme case where

the demand of one ER is at most whereas the other has no demand, the path loss will

be on its minimum with respect to the former node and to the maximum with respect

to the latter. For example, when ER1 has maximum demand, µ1 = 1, then the UAV

will hover directly on top of it, i.e. at the position [500 0 100]. In the case of same

demands, where µ1 = µ2 = 0.5, the path losses will be the same for both nodes and

the UAV will be at the medium point [0 0 100] between the nodes.
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Figure 2.2: UAV position according to the nodes’ demands.
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2.3.2 Energy Efficiency with Optimal Power and Charging

Time

Figure 2.3 shows the transmit powers from the UAV towards the ERs, as a function of

the demand parameter of ER1, i.e., µ1. The figure compares P ∗1 and P ∗2 when the UAV

takes the demand parameters of the ERs into consideration and when not. It is clear

that the UAV transmit power will be divided equally among the ERs and that the

UAV will hover in the middle between them when demand parameters are not taken

into account. For instance, when µ1 = 0.7 and the UAV takes the ER demands into

account, a power of P ∗1 = 2.45 Watt and P ∗2 = 1.35 Watt will be allocated towards

ER1 and ER2, respectively. On the other hand, when the UAV does not take the

demands into consideration,the power levels will be fixed to 1.5 Watt regardless of the

nodes’ requirements for the data communication on the uplink.
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Figure 2.3: Transmit power towards ERs versus demand parameter of ER1.

Figure 2.4 shows the optimal normalized harvesting time, τ ∗/T , for different
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demand values, which also means for the different optimized positions of the UAV. The

results are plotted as a function of µ1, while recalling that the demands are normalized

such such that µ1 + µ2 = 1. The figure illustrates the usefulness of optimizing the

UAV position according to the ERs’ demands. It is clear that in all cases, except

when the ERs have equal demands, the WPT time will be lower when the UAV takes

the ERs’ demands into consideration. For example, when µ1 = 0.8 , i.e., µ2 = 0.2, the

normalized harvesting time is almost 0.3 while it is around 0.6 when ERs’ demands

are not taken into account. With the ensuing time savings, the UAV can be used for

other missions.
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Figure 2.4: Normalized harvesting time versus demand parameter of ER1.

Figure 2.5 displays the effect of varying demands on the energy efficiency of the

system. Similar to Figure 2.4, results are plotted as a function of µ1. The energy

efficiency, when the optimization of the UAV position does not take into account the

ERs’ demands will be fixed. The energy efficiency with optimized UAV position based

on the ERs’ demands will be better in all cases. Obviously, the result is the same when
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the ERs have the same demand. For instance, when Nb = 100 and µ1 = 0.75, there is

a considerable difference in the energy efficiency when ERs’ demands are taken into

account and when not. Note that by increasing the number of antennas of the BS,

the energy efficiency increases in all cases.
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Figure 2.5: Energy efficiency versus demand parameter of ER1.

2.4 Summary

In this chapter, we presented the resource allocation problem in the UAV-WPCN,

where a multiple-antenna UAV is deployed for charging ground nodes through RF

wireless power transfer to assist their uplink data communication with a terrestrial

base station. The optimization problem was solved by exploiting the movement flex-

ibility of the UAV, which allows minimizing the path loss on the air-to-ground chan-

nels according to the nodes’ demands, and optimizing the transmit powers towards

the maximization of the energy efficiency of the system. The results show that sig-

nificant EE can be achieved by the proposed allocation scheme. In particular, the
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results showed that less wireless power transfer time will be needed from the UAV

to simultaneously charge GNs when their demands are taken into account. However,

this scenario covers only a system, where the UAV is used to send energy signal to-

wards the ERs and uses the OMA scheme for uplink transmissions, where in many

use-cases, the UAVs are called to not only charge devices but also to send and/or

collect information to/from them. Using the concept of WIPT/SWIPT, where the

transmitter sends power and information signals towards ERs and IRs, the UAVs can

be deployed to provide efficient WPT along with reliable data services when and where

needed. The use of such a concept needs to meet the radio resource sharing of 5G

and beyond 5G systems, where non-orthogonal multiple access (NOMA) will highly

likely be replacing the conventional OMA. The details of such a scenario, i.e., using

UAV to enable WIPT scenario based on NOMA scheme, will be discussed in the next

chapter.
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Chapter 3

Single UAV-Enabled Wireless

Information and Power Transfer

In Chapter 2, we presented the UAV-WPCN scenario, where the primary use of the

UAV is limited to charge ERs to enable their uplink transmissions via conventional

OMA scheme. Therefore, in this chapter, we propose a wireless communication net-

work in which a UAV deploys information and power transfer towards co-located

IRs and ERs to enable downlink and uplink data transmission through the NOMA

scheme. We present the details of the UAV-WIPT scenario and apply the suggested

methodology to maximize the EE by optimally allocating the available resources.

3.1 UAV-WIPT System and Channel Models

The UAV serves K single-antenna IRs and J single-antenna ERs in each time slot T

(Figure 3.1). The total number of antennas at the UAV is N = NE+NI , with NE used

for the ERs, and NI dedicated to the IRs. The time slot is divided into two phases. In
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the first phase, αT (0 < α < 1) , the UAV transmits energy signals to the ERs. In the

second phase, (1− α)T , the ERs make use of the harvested energy to transmit their

always-available data to the UAV. Simultaneously, the UAV transmits information to

the IRs. The data transmissions on the uplink (U) and downlink (D) are performed

according to the NOMA protocol. Without loss of generality, the time slot duration

T is set to unity. The position of the UAV is denoted (XUAV, YUAV, hUAV), the one

of ERj is (XERj , YERj , hERj), and that of IRk is (XIRk , YIRk , hIRk). In this work, we

focus on the system operation once the UAV starts hovering in a specific position,

i.e., (XUAV, YUAV, hUAV), for serving the ground devices.

For the channel models, channels are of two types: air-to-ground (A2G) from the

UAV to IRs and ERs, and ground-to-air (G2A) from ERs to the UAV. The complex

channel vector of link UAV-IRk is denoted hk ∈ C1×NI , k = 1, · · · , K. For ERj,

j = 1, · · · , J, the complex channel vector of the A2G link is denoted gj ∈ C1×NE , and

the one of the G2A is zj ∈ CNE×1. First, we have gj = g′j/
√
LD

ERj
, where LD

ERj
is

the average path-loss, and g′j = [g′j,1, g
′
j,2, . . . , g

′
j,NE

] is the normalized channel fading

vector. Assuming Rician fading, g′j can be written as [80]:

gj
′ =

√
K
K + 1

11×NE +

√
1

K + 1
g̃j, (3.1)

where K is the Rice factor, 11×NE is a unity row vector, and the non-line-of-sight

(NLoS) fading component g̃j is a row vector whose elements are i.i.d. complex Gaus-

sian random variables with zero mean and unit variance, i.e., CN (0, 1). The average

A2G free-space distance-dependent path loss of ERj, LD
ERj

in dB, is given by

LD
ERj

= pLoS,j LLoS,j + (1− pLoS,j) LNLoS,j , (3.2)
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Figure 3.1: UAV-WIPT system model.

where the LoS and NLoS path losses are given by as in (2.3) and (2.4), respectively.

The probability that the UAV has LoS with ERj ,pLoS,j , can be given as in (2.5), and

the Euclidean distance is given as in (2.7).

The A2G channel model described above w.r.t. ERs (g) applies to the IRs

(h) by replacing k with j and IR with ER in (2.3)-(2.7) and (3.1)-(3.2). For the

channel between ERj and UAV, zj, we also consider a Rician model as for gj, with

zj = z′j/
√
LU

ERj
and LU

ERj
being the average G2A distance-dependent path-loss.

3.2 Energy Transmission

The UAV transmits energy signal x1 ∈ CNE×1, which consists of J energy beams, one

for each ER, i.e.,

x1 =
J∑
j=1

√
PD
j wjs

ER
j , (3.3)
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where PD
j is the transmit power destined for ERj, sER

j ∈ CN (0, 1) denotes the energy-

carrying signal, and wj ∈ CNE×1 is the corresponding energy beamforming vector.

For the jth ER, the received signal is given by

yER
j = gj

J∑
i=1

√
PD
i wjs

ER
j + nER

j , (3.4)

where nER
j ∼ CN (0, σ2) is the AWGN noise. Without loss of generality, we assume

equal noise powers for all ERs, i.e., σ2. It is assumed that the harvested energy is

the result of the energy signal, and that noise does not take part in it. Assuming the

availability of perfect CSI, the optimal weight vector w?
j is g†j/‖gj‖. Hence, energy

that is harvested by ERj during the first phase is given by

Ej = ζjα|gjw?
j |2

J∑
i=1

PD
i = ζjα

‖g′j‖2

LD
ERj

PD, (3.5)

where 0 < ζj ≤ 1 is the energy-harvesting circuit efficiency [73], assumed the same

for all ERs, and PD is the total power destined to ERs.

3.3 Information Transmission

In the second phase, ERs use the harvested energy for their uplink communication

with the UAV, simultaneously with the downlink transmission from the UAV to the

IRs.

3.3.1 Uplink Information Transmission

The transmit power from the jth ER is PU
j =

Ej
1−α . The UAV receives the superposed

message signal of J ERs, and applies SIC to decode each device’s message. The
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received signal at the UAV, is given by

yUAV =
J∑
j=1

√
PU
j zj ojs

UAV
j + HSI

K∑
k=1

√
QD
k vks

IR
k + n, (3.6)

where oj ∈ C1×NE is the beamforming vector of the jth ER, and sUAV
j ∈ CN (0, 1)

is the normalized data symbol of ERj towards the UAV. Further, HSI ∈ CNI×NE is

the self interference (SI) channel due to the full-duplex process, i.e., simultaneous

uplink and downlink transmissions [81], QD
k is the transmit power for IRk, vk ∈ CNI×1

is the corresponding beamforming vector, sIR
k ∈ CN (0, 1) denotes the information-

bearing signal for the kth IR, and n is the AWGN with zero mean and covariance

matrix E{nn†} = σ2INE , where I is the identity matrix. We assume that powerful SI

cancellation is in place [82], thus its effect can be ignored.

3.3.2 Downlink Information Transmission

The data signal x2 ∈ CNI×1 sent by the UAV to the IRs consists of K information

beams, one for each IR. Hence, we have

x2 =
K∑
k=1

√
QD
k vks

IR
k . (3.7)

Each IR encounters interference from the uplink signals of ERs towards the UAV, as

well as interference from the downlink beams to other IRs. The received signal at IRk

is given by

yIR
k = hk

K∑
i=1

√
QD
i vis

IR
i +

J∑
j=1

√
PU
j ojs

UAV
j + nIR

k . (3.8)
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Since the interferences from the ERs to IRk are small compared to the interferences

from other IRs, their effect can be neglected. Hence, the signal-to-interference-plus-

noise ratio (SINR) at the kth IR is formulated as

γk =
QD
k v
†
kh
†
khkvk

K∑
i=1,i6=k

QD
i v
†
ih
†
khkvi + σ2

, ∀k. (3.9)

3.4 Energy Efficiency Maximization

3.4.1 Energy Efficiency Formulation

To formulate the EE of the UAV-WIPT system, we have to construct the throughputs

of the downlink and uplink stages. For the downlink information NOMA setup, where

the channel gains of IRs are increasing when closer to the UAV (channel gain of IR1

is larger than IR2, and so on until IRK), the rate in bps related to a given IR can be

expressed as [83]:

RD
k = (1− α)W log2

1 +

QD
k ‖hk

′‖2

LD
IRk

(1−α)

K−1∑
i=1,i6=k

QD
i ‖hk

′‖2
LD
IRi

(1−α)
+ 1

 , (3.10)

where W is the bandwidth. According to the principles of power-domain NOMA, for

a given IR, the strong interfering signals are mainly due to the transmissions to users

with low channel gains. The weakest channel user, IRK , which receives low interfer-

ences due to the relatively low powers of the messages of high channel gain users,

cannot cancel any interferences. However, the highest channel gain user, IR1, which

receives strong interferences due to the relatively high powers of the transmissions to
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weak users, can cancel all interfering signals [84]. On the other hand, for the uplink

NOMA throughput, knowing that the channel gains are stronger when ERs are closer

to the UAV (channel gain of ER1 is larger than ER2, and so on until ERJ), then based

on (3.5) and (3.6), the rate related to a given ER can be expressed as [83]:

RU
j = (1− α)W log2

1 +

ζPD
j ‖gj

′‖2‖zj′‖2α
LU
ERj

LD
ERj

(1−α)

J∑
l=j+1

ζPD
l ‖gl′‖2‖zl′‖2α

LU
ERl

LD
ERl

(1−α)
+ 1

 . (3.11)

The signal of the highest channel gain user, ER1, is decoded first at the UAV. As

a result, ER1 experiences interference from all other ERs. Then, the signal for the

second highest channel gain user is decoded until the last one, ERJ , [85].

Define the downlink throughput as the sum-rate of all IRs, i.e., RD =
∑K

k=1 R
D
k ,

and the uplink throughput as the sum-rate RU =
∑J

j=1 R
U
j . The EE of the system is

expressed as

η =
Total Throughput

Total Consumed Energy
=

RD +RU

PDC + PD +QD(1− α)
, (3.12)

where PDC is the constant power consumption of the UAV, and where PD =∑J
j=1 P

D
j = βP and QD =

∑K
k=1 Q

D
k = (1 − β)P are the powers dedicated to the

ERs and the IRs, respectively, i.e., P = PD + QD, where β indicates the percentage

of power destined to ERs and (1 − β) indicates to the percentage of power destined

to IRs. Hence, a larger value of β means that higher priority is given to the WPT.
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3.4.2 Energy-Efficient Resource Allocation

The optimization problem which aims to maximize EE is formulated as follows:

OP1 : max
QD,PD,α,β

η

subject to: P ≤ Pmax,

PU
j ≤ PU

j,max, ∀j,

α < 1,

0 ≤ β ≤ 1,

RU
j ≥ RU

j,min, ∀j,

RD
k ≥ RD

k,min, ∀k, (3.13)

PU
thr ≤ PU

j zj −
J∑

l=j+1

PU
l zl, ∀j,

QD
thr ≤

(
QD
k −

k−1∑
m=1

QD
m

)
hk−1, ∀k,

where RU
j,min and RD

k,min denote the minimum required rates of ERj and IRk, respec-

tively, and where PU
thr and QD

thr are the SIC detection thresholds of the uplink and

downlink, respectively.

It is obvious that OP1 is a fractional optimization problem with variables PD,

QD, and α, and is non-convex. Exploiting the idea in [78], the fractional programming

problem can be transformed into a convex problem by introducing variable χ∗ as

the optimal EE when we have the optimal powers and optimal WPT fraction of

time, α. Hereafter, for more tractability and to get a clearer insight into the system

performance, we focus on the scenario with two ERs and two IRs.
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Accordingly, (3.13) becomes

OP2 : max
QD,PD,α,β

2∑
k=1

RD
k +

2∑
j=1

RU
j

− χ∗(PDC + PER
D +QIR

D (1− α))

subject to: P ≤ Pmax,

PU
j ≤ PU

j,max, j = 1, 2,

α < 1,

0 ≤ β ≤ 1,

RU
j ≥ RU

j,min, j = 1, 2,

RD
k ≥ RD

k,min, k = 1, 2, (3.14)

PU
thr ≤ PU

j zj −
J∑

l=j+1

PU
l zl, j = 1, 2,

QD
thr ≤

(
QD
k −

k−1∑
m=1

QD
m

)
hk−1, k = 1, 2.

By introducing ϑ ≥ 0, ς1 ≥ 0, ς2 ≥ 0, ε ≥ 0, % ≥ 0, ϕ1 ≥ 0, ϕ2 ≥ 0, λ1 ≥ 0, λ2 ≥ 0 ,

µ ≥ 0, and φ ≥ 0, as the Lagrange multipliers associated with the constraints in OP2,

the Lagrangian function of OP2 can be formulated as:

L(ϑ, ς1, ς2, ε, %, ϕ1, ϕ2, λ1, λ2, µ, φ, β,Q
D
1 , Q

D
2 , P

D
1 , P

D
2 , α)

=
2∑

k=1

RD
k +

2∑
j=1

RU
j − χ∗(PDC + βP + (1− β)(1− α)P )

− ϑ(P − Pmax)− ς1(PU
1 − PU

1,max)− ς2(PU
2 − PU

2,max)

− ε(α− 1)− ϕ1(RU
1,min −RU

1 )− ϕ2(RU
2,min −RU

2 ) (3.15)

− %(β − 1)− λ1(RD
1,min −RD

1 )− λ2(RD
2,min −RD

2 )

− µ(PU
thr − PU

1 z1 + PU
2 z2)− φ(QD

thr −QD
2 h1 +QD

1 h1).

46



We assume that the UAV uses its maximum power, such that βPmax = PD and

(1 − β)Pmax = QD. Our goal is to find β, QD
1 , and hence QD

2 = (1 − β)Pmax − QD
1 ,

as well as PD
1 which also implicitly means PD

2 = βPmax − PD
1 , and the optimal WPT

fraction of time (α∗). The optimization problem OP2 is split into two stages. In the

first stage, the aim is to determine the optimized value of β. In the second stage,

the optimization problem OP2 after obtaining β is split into two sub-problems. The

first one corresponds to the downlink WIT, where the purpose is to find QD
1 and QD

2 ,

taking into account that the WIT takes place in the second phase of the process, with

the constraints focused on the first, fifth, and eighth constraints of OP2. In the second

sub-problem, the aim is to optimize PD
1 , PD

2 , and α, where this accounts for the first,

second, third, fifth, and seventh constraints. After getting the optimized parameters,

we merge them together to find the optimized EE, which is the result of the optimized

rates on both processes. Taking into account that OP2 is a nonlinear programming

problem, this can be done through derivation of the Lagrangian function (3.15) w.r.t.

QD
1 , PD

1 , and α, and setting them to zero, i.e.,

∂L
∂QD

1

= 0,
∂L
∂PD

1

= 0,
∂L
∂α

= 0, (3.16)

where we dropped the arguments of the functional

L(ϑ, ς1, ς2, ε, %, ϕ1, ϕ2, λ1, λ2, µ, φ, β,Q
D
1 , Q

D
2 , P

D
1 , P

D
2 , α) for notational simplicity.

The updating of the Lagrangian variables (ϑ, ς1, ς2, ε,%, ϕ1, ϕ2, λ1, λ2 , µ, and φ)

can be done using the gradient-decent method, according to

ϑ(i+ 1) = [ϑ(i)−4ϑ(Pmax − P )]+, (3.17)

ς1(i+ 1) = [ς1(i)−4ς1(P
U
1,max − PU

1 )]+, (3.18)
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ς2(i+ 1) = [ς2(i)−4ς2(P
U
2,max − PU

2 )]+, (3.19)

ε(i+ 1) = [ε(i)−4ε(1− α)]+, (3.20)

%(i+ 1) = [%(i)−4%(1− β)]+, (3.21)

ϕ1(i+ 1) = [ϕ1(i)−4ϕ1(R
U
1 −RU

1,min)]+, (3.22)

ϕ2(i+ 1) = [ϕ2(i)−4ϕ2(R
U
2 −RU

2,min)]+, (3.23)

λ1(i+ 1) = [λ1(i)−4λ1(R
D
1 −RD

1,min)]+, (3.24)

λ2(i+ 1) = [λ2(i)−4λ2(R
D
2 −RD

2,min)]+, (3.25)

µ(i+ 1) = [µ(i)−4µ(PU
1 z1 − PU

2 z2 − PU
thr)]

+, (3.26)

φ(i+ 1) = [φ(i)−4φ(QD
2 h1 +QD

1 h1 −QD
thr)]

+, (3.27)

where i is the iteration index, and the 4’s are the iteration steps.

The closed form of the optimized power fraction can be obtained by solving

∂L
∂β

= 0, which leads to:

β =
αϕ1 + α

αϕ1 + αλ1 + 2α
+

((1− α)ϕ1 − α + 1)LD
IR1

(αϕ1 + αλ1 + 2α)‖h1
′‖2Pmax

+
((α− 1)λ1 + α− 1)LD

ER1
LU

ER1

(αϕ1 + αλ1 + 2α)‖g1
′‖2‖z1

′‖2Pmaxζ
− χ∗αPmax − %

− ζα‖g1
′‖2Pmax

LD
ER1

(1− α)
. (3.28)

The solution of the optimization problem OP2 is summarized in Algorithm 3.1,

where QD
10
, PD

10
, and α0 denote the initial values for QD

1 , PD
1 , and α, respectively.
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Algorithm 3.1. Energy-Efficient Resource Allocation
Input: (XUAV,YUAV,hUAV); (XERj , YERj , hERj), j = 1, 2;

(XIRk , YIRk , hIRk), k = 1, 2; a, b, β, ξLoS, ξNLoS, f , η, σ, RU
min, RD

min, 4ς1 , 4ς2 , 4ε,
4%, 4ϕ1 , 4ϕ2 ,4λ1 ,4λ2 , 4µ,4φ, and χ∗.

Output:
[
β,QD

1 , Q
D
2 , P

D
1 , P

D
2 , α

]
.

Initialization:
[
QD

10
, PD

10
, α0

]
, ϑ = 0, ς1 = 0, ς2 = 0, ε = 0, ϕ1 = 0, ϕ2 = 0,

λ1 = 0, λ2 = 0 , µ = 0, φ = 0.
1: Calculate β as per (3.28).
2: Update ϑ, λ1, λ2 and φ based on (3.17), (3.24), (3.25), and (3.27), respectively.
3: Solve (3.16) to obtain QD

1 .
4: Update ϑ, ς1, ς2, ε, ϕ1, ϕ2, and µ based on (3.17), (3.18), (3.19), (3.20), (3.22),

(3.23), and (3.26), respectively.
5: Solve (3.16) to obtain PD

1 and α.
6: Compute

[
QD

1
∗
, QD

2
∗
, PD

1
∗
, PD

2
∗
, α∗
]
by solving (3.14).

3.4.3 Complexity Analysis

As discussed in the previous chapter, the complexity is mainly depending on the de-

ployed algorithms. For instance, in the UAV-WIPT case, the problem was solved

based on an algorithm that is constructed through the gradient descent method. Ac-

cordingly, the worst complexity of such method is O(n × 1
ε
) [79], where n is the

number of optimization variables, and ε is the solution accuracy. Thus, for Algorithm

3.1, the complexity depends on the number of ERs (J) and IRs (K). Therefore, the

complexity for this algorithm is O((J +K)× 1
ε
).

3.5 Simulation Results

In the simulations, we set a = 9.6, b = 0.28, ξLoS = 1 dB, ξNLoS = 20 dB, f = 2 GHz,

W = 200 kHz, η = 0.8, σ2 = 1, and NE = NI = 2. The position of ER1 is fixed at

(1,0,0), and we vary the horizontal coordinate of ER2 (x,0,0). The UAV is positioned

at (0,0,10). Also, the position of IR1 is set to (-1,0,0), and we vary the horizontal

coordinate of IR2 (-x,0,0). We set QD
thr = PU

thr = 0.05 Watt, PDC = 5 Watt, Pmax = 3
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Watt, and RU
min = RD

min= 12 Kbps.

As a first stage of the process, β is determined before starting the actual trans-

missions towards the ERs and IRs. According to the closed-form expression of β along

with the symmetrical positions of ERs and IRs in our setup, the power among ERs

and IRs is split equally. Once β is obtained, the transmissions towards the ERs and

IRs start. Figure 3.2 shows the throughput of each IR along with the summation of

those rates. It is clear that the throughput of IR1 always outperforms that of IR2, for
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Figure 3.2: Downlink throughput.

both the OMA and NOMA schemes. With OMA protocol, the UAV sends the infor-

mation separately by dedicating half of the transmission phase, (1−α)/2, to each IR.

The sum-rate with OMA is better than with NOMA for small distances of IR2 w.r.t.

the UAV, while NOMA starts to outperform OMA as the said distance increases and

the link of IR2 becomes much weaker compared to the link of the strong user.

Energy harvested by the ERs from the downlink WPT is used for their NOMA

uplink communication with the UAV. Figure 3.3 illustrates the throughput of each
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Figure 3.3: Uplink throughput.

ER along with the sum-rate. Results of conventional uplink OMA, where each ER

sends its information to the UAV during half of the second phase, i.e., (1 − α)/2,

are also provided. It is obvious that the throughput of ER1 mostly outperforms the

throughput of ER2 in the OMA set-up. With NOMA, there are some variation and

correlation between the rates of ER1 and ER2. As observed, the throughput of ER1

decreases sharply when ER2 becomes closer to the UAV, which implicitly means that

its transmission increases the interference on the ER1 signal. This can be clearly

noticed when the distance of ER2 is less than 13 meters, which means that it starts to

have a strong connection with the UAV. In both OMA and NOMA schemes, the rate

of ER1 starts to decrease when the distance of ER2 from the UAV increases, which is

due to the minimum rate constraints in both schemes. As the rate of ER2 must also

satisfy the said constraints, and with decreasing channel gain with the distance, this

is compensated by specifying more power towards ER2 on the account of ER1 in both

OMA and NOMA. It is clear that the sum-rate of the NOMA based uplink is larger
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compared to OMA, due to the simultaneous transmissions from the ERs.
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Figure 3.4: Normalized harvesting time.

Figure 3.4 shows the optimal normalized harvesting time, α∗, for different po-

sitions of ER2, while the position of ER1 remains fixed. The figure compares the

fraction of time slot needed for the WPT to ERs to enable their uplink transmissions

using NOMA or OMA. As observed, in all cases, the WPT time in the NOMA case

is lower compared to OMA.

Figure 3.5 compares the effect of different access schemes, i.e., NOMA and OMA,

on the EE of the system. Results are plotted as a function of the distance of ER2 from

the UAV, taking into account that the downlink throughput of IR2 is constructed from

the same distance of the uplink throughput of ER2. The EE with the NOMA scheme

is considerably better than that with OMA for different distances of ER2 w.r.t the

UAV, and the difference increases as the distance of ER2 from the UAV increases. It

is important to note that when the said distance is small and that the ERs and IRs

are close to each other, then OMA and NOMA yield similar performance, due to the
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Figure 3.5: System energy efficiency.

loss of the required distinctions between users in NOMA.

3.6 Summary

In this chapter, we investigated the resource allocation in a multiple-antenna UAV

deployed for transmitting data to IRs, as well as wireless power to ERs to assist their

uplink data communication towards it through the NOMA protocol. The resource

allocation problem was solved by optimizing the transmit powers towards the max-

imization of the EE. The results showed that significant EE can be achieved by the

proposed allocation. In particular, it was shown that the EE of the NOMA-based sys-

tem outperforms that of OMA in most cases w.r.t. the position of the weak user, and

that reduced WPT time is needed at the UAV to power devices when NOMA is used

for the data communication. The details of the optimization process in this chapter

were limited to 2 ERs and 2 IRs with a given and fixed position of the UAV. However,

it is very interesting and demanding to extend the process to handle a general number
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of ERs and IRs and take into account the UAV trajectory. Although NOMA shows

better performance compared to OMA, the superiority of one access scheme over the

other cannot be generalized for all cases and applications. In the next chapter, we

will introduce other hybrid access schemes, and extend the optimization process to

handle general scenarios within two different practical setups.
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Chapter 4

Single UAV-Enabled Wireless

Simultaneous Information and Power

Transfer

In this chapter, we investigate the optimization of the EE in a wireless communi-

cation network, where a UAV deploys simultaneous information and power transfer

(SWIPT) towards different IRs and ERs to enable downlink and uplink data trans-

mission through NOMA, OMA, or hybrid NOMA/OMA schemes. We present the

system model of the UAV-SWIPT network, we formulate and solve the optimiza-

tion problem for a general number of ERs and IRs aiming to maximize the system’s

EE while fulfilling the constraints related to the limited power budget of the UAV,

the minimum required QoS and the acceptable SIC thresholds. We come up with

two main scenarios, i.e., linear and circular, that provide different realizations of the

suggested UAV-SWIPT scenario. We propose two different hybrid access schemes

depending on the NOMA and OMA schemes, namely, hybrid downlink OMA uplink
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NOMA (HDOUN) and hybrid downlink NOMA uplink OMA (HDNUO).

4.1 UAV-SWIPT System and Channel Models

The UAV serves K single-antenna IRs and J single-antenna ERs in each time slot T ,

in a known region of interest (ROI), as illustrated in Figure 4.1. The total number of

antennas at the UAV is N = NE+NI , with NE used for the ERs, and NI dedicated to

the IRs. The time slot is divided into two phases. In the first phase, αT (0 ≤ α ≤ 1),

the UAV transmits energy signals to the ERs, while IRs also send uplink pilot signals

to the UAV. In the second phase, (1−α)T , the ERs make use of the harvested energy to

transmit their always-available data to the UAV. Simultaneously, the UAV transmits

information to the IRs. The data transmissions on the uplink (U) and downlink

(D) are performed according to the NOMA scheme. Without loss of generality, the

slot duration T is set to unity. Further, we assume that the positions of the ERs

and IRs are perfectly known, the one of ERj is (xERj , yERj , hERj), and that of IRk is

(xIRk , yIRk , hIRk). This perfect ULI has been widely used in the literature [86]. The

position of the UAV is denoted (xu, yu, hu). Besides, a quantized level of the required

rate on the uplink is sent from each ER to the UAV to indicate its demand. Based

on this side information, and knowledge of the rate requirements of the IRs, the UAV

determines the relative demand of each ER and IR, denoted $U
j and $D

k , respectively,

such that
∑

j,k$
U
j +$D

k = 1. Here, a larger value of $ means a higher rate demand.

4.1.1 Channel Models

There are three types of channels: air-to-ground (A2G) from the UAV to IRs and

ERs, ground-to-air (G2A) from the ERs and IRs to the UAV, and ground-to-ground
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Figure 4.1: UAV-SWIPT system model.

(G2G) between the ERs and IRs. The complex channel vector of link UAV-IRk is

denoted hk ∈ C1×NI , k = 1, · · · , K. For ERj, j = 1, · · · , J, the complex channel

vector of the A2G link is denoted gj ∈ C1×NE , and for the G2A related to ER and IR

are zj ∈ CNE×1 and mk ∈ CNI×1, respectively. First, we have gj = g′j/
√
LD

ERj
, where

LD
ERj

is the average path-loss, and g′j = [g′j,1, g
′
j,2, . . . , g

′
j,NE

] is the normalized channel

fading vector. For Rician fading, g′j can be written as in (3.1). The average A2G

free-space distance-dependent path loss of ERj, LD
ERj

in dB, is given by as in (3.2).

where the LoS and NLoS path losses are given as in (2.3) and (2.4), respectively. The

probability that the UAV has LoS with ERj ,pLoS,j , can be given as in (2.5), and the

Euclidean distance is given as in (2.7). The A2G channel model described above w.r.t.

ERs (g) applies to the IRs (h) by replacing k with j, and IR with ER in (2.3)-(2.7)

and (3.1)-(3.2). For the channel between ERj and UAV, zj, we also consider a Rician
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model as for gj, with zj = z′j/
√
LU

ERj
and LU

ERj
being the average G2A distance-

dependent path-loss. The G2A channel model described above w.r.t. ERs (z) applies

to the IRs (m) by replacing k with j, and IR with ER. For the G2G channel, the

complex channel of link ERj-IRk is denoted ej, which includes the Rayleigh fading

from the jth ER to the the kth IR along with the path loss, with no LoS component.

In particular, ej = e′j/
√
LNLoSj , where e′j is the normalized channel fading, and LNLoSj

is the average path-loss similar to (2.4) with the distance being between ERj and IRk.

4.1.2 Energy Transmission

The UAV transmits energy signal x1 ∈ CNE×1, which consists of J energy beams, one

for each ER is given as in (3.3). For the jth ER, the received signal is given as in (3.4).

Without loss of generality, we assume equal noise powers for all ERs, i.e., σ2. It is

assumed that the harvested energy is the result of the energy signal, and that noise

does not take part in it. Assuming the availability of perfect CSI, the optimal weight

vector w?
j is g†j/‖gj‖. Hence, the harvested energy by ERj during the first phase is

given by (3.5).

4.1.3 Information Transmission

In the second phase, exploiting the harvested energy gained in the first phase, ERs

start their uplink communications with the UAV, simultaneously with the downlink

transmission from the UAV to the IRs.

Uplink Information Transmission

The transmit power from the jth ER is PU
j =

Ej
1−α . The UAV receives the superposed

message signal of J ERs and applies SIC to decode each device’s message. The received
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signal at the UAV, yUAV ∈ CNE×J , is given as in (3.6).

Downlink Information Transmission

In the downlink information transfer, the data signal x2 ∈ CNI×1 sent by the UAV

to the IRs, consists of K information beams, one for each IR, and it is formulated

as in (3.7). Each IR encounters interference from the uplink signals of ERs towards

the UAV, as well as interference from the downlink beams to other IRs. The received

signal at IRk is given by (3.8) Since the interferences from the ERs to IRk are small

compared to the interferences from other IRs, their effect can be neglected. Hence,

the signal-to-interference-plus-noise ratio (SINR) at the kth IR is given as in (3.9).

4.1.4 Topology and Distribution

To reflect potential practical scenarios, we consider two setups, namely, linear, and

circular, according to the topology and distribution of the ERs and IRs.

Linear Scenario

In the linear scenario, we consider that the ERs and IRs are distributed linearly,

this could be a reflection of UAV charging ERs fixed on a bridge to collect data for

the number of passing cars, while at the same time it sends data to the IRs of an

advertising screen on the same line of the bridge, as shown in Figure 4.2.

Circular Scenario

In the circular scenario, we consider that all ERs are uniformly distributed on the

circumference of the circle while all IRs are uniformly distributed on the circumference

of a bigger circle. This scenario could be a reflection of a UAV charging ERs fixed on
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Figure 4.2: Linear scenario

top of a sport complex to collect data about humidity, temperature, light, or other

data, while at the same time it sends data to the IRs about ticketing information on

electronic gates around the complex, as shown in Figure 4.3.

4.2 Energy Efficiency Maximization

4.2.1 Energy Efficiency Formulation

The first step in the formulation of the system’s EE is to construct the throughputs of

the downlink and uplink stages. For the downlink information NOMA setup, where

the channel gains of IRs are increasing when closer to the UAV (channel gain of IR1

is larger than IR2, and so on until IRK), the rate in bps related to a given IR can be

expressed as in (3.10). According to the principles of power-domain NOMA, for a given

IR, the strong interfering signals are mainly due to the transmissions to users with
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Figure 4.3: Circular scenario.

low channel gains. The weakest channel user, IRK , which receives low interferences

due to the relatively low powers of the messages of high channel gain users, cannot

cancel any interferences. However, the highest channel gain user, IR1, which receives

strong interferences due to the relatively high powers of the transmissions to weak

users, can cancel all interfering signals [85].

On the other hand, for the uplink NOMA throughput, knowing that the channel

gains are stronger when ERs are closer to the UAV (channel gain of ER1 is larger than

ER2, and so on until ERJ), then based on (3.5) and (3.6), the rate related to a given

ER can be expressed as in (3.11). The signal of the highest channel gain user, ER1,

is decoded first at the UAV. As a result, ER1 experiences interference from all other

ERs. Then, the signal for the second highest channel gain user is decoded until the last

one, ERJ , [85]. The same approach is suitable for both linear and circular scenarios,

however, as the distances of the IRs from the UAV are the same in the circular
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scenario, the gains and the path losses for all of them will be the same. Accordingly,

the rate for IRk becomes

RD
k =(1−α)W log2

1+

QD
k ‖h
′
k‖

2

LD
IRk

(1−α)

((1−β)P−QD
k
)
K−1∑

i=1,i6=k

‖h′
k
‖2

LD
IRi

(1−α)
+
J∑
j=1

ζPD
j
‖g′
j
‖2‖z′

j
‖2|e′

j
|2α

LU
ERj

LD
ERj

LNLoSj
(1−α)

+1

 (4.1)

On the other hand, the rate for ERj can be rewritten as follows:

RU
j = (1− α)W log2

1 +

ζPD
j ‖g′j‖2‖z′j‖2α

LU
ERj

LD
ERj

(1−α)

(βP − PD
j )

J∑
l=j+1

ζ‖g′l‖2‖z
′
l‖2α

LU
ERl

LD
ERl

(1−α)
+ 1

 . (4.2)

Let us define the downlink throughput as the sum-rate of all IRs, i.e., RD =∑K
k=1 R

D
k , and the uplink throughput as the sum-rate RU =

∑J
j=1 R

U
j . The EE of the

system is expressed as:

η =
Total Throughput

Total Consumed Energy
=

RD +RU

PDC + PD +QD
, (4.3)

where PDC is the constant power consumption of the UAV, and where PD = βP =∑J
j=1 P

D
j and QD = (1 − β)P =

∑K
k=1 Q

D
k are the powers dedicated to the ERs and

the IRs, respectively, i.e., P = PD +QD.

4.2.2 Problem Formulation

Aiming at maximizing EE, the optimization problem is formulated as follows:

OP : max
QD,PD,α,β

η

subject to: P ≤ Pmax,
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PU
j ≤ PU

j,max, ∀j,

α < 1,

0 ≤ β ≤ 1,

hu,min ≤ dj cos θj, ∀j,

hu,min ≤ dk cos θk, ∀k,

RU
j ≥ RU

j,min, ∀j,

RD
k ≥ RD

k,min, ∀k, (4.4)

PU
thr ≤ PU

j zj −
J∑

l=j+1

PU
l zl, ∀j,

QD
thr ≤

(
QD
k −

k−1∑
m=1

QD
m

)
hK , ∀k,

where hu,min is the minimum allowed height for the UAV, RU
j,min and RD

k,min denote the

minimum required rates of ERj and IRk, respectively, and where PU
thr and QD

thr are

the SIC detection thresholds of the uplink and downlink.

The first constraint guarantees that the transmit power of the UAV will not

exceed its maximum power budget. Also, the power of ERj has to be equal or less

its maximum power, as stated in the second constraint. The third constraint insures

that the percentage of the charging time is always less than one, this allows the

second phase to take place and guarantees that the throuphputs will not vanish. The

percentage of the power budget for ERs illustrated in the forth constraint, if it is zero

then the whole power will be dedicated to the IRs. On the other hand, if it is one, the

UAV power will be dedicated to the ERs. When it is between zero and one, then the

UAV power will be distributed among ERs and IRs according to the value of β. The

fifth and sixth constraints are related to the position of the UAV, both guarantee that

the UAV will not hover lower that the minimum allowable hight taking into accounts
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the positions of the scheduled ERs and IRs. The QoS constraints are stated in the

seventh and eighth constraints, where the acceptable throughput for each ER and

each IR will not be less than a required threshold. The last two constraints treat

the SIC thresholds for both uplink and dwonlink NOMA transmissions, where both

thresholds depend on the parameters related to the scheduled ERs and IRs.

With these above constraints and highly coupled variables; the optimization

problem is a non-convex problem; therefore, there is no way to solve it directly with

the traditional methods. Accordingly, We split the optimization problem into two sub-

problems. In the first one (OP1), we aim to find the optimum position of the UAV,

i.e., the optimal distances and elevation angles w.r.t. the IRs and ERs according to

their demands. After getting the optimum position of the UAV which gives better

links to the scheduled ERs and IRs, in the second problem (OP2) we determine the

optimal transmit power to each ER and IR, along with the optimal charging time.

4.2.3 UAV Position Optimization

In OP1, we focus on θj and dj which are given in (2.2), for all nodes at the same time.

This can be achieved by associating the path losses for A2G channels related to each

ER and IR by the parameters pertaining to the their demands. So, OP1 will be as

follows:

OP1 min
dj ,dk,θj ,θk

∑
j

$U
j LD

ERj
+
∑
k

$D
k LD

IRk

subject to: hu,min ≤ dj cos θj, ∀j,

hu,min ≤ dk cos θk, ∀k. (4.5)
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The second derivative of the objective function in OP1 reveals the convexity of the

problem with respect to the distance and the elevation angle for each ER and IR.

Accordingly, this optimization problem can be solved by introducing the Lagrangian

multipliers ðIRðIRðIR ≥ 0 and ðERðERðER ≥ 0, where ðIRðIRðIR = [ðIR1 , ðIR2 , ...,ðIRK ] and ðERðERðER =

[ðER1 , ðER2 , ...,ðERJ ]. The objective function then becomes

L1(ðERðERðER,ðIRðIRðIR, dERdERdER, dIRdIRdIR, θERθERθER, θIRθIRθIR)

=
J∑
j=1

$U
j LD

ERj
+

K∑
k=1

$D
k LD

IRk
−

J∑
j=1

ðERj (hu,min − dj cos θj −
K∑
k=1

ðIRk(hu,min − dk cos θk).

(4.6)

Exploiting the KKT conditions, one can get the optimal position of the UAV by

solving the first derivatives of L1 w.r.t. dERj , dIRk , θERj and θIRk , respectively, as

follows:

∂L1

∂dERj
= $U

j

∂LD
ERj

∂dERj
− ðERj cos θj

=
20$U

j

dERj ln(10)
− ðERj cos θj = 0, (4.7)

∂L1

∂dIRk
= $D

k

∂LD
IRk

∂dIRk
− ðIRk cos θk

=
20$D

k

dIRk ln(10)
− ðIRk cos θk = 0, (4.8)
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∂L1

∂θERj
= $U

j

∂LD
ERj

∂dERj
+ ðERjdERj cos θj

=
$U
j ab

180

π
(ξLoS − ξNLoS) exp

(
−b (180

π
θERj − a)

)
(
1 + a exp

(
−b (180

π
θERj − a)

))2 + ðERjdERj cos θj = 0,

(4.9)

∂L1

∂θIRk
= $D

k

∂LD
IRk

∂dIRk
+ ðIRkdIRk cos θk

=
$D
k ab

180

π
(ξLoS − ξNLoS) exp

(
−b (180

π
θIRk − a)

)
(
1 + a exp

(
−b (180

π
θIRk − a)

))2 + ðIRkdIRk cos θk = 0.

(4.10)

The new values of ðERj , and ðIRk can be simply calculated using the gradient-decent

method as follows:

ðERj(i+ 1) = [ðERj(i)−∆ðERj (hu,min − dERj cos θj)]
+, (4.11)

ðIRk(i+ 1) = [ðIRj(i)−∆ðIRk (hu,min − dIRk cos θk)]
+, (4.12)

where ðERj(i) and ðIRk(i) are respectively the values of ðIRk and ðERj at the ith

iteration, ∆ðERj and ∆ðIRk are the iteration steps, and [x]+ = max(0, x). As an

initialization point, we set ðERj = 0 and ðIRk = 0 as shown in Algorithm 4.1, and

then update them in each iteration. The output of the optimization will be the

optimum position of the UAV. Algorithm 4.1 summarizes the procedure for finding

the optimal UAV positioning. The results will be used in the second optimization

problem.
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Algorithm 4.1. UAV Position Optimization (X∗UAV,Y ∗UAV,h∗UAV)

Input: (xERj
, yERj

, hERj
), (xIRk

, yIRk
, hIRk

), $U
j ,$D

k , ξLoS, ξNLoS a, b, hu,min, f ; ∀k, ∀j
Output: [x∗u,y∗u,h∗u]

Initialization : [xu0,yu0,hu0], ðERj = 0, ðIRk = 0, ∀j, ∀k.
1: Update ðERj and ðIRk according to (4.11) and (4.12).
2: Solve (4.7) for dERj , ∀j.
3: Solve (4.8) for dIRk , ∀k.
4: Solve (4.9) for θERj , ∀j.
5: Solve (4.10) for θIRk , ∀k.
6: Compute the optimal [x∗u,y∗u,h∗u] by solving (4.5).

4.2.4 Energy-Efficient Resource Allocation

As the solution of OP1 guarantees the optimal position of the UAV, which is also mean

the optimal links between the UAV and the users. In OP2, we eliminate the fifth and

sixth constraints in (4.4), which are already covered by OP1. With the remaining

constraints, the optimization problem is formulated as follows:

OP2 : max
QD,PD,α,β

RD +RU

PDC + PD +QD

subject to: P ≤ Pmax,

PU
j ≤ PU

j,max, ∀j,

α < 1,

0 ≤ β ≤ 1,

RU
j ≥ RU

j,min, ∀j,

RD
k ≥ RD

k,min, ∀k, (4.13)

PU
thr ≤ PU

j zj −
J∑

l=j+1

PU
l zl, ∀j,

QD
thr ≤

(
QD
k −

k−1∑
m=1

QD
m

)
hK , ∀k.
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It is obvious that the objective function in OP2 is a fractional function. This fractional

function with its related constraints is classified as a nonlinear fractional optimiza-

tion problem with the variables PD, QD, α, and β, and it is a non-convex problem.

Exploiting the idea in [78], the fractional programming problem can be transformed

into a convex problem by introducing the variable χ∗ as the optimal EE when we have

the optimal transmit power towards each ER and IR, and the optimal WPT fraction

of time, α. Accordingly, the objective function can be written in a subtractive form,∑K
k=1 R

D
k +
∑J

j=1 R
U
j −χ∗(PDC+PD+QD), which is equivalent to its original fractional

form, this means that the optimal solution of the subtractive form is also the optimal

solution of the fractional form [87].

By introducing ϑ ≥ 0, ςςς ≥ 0, ε ≥ 0, % ≥ 0, ϕϕϕ ≥ 0, λλλ ≥ 0, µµµ ≥ 0, and

φφφ ≥ 0, as the Lagrange multipliers associated with the constraints in OP2, where

ςςς = [ς1, ς2, ..., ςJ ], ϕϕϕ = [ϕ1, ϕ2, ..., ϕJ ], λλλ = [λ1, λ2, ..., λK ], µµµ = [µ1, µ2, ..., µJ ], and

φφφ = [φ1, φ2, ..., φK ], the Lagrangian function of OP2 can be formulated as:

L2(ϑ, ςςς, ε, %,ϕϕϕ,λλλ,µµµ,φφφ,QD
k , P

D
j , α) =

K∑
k=1

RD
k +

J∑
j=1

RU
j − χ∗(PDC + βP + (1− β)P )

− ϑ(P − Pmax)−
J∑
j=1

ςj(P
U
j − PU

j,max)

− ε(α− 1)− %(β − 1) (4.14)

−
J∑
j=1

ϕj(R
U
j,min −RU

j )−
K∑
k=1

λk(R
D
k,min −RD

k )

−
J∑
j=1

µj

[
PU

thr − PU
j zj +

J∑
l=j+1

PU
l zl

]

−
K∑
k=1

φk

[
QD

thr −

(
QD
k −

k−1∑
m=1

QD
m

)
hK

]
.

We assume that the UAV uses its maximum power, such that βPmax = PD and

68



(1− β)Pmax = QD. Our aim is to find the optimized QD
k , PD

j , β, and α. This can be

done through the derivation of the Lagrangian function (4.14) w.r.t. QD
k , PD

j , β and

α, and setting them to zero, i.e.,

∂L2

∂QD
k

= 0,
∂L2

∂PD
j

= 0,
∂L2

∂β
= 0,

∂L2

∂α
= 0, (4.15)

The updating of the Lagrangian variables ϑ, ςςς, ε, %, ϕϕϕ, λλλ, µµµ, and φφφ, can be done using

the gradient method similar to what has been done in [80]. Here, we present the

derivation and the closed form of QD
k . We start by folding all part of the Lagrangian

equation and then we do the derivation, with some simplifications, we obtain

L2(ϑ, ςςς, ε, %,ϕϕϕ,λλλ,µµµ,φφφ,QD
k , P

D
j , α)

∂QD
k

= (1 + λk)
∂RD

k

∂QD
k

+ φkhK

=

∂

(1− α)(1 + λk)W log2(1 +

QD
k ‖hk

′‖2

LD
IRk

(1−α)

((1−β)P−QD
k )

K−1∑
i=1,i6=k

‖hk
′‖2

LD
IRi

(1−α)
+1

)


∂QD

k

+ φkhK

= 0. (4.16)

After some algebraic manipulations, we get the closed form expression of the optimized

download power destined to the IRk as shown in (4.17), where Fk =
K−1∑

i=1,i6=k

‖hk
′‖2

LD
IRi

.

QDk =
(((4Fkhkλk−4Fh)LD

IRi
−4Fkhkλk+4Fkhk)hKφkW+hkhKφk

2)(1−α)2

(2FkL
D
IRi
−2Fkhk)

2
hKφk

2

+
((((4−4β)Fkhkλk+(4β−4)Fkhk)LD

IRi
+(4β−4)Fkhkλk+(4−4β)Fkhk)hKPφkW+(2−2β)FkhkhKPφk

2)(1−α)

(2FkL
D
IRi
−2Fkhk)hKφk2
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+

(β2−2β+1)FkhkhKP 2φk
2

(2FkL
D
IRi
−2Fkhk)hKφk2

+ (2FkL
D
IRi
−hk)hKφk(1−α)+((2−2β)FkL

D
IRi

+(β−1)Fkhk)hKPφk

(2FkL
D
IRi
−2Fkhk)hKφk

.

(4.17)

We were also able to get the optimized download power destined to each ER, starting
with the derivation as follows:

L2(ϑ,ςςς, ε, %,ϕϕϕ,λλλ,µµµ,φφφ,Q
D
k , P

D
j , α)

∂PUj

= (1 + ϕj)
∂RUj

∂PDj

− (ςj + µj)
∂PUj

∂PDj

=

∂

(1− α)(1 + ϕj)W log2(1 +

ζPD
j ‖gj

′‖2‖zj
′‖2α

LU
ERj

LD
ERj

(1−α)

(βP−PD
j

)
J∑

l=j+1

ζ‖gl
′‖2‖zl′‖2α

LU
ERl

LD
ERl

(1−α)
+1

)


∂PDj

−

∂

(ςj + µj)ζα
‖g′j‖

2

LD
ERj

(1−α)
PDj


∂PDj

= 0. (4.18)

The closed form of PD
j is derived as shown in (4.19), where Fj =

‖g′j‖2

LD
ERj

, Oj =

ζ‖gj
′‖2‖zj′‖2

LU
ERj

LD
ERj

, and O∗j =
J∑

l=j+1

ζ‖gl
′‖2‖zl′‖2

LU
ERl

LD
ERl

.

PD
j =

((
4α(

(ςj+µj)ζαFj
(1−α)

)OjO
∗
j−4α(

(ςj+µj)ζαFj
(1−α)

)OjO
∗
j

)
(1−α)2+

(
4α2β(

(ςj+µj)ζαFj
(1−α)

)OjO
∗
j−4α2β(

(ςj+µj)ζαFj
(1−α)

)OjO
∗
j

)
P (1−α)

)
W (ϕj+1)

(2α(
(ςj+µj)ζαFj

(1−α)
)O∗j−2α(

(ςj+µj)ζαFj
(1−α)

)OjO
∗
j )2

+
(
(ςj+µj)ζαFj

(1−α)
)2Oj(1−α)2+2αβ(

(ςj+µj)ζαFj
(1−α)

)2OjO
∗
j P (1−α)+α2β2(

(ςj+µj)ζαFj
(1−α)

)2OjO
∗
j P

2

(2α(
(ςj+µj)ζαFj

(1−α)
)O∗j−2α(

(ςj+µj)ζαFj
(1−α)

)OjO
∗
j )2

+

(
2(

(ςj+µj)ζαFj
(1−α)

)O∗j−(
(ςj+µj)ζαFj

(1−α)
)Oj

)
(1−α)+

(
2αβ(

(ςj+µj)ζαFj
(1−α)

)O∗j−αβ(
(ςj+µj)ζαFj

(1−α)
)OjO

∗
j

)
P

2α(
(ςj+µj)ζαFj

(1−α)
)O∗j−2α(

(ςj+µj)ζαFj
(1−α)

)OjO
∗
j

. (4.19)

The solution of OP2 is summarized in Algorithm 4.2.

Algorithm 4.2. Energy-Efficient Resource Allocation
Input: (xu,yu,hu); (xERj , yERj , hERj), j = [1 : J ]; (xIRk , yIRk , hIRk), k = [1 : K], a, b,

ξLoS, ξNLoS, f , η, σ, RU
min, RD

min, and χ∗.
Output: [β, QD

k , PD
j , α].

Initialization: [β0, QD
k0
, PD

j0
, α0], ϑ = 0, ςςς = 000, ε = 0, % = 0 ϕϕϕ = 000, λλλ = 000 , µµµ = 000,

φφφ = 000.
1: Update the Lagrangian variables, ϑ, ςςς, ε, %, ϕϕϕ, λλλ, µµµ, and φφφ.
2: Solve (4.15) to obtain β, QD

k ,PD
j and α.

3: Compute [β, QD
k
∗,PD

j
∗,α∗] by solving (4.13).
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4.2.5 Complexity Analysis

The main optimization problem under consideration is a highly coupled non-convex

problem, thus it is hard to be solved. However, with the suggested sub-optimal

solution, we decomposed the problem into two sub-problems and were able to solve

them efficiently through two algorithms. Both algorithms depend on the gradient

descent method, for which the worst complexity is O(n × 1
ε
) [79], where n is the

number of optimization variables, and ε is the solution accuracy. Thus, for Algorithm

4.1, the complexity depends on the 3D plane size that the UAV considers for moving,

i.e., (x×y× (hmax−hmin)), where the (hmax−hmin) is the allowable altitude range for

moving. This could be eliminated to (x×y) only as the UAV will mostly hover at the

minimum allowable height to provide better links to the ERs and IRs. For Algorithm

4.2, the complexity depends on the number of ERs (J) and IRs (K). Accordingly, the

total complexity for both algorithms is O(x×y× (hmax−hmin)× 1
ε
)+O((J+K)× 1

ε
).

However, if we consider that the UAV will hover at the minimum allowable height, the

complexity can be reduced to O(x× y× 1
ε
) +O((J +K)× 1

ε
). Hence, the complexity

of the proposed solution depends on the ROI and the number of scheduled ERs and

IRs.

4.3 System Operation With OMA and Hybrid

Access Schemes

Besides NOMA, we consider system operation with three access schemes: the con-

ventional OMA access scheme, OMA, with two hybrid schemes. The proposed hybrid

schemes are the combination between NOMA and OMA in the uplink and downlink.

In the hybrid downlink OMA uplink NOMA (HDOUN) scheme, we implement OMA
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in the downlink along with NOMA in the uplink. In the hybrid downlink NOMA

uplink OMA (HDNUO) scheme, we consider system operation with NOMA in the

downlink and OMA in the uplink.

4.3.1 OMA Scheme

In the OMA protocol, the UAV sends the information separately by splitting the

transmission phase, (1 − α), equally among all IRs in the downlink, where for the

uplink the same time allocation is scheduled for each ER. In this case, the throughput

for IRk and ERj can be formulated as follows:

RD
k (OMA) =

(1− α)

K
W log2

(
1 +

KQD‖hk
′‖2

LD
IRk

(1− α)

)
, (4.20)

RU
j (OMA) =

(1− α)

J
W log2

(
1 +

JζPD‖gj
′‖2‖zj

′‖2α

LU
ERj

LD
ERj

(1− α)

)
. (4.21)

4.3.2 HDOUN Scheme

In this scheme, the downlink information transmissions are carried out through the

OMA scheme, while the uplink information transmissions are done via NOMA. Ac-

cordingly, the EE can be formulated as follows:

η(HDOUN) =

∑K
k=1 R

D
k (OMA) +

∑J
j=1 RU

j

PDC + PD +QD
, (4.22)

4.3.3 HDNUO Scheme

Here, the system operation with this scheme is the opposite of the one above, i.e.,

NOMA is implemented in the downlink and OMA is used in the uplink. Here, the
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EE can be formulated as:

η(HDNUO) =

∑K
k=1 R

D
k +

∑J
j=1 R

U
j (OMA)

PDC + PD +QD
, (4.23)

4.4 Simulation Results

In this section, we show the results of applying the proposed algorithms on the different

access schemes for linear and circular scenarios. In the simulations, we set a = 9.6,

b = 0.28, ξLoS = 1 dB, ξNLoS = 20 dB, f = 2 GHz, W = 200 kHz, η = 0.8, σ2 = 1,

and NE = NI = 2. We set QD
thr = PU

thr = 0.05 Watt, PDC = 5 Watt, Pmax = 3 Watt,

and RU
min = RD

min= 6 Kbps, unless stated otherwise.

4.4.1 Linear Scenario

Let us consider the scheduling of four ground users at a time, i.e., four ERs and four

IRs. The positions of ER1, ER2, and ER3 are fixed at (1,0,0), (2,0,0), and (3,0,0),

respectively, and we vary the horizontal coordinate of ER4 (x,0,0). Also, the position

of IR1, IR2, IR3 are set to (-1,0,0), (-2,0,0), and (-3,0,0), respectively, and we vary

the horizontal coordinate of IR4 (-x,0,0). In the case of scheduling two ERs with two

IRs or three ERs with three IRs, the setup remains the same while the varying of

the horizontal coordinate becomes for the weakest users in each setup, i.e., ER2 with

IR2, and ER3 with IR3, respectively. We assume that all ERs and IRs have the same

demands. Accordingly, the UAV will hover over the center between the ERs and IRs

with the minimum allowable height, i.e., (0,0,20).
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Energy Efficiency in the Linear Scenario

We consider three different access schemes, OMA, NOMA, and hybrid. We also

consider three scheduling scenarios, in the first case we schedule two ERs and two

IRs. Secondly, we assume three ERs along with three IRs. Finally, we have four ERs

with four IRs.

Scenario with Two ERs and Two IRs Figure 4.4 compares the effect of different

access schemes, i.e., OMA, NOMA and hybrid, on the EE of the system. The results

are plotted as a function of the distance of ER2 from the UAV taking into account

that the downlink throughput of IR2 is constructed from the same distance of the

uplink throughput of ER2. The EE with the OMA scheme is better than that with

NOMA for the short distances between ER2 and the UAV. This is mainly due to the

short distance between ER1 and ER2, and the short distance between IR1 and IR2,

which increase the interferences and thus decrease the throughputs.

10 15 20 25 30 35
Distance of the weakest ER from the UAV (Meter)

10

12

14

16

18

20

22

24

26

En
er

gy
 E

ffi
ci

en
cy

 (K
b/

Jo
ul

e)

NOMA (2 ERs, 2 IRs)
OMA (2 ERs, 2 IRs)
HDOUN (2 ERs, 2 IRs)
HDNUO (2 ERs, 2 IRs)

Figure 4.4: System energy efficiency versus the distance of ER2 from the UAV.
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At some point, when ER2 becomes farther from the UAV and, hence, the dis-

tances between ERs and IRs increase, NOMA starts to outperform OMA considerably,

and the difference increases as the distance of ER2 from the UAV increases. However,

the hybrid scheme which includes OMA in the downlink for the IRs and NOMA in

the uplink for the ERs, outperforms both as it combines the advantages of the two

schemes for different stages of the process. This scheme overcomes the shortages of

NOMA in the short distances and the shortages of OMA for the long distances of the

users from the UAV.

Scenario with three ERs and Three IRs Figure 4.5 shows the effect of different

OMA, NOMA and hybrid schemes, on the EE of the system when three ERs along

with three IRs are scheduled at a time. The results are plotted as a function of the

distance of ER3 from the UAV taking into account that the downlink throughput

of IR3 is constructed from the same distance of the uplink throughput of ER3. As

observed from the figure, the EE with the OMA scheme is better than that with

the NOMA scheme for all cases, which is mainly due to the short distances within

the three ERs, and within the three IRs, which increase the interferences and thus

decrease the throughputs. At some point, when ER3 becomes farther from the UAV

and, hence, the distances between ERs and IRs increase, the hybrid scheme starts to

outperform OMA and the difference gets increased as the distance of ER2 from the

UAV increases.

Scenario with Four ERs and Four IRs Figure 4.6 illustrates the performance

of the three access schemes on the EE of the system. The results are plotted as a

function of the distance of ER4 from the UAV taking into account that the downlink

throughput of IR4 is constructed from the same distance of the uplink throughput of

75



10 15 20 25 30 35
Distance of the weakest ER from the UAV (Meter)

10

12

14

16

18

20

22

24

26

En
er

gy
 E

ffi
ci

en
cy

 (K
b/

Jo
ul

e)

NOMA (3 ERs, 3 IRs)
OMA (3 ERs, 3 IRs)
HDOUN (3 ERs, 3 IRs)
HDNUO (3 ERs, 3IRs)

Figure 4.5: System energy efficiency versus the distance of ER3 from the UAV.

ER4. The EE with the OMA scheme is better than that with NOMA and the hybrid

schemes for all cases, due to the short distances within the four ERs, and within the

four IRs, which increase the interferences and thus decrease the throughputs.
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Figure 4.6: System energy efficiency versus the distance of ER4 from the UAV.
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Comparing the three scheduling setups, we can deduce that the increase of

the number of scheduled users will considerably reduce the efficiency of NOMA and

consequently the efficiency of the hybrid scheme as NOMA is also part of it. As the

power budget of the UAV is the same for all scenarios, the degradation of the EE is

the result of the degradation of the throughputs as a consequence of the increased

interferences of the setups with a higher number of users.

Impact of the UAV’s Power Budget

Let us now look at the effect of a change in the power budget of the UAV on the

system EE. Here, we consider the scenario with two ERs and two IRs as an example;

the other scenarios almost have almost the same trend. Figure 4.7 compares the

effect of the UAV’s power budget on the system EE (cf. the influence of the power

budget on the nominator and denominator of the EE formula). By increasing the

power budget, EE also increases as the amount of power destined to the ground users

increase, which enhances their throughputs. However, the consumed energy of the

UAV will also increase. Consequently, at some point (almost after 3 W in this case),

EE will decrease as the increase on the power consumption becomes less beneficial

compared to the gain in the throughputs. Note that with all power budgets, the

constraints should be satisfied. One can notice that with a low power budget, for

large distances of the weakest users from the UAV, EE is very low, due to the small

amount of power destined to those users with huge path losses.

Harvesting Time

Now, we investigate the normalized harvesting time, α∗. For the system with two ERs

and tow IRs, Figure 4.8 shows the optimal normalized harvesting time, α∗, for different

positions of ER2, while the position of ER1 remains fixed. The figure compares the
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Figure 4.7: System energy efficiency with HDOUN access scheme versus the distance of
ER2 from the UAV for different power budgets.

fraction of time slot needed for the WPT to ERs to enable their uplink transmissions

using different schemes. As observed, in all cases, the WPT time in the NOMA case

is higher compared to the other cases. It is worth mentioning that this parameter

is very important for maximizing the objective function, however, as the UAV will

be hovering for the whole period T to handle the uplink and downlink transmissions,

there is no gain in reducing the time to do other missions. Hence, for other scenarios

with more users, the trend is the same, but with higher values as the time for charging

three or four ERs will be more than that for the case with two ERs.

4.4.2 Circular Scenario

We consider three different cases of user scheduling: two ERs with two IRs at a time,

three ERs with three IRs at a time, and four ERs with four IRs at a time. The

positions of the ERs are set on the circumference of a zero origin circle (0,0,0), where

the first ER is set at (x,0,10) and the positions of the other ERs are set uniformly on
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Figure 4.8: Normalized harvesting time in the linear scenario.

this circle. The positions of the IRs are fixed and set uniformly on the circumference

of the big circle with the same origin of the small circle, (0,0,0), where the IR1 is set

at (25,0,0). Hence, there will always be two different heights for the ERs and IRs.

Different from the linear scenario, in the circular scenario the distances from the UAV

to all ERs are the same, which is also valid for the distances from the UAV to the

IRs. Besides, as the rate requirements of the IRs are the same, and regardless of the

ERs demands, the UAV will hover over the common center of the two circles with the

minimum allowable height, i.e., (0,0,20).

Energy Efficiency in the Circular Scenario

In this scenario, we consider the OMA and NOMA schemes. Figure 4.9 shows the

effect of these schemes on the system EE. It is clear that OMA outperforms NOMA

in all cases. The EE with OMA increases as the number of users increases, while for

NOMA, the EE decreases when the number of users gets higher. In this scenario,

NOMA would not be that efficient as there is almost no distinctions between the
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users. Also, as the number of users increases, the interferences also increase.
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Figure 4.9: System energy efficiency versus the distance of ERs from the UAV in the
circular scenario.

Impact of the UAV’s Power Budget

Figure 4.10 shows the effect of changing the power budget on the system EE with

NOMA, where we consider two ERs and two IRs as an example, noting that the other

scenarios have almost the same trend. It is obvious that by increasing the power

budget of the UAV, EE also increases. This is a result of destining more power to the

ground nodes, which enhance their throughputs, this is noticed between the values of

1 W and 2 W. However, EE starts to decrease at some point and keeps decreasing as

the energy consumption of the UAV increases. Hence, the trend is almost the same

like in the linear scenario, as the increase in the power budget becomes less beneficial

to the throughputs and more severe on the power consumption of the UAV.
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Figure 4.10: System energy efficiency with NOMA versus the distance of ERs from the
UAV for different power budgets.

Harvesting Time

We also explored the normalized harvesting time, α∗, for both NOMA and OMA. For

the different combinations of ERs and IRs, Figure 4.8 shows the optimal normalized

harvesting time, α∗, for different positions of the ERs, while the position of the IRs

remains fixed.

The figure compares the fraction of time slot needed for the WPT to ERs to

enable their uplink transmissions using NOMA and OMA schemes. It is clear that, in

all cases, the WPT time in the NOMA case is higher compared to the one with OMA.

In addition, one can notice that the time for charging three or four ERs will be more

than that for the case with two ERs, however, this difference is not that considerable

in the case of NOMA. The mission of the UAV will last for the whole period of T , to

handle the transmissions of ERs and IRs.
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Figure 4.11: Normalized harvesting time in the circular scenario.

4.5 Summary

In this chapter, we investigated the resource allocation in a multiple-antenna UAV

deployed for transmitting data to IRs, as well as wireless energy to ERs to assist their

uplink communications through different accessing protocols. The optimization prob-

lem was solved by minimizing the channels path loss according to the GNs’ demands

and then optimizing the transmit powers to maximize the system’s EE. The results

showed, for the linear scenario, an enhancement in the EE for system operation of

HDOUN with a small number of ground nodes, while as the number of ground nodes

increases, OMA starts to perform better. On the other hand, OMA consistently out-

performs NOMA for all cases for the circular scenario, the difference increasing when

the number of GNs increases. In all previous three chapters, we have tackled the

scenarios where a single UAV is used, however, in cases where the ROI is huge and

cannot be covered by a single UAV, multiple UAVs are needed. Thus, in the coming

chapter, we will start investigating EE optimization in multi-UAV aided networks.
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Chapter 5

Multiple UAV Wireless Powered

Communication Networks

In this chapter, we tackle the energy efficiency optimization in wireless communication

networks, where multiple UAVs deploy power transfer towards several ERs to enable

their uplink data transmissions through NOMA. We present the details of the MUAV-

WPCN systems and the different related constraints. We propose a set of collision

avoidance constraints to avoid collisions between UAVs as they move to enhance the

charging efficiency for the ERs. Also, we consider the optimal switching between

energy and information transmissions by enabling a time allocation scheme. Besides,

we take into account several constraints related to the guaranteeing of a SIC threshold

in the uplink, and also consider the required QoS of the ERs.

5.1 MUAV-WPCN System and Channel Models

In this work, a network of ERs that are enabled by multiple UAVs is taken into

account. We consider M multi-antennas UAVs serving several single-antenna ERs

that are distributed in a region of interest (ROI) (Figure 5.1). We assume that the
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area can be divided into several different clusters that can be determined to provide

the required coverage for a given ROI, where each cluster will be served by only one

UAV. Hence, the UAV does not have the perfect ULI of ERs in its cluster. The number

of antennas at the UAV is N , and it is assumed to be the same for all UAVs. The time

slot T is divided into two phases. In the first phase, αmT (0 < αm < 1), each UAV

transmits energy signals to the scheduled ERs on its cluster. In the second phase,

(1 − αm)T , the ERs utilize the harvested energy during the first phase to transmit

their data to the same UAV. The data transmissions on the uplink (U) are carried out

based on the NOMA scheme. Without loss of generality, we set the time slot duration

T to be unity. The position of the UAVm is denoted (xm, ym, hm)

Figure 5.1: MUAV-WPCN system model.

5.1.1 Users Distribution

We consider the partial ULI approach of the ERs [88], where initially, the UAV will

not have perfect information about the ERs locations. The UAV will be sent to a
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specific cluster in the ROI; the partial ULI known by the UAV is the ERs distribution

within the cluster [89]. In this work, we consider a uniform distribution for circles and

segments within the cluster to increase the number of possible locations of ERs, which

will be the intersection between any circle and segment (Figure 5.2). At the beginning,

the UAV will be hovering at the minimum allowable height over the cluster center.

The users that need to be charged will send side information about their identity,

which will be related to their segment and circle (e.g., an ID for ER that is located in

the intersection between circle no. j and segment no. k is j, k (ERj,k) along with their

rate demands. According to this received information and the predetermined number

of the scheduled users, the UAV will choose the users who will start the process and

accordingly position itself to send the power and receive the data. To indicate the

required rate in the uplink for the ER, a quantized level of this rate is sent from

each ER to its associated UAV. Based on this side information, the UAV specifies the

relative demand of each ER, denoted $U
j,k, such that

∑
j,k$

U
j,k = 1. Here, a larger

value of $ means a higher rate demand. The location of ERj,k is (xERj , yERj , hERj).

By a slight abuse of notation, we replace the ID of ER, j, k, to be j in the rest of the

formulation.

A binary variable of user association with specific UAVm is denoted χm,j. If

UAVm serves ERm,j, χm,j = 1, otherwise it is zero. Note that UAVm can serve

multiple ERs; however, ERm,j can only be served by a single UAV. These can be

formulated as follows:
M∑
m=1

χm,j = 1, ∀j (5.1)

χm,j ∈ {0, 1} ∀m, ∀j (5.2)
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Figure 5.2: Distribution of ERs in cluster m for MUAV-WPCN.

5.1.2 Channel Models

For the channel models, we adopted the models used in [90] to handle the considered

system model with multiple UAVs scenario. The channels between the UAVs (e.g.,

UAVm) and ERs (e.g., ERm,j), are of two types: air-to-ground (A2G) from the UAV

to ERs, and ground-to-air (G2A) from ERs to the UAV. For ERm,j, j = 1, · · · , J , in

each cluster and UAVm, m = 1, · · · ,M, the complex channel vector of the A2G link is

denoted gm,j ∈ C1×N , and the one of the G2A is zj,m ∈ CN×1. First, we have gm,j =

g′m,j/
√
LD
m,j, where LD

m,j is the average path-loss, and g′m,j = [g′m,j1 , g
′
m,j2

, . . . , g′m.jN ] is

the normalized channel fading vector. For Rician fading, g′m,j can be written as [80]:

gm,j
′ =

√
K
K + 1

11×N +

√
1

K + 1
g̃m,j, (5.3)

where K is the Rice factor, 11×N is a unity row vector, and the non-line of sight

(NLoS) fading component g̃m,j is a row vector whose elements are independent and
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identically distributed (i.i.d.) complex Gaussian random variables with zero mean

and unit variance, i.e., CN (0, 1). The average A2G free-space distance-dependent

path loss of ERm,j, LD
m,j in dB, is given by:

LD
m,j = pLoSm,j LLoSm,j + (1− pLoSm,j) LNLoSm,j , (5.4)

where the LoS and NLoS path losses are, respectively, given by:

LLoSm,j = 20 log10

(
4πfdm,j

c

)
+ ξLoSm,j , (5.5)

LNLoSm,j = 20 log10

(
4πfdm,j

c

)
+ ξNLoSm,j , (5.6)

where f is the carrier frequency, c is the speed of light, and ξLoSm,j and ξNLoSm,j are

the average environment-dependent excessive path losses in dB [72]. In (5.4), pLoSm,j

denotes the probability that the UAV has LoS with ERm,j [72], given by:

pLoSm,j =
1

1 + a exp
(
−b (180

π
θm,j − a)

) , (5.7)

where a and b are constant values related to the environment, and θm,j =

arccos(HUAVm/dm,j) is the elevation angle in radian between UAVm and ERm,j, where

dm,j is the Euclidean distance:

dm,j =
√

(xm − xERm,j )
2 + (ym − yERm,j )

2 + (hm − hERm,j )
2 (5.8)

For the channel between ERm,j and UAVm, zj,m, we also consider a Rician model as

for gm,j, with zm,j = z′m,j/
√
LU
m,j and LU

m,j being the average G2A distance-dependent

path-loss.
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5.2 Energy Transmission

The UAVm transmits an energy signal x ∈ CN×1, which consists of J energy beams,

one for each ER, i.e.,

x =
J∑
j=1

√
PD
m,j wm,js

ER
m,j, (5.9)

where PD
m,j is the transmit power destined for ERm,j, sER

m,j ∈ CN (0, 1) denotes the

energy-carrying signal, and wm,j ∈ CN×1 is the corresponding energy beamforming

vector. For the jth ER, the received signal is given by:

yER
m,j=gm,j

J∑
i=1

√
PD
m,i wm,js

ER
m,j+

M∑
l=1,l6=m

gl,j
J∑
i=1

√
Pl,i wl,i s

ER
l,i +nER

m,j , (5.10)

where nER
m,j ∼ CN (0, σ2) is the additive white gaussian noise (AWGN). Also, equal

noise powers for all ERs are assumed, i.e., σ2. The second term represents the effect on

ERm,j from the simultaneous power transmissions from other UAVs to the ERs in their

clusters. It is assumed that the harvested energy only results from the energy signal

in each cluster, excluding any noise. The availability of a perfect CSI is assumed,

thus, the optimal weight vector w?
m,j is g

†
m,j/‖gm,j‖. Hence, the harvested energy by

ERm,j during the first phase is given by:

Em,j = ζjαm|gm,jw?
m,j|2

J∑
i=1

PD
m,i = ζjαm

‖g′m,j‖2

LD
m,j

PD
m , (5.11)

where 0 < ζj ≤ 1 is the energy-harvesting circuit efficiency, assumed to be the same

for all ERs, and PD
m is the total transmission power of UAVm.
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5.3 Uplink Information Transmission

In the second phase, ERs use the harvested energy for their uplink communication

with the same UAV. The transmit power from the jth ER is PU
m,j =

Em,j
1−αm . The UAV

receives the superposed message signal of J ERs, and applies SIC to decode each

device’s message. The received signal at the mth UAV, is given by:

yUAVm =
J∑
j=1

√
PU
m,j zj,msm,j + n, (5.12)

where sm,j ∈ CN (0, 1) is the normalized data symbol of ERm,j towards UAVm, and n

is the AWGN with zero mean and covariance matrix E{nn†} = σ2INE , where I is the

identity matrix.

5.4 Energy Efficiency Maximization

5.4.1 Energy Efficiency Formulation

To be able to formulate the system’s EE, we have to start by constructing the infor-

mation throughput for the uplink phase. Based on (5.11) and (5.12), the rate related

to a given ER can be expressed as [83]:

RU
m,j = (1− αm)W log2

1 +

ζPD
m,j‖g′m,j‖

2‖z′m,j‖
2αm

LU
m,jL

D
m,j(1−αm)

J∑
l=j+1

ζPD
m,l‖g

′
m,l‖2‖z

′
m,l‖2αm

LU
m,lL

D
m,l(1−αm)

+ 1

 . (5.13)

The signal of the highest channel gain user, is decoded first at the UAV. As a result,

this ER encounters interference from all other ERs. Then, the signal for the second

highest channel gain user is decoded until the last scheduled one, ERm,J , [85]. The
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uplink throughput for specific UAVm can be defined as the sum-rate RU
m =

∑J
j=1 R

U
m,j.

The EE of the system is expressed as:

η =

M∑
m=1

(Total Throughput)m
M∑
m=1

(Total Consumed Energy)m

=

M∑
m=1

RU
m

M∑
m=1

(PDCm + PD
m)

, (5.14)

where PDCm is the constant power consumption of UAVm.

5.4.2 Problem Formulation

The target is to maximize the system’s EE; accordingly, we can formulate the opti-

mization problem as follows:

OP : max
PD
m,j ,dm,j ,θm,j

η

subject to:PD
m ≤ PD

m,max, ∀m,

PU
m,j ≤ PU

m,j,max, ∀j, ∀m,

αm < 1, ∀m,

hm,min ≤ dm,j cos(θm,j), ∀j, ∀m

dm,max ≤ rm − rUAVm , ∀m
M∑
m=1

χm,j = 1, ∀j (5.15)

χm,j ∈ {0, 1} ∀m, ∀j

RU
m,j ≥ RU

m,j,min, ∀j, ∀m,

PU
thr ≤ PU

m,jzm,j −
J∑

l=j+1

PU
m,lzm,l, ∀j, ∀m

where PD
m,max and PU

m,j,max are the maximum transmit power for UAVm and ERj, re-

spectively, dm,max is the maximum allowable distance that UAVm can travel during
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T , rm is the cluster radius, rUAVm is the UAVm radius, RU
m,j,min denotes the minimum

required rates of ERj, PU
thr is the SIC detection thresholds of the uplink transmission,

and zm,j (‖z′m,l‖2/LU
ERm,j

) is the channel gain between ERm,k and UAVm. The opti-

mization problem is a non-convex problem with highly coupled variables; therefore,

it is hard to be solved directly by existing convex optimization methods. Accord-

ingly, we decompose the optimization problem into two sub-problems. In the first one

(OP1), we focus on finding the optimal distances and elevation angles w.r.t. the ERs

according to their demands and their associations to the UAVs; this will conclude the

optimum positions of the UAVs. After getting the UAVs’ optimum position, in the

second problem (OP2), we aim to optimize the optimal power of each ER.

5.4.3 UAV Positioning and User Association

In OP1, the aim is to get the optimal θm,j and dm,j, which are given in (5.4), for

all nodes that are associated with a specific UAV in a specific cluster. This can be

obtained by linking the path losses for A2G channels related to each node by the

parameters associating with the nodes’ demands. Therefore, OP1 can be given as

follows:

OP1 min
dm,j ,θm,j

∑
j

$U
j LD

m,j

subject to: hm,min ≤ dm,j cos θm,j, ∀j, ∀m,

dm,max ≤ rm − rUAVm , ∀m,
M∑
m=1

χm,j = 1, ∀j, (5.16)

χm,j ∈ {0, 1} ∀m, ∀j
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Given that each UAV, at the beginning of the process, will be hovering at the minimum

allowable height over the center of its cluster, each ER that needs to be served will

send its ID along with its demand to the UAV in its cluster. Accordingly, χm,j for

each ER that asks to be served in each cluster can be determined. Therefore, this

sub-problem can be solved by introducing the Lagrangian multipliers ððð ≥ 0 for each

cluster, where ððð = [ð1, ð2, ...,ðJ ]. The objective function then becomes

L1(ððð, dERdERdER, θERθERθER) =
J∑
j=1

$U
j LD

m,j (5.17)

−
J∑
j=1

ðj(hm,min − dm,j cos θm,j).

Depending on the KKT conditions [76], the optimal position of the UAV for each

cluster can be obtained by solving the first derivatives of L1 w.r.t. dm,j, and θm,j,

respectively, as follows:

∂L1

∂dm,j
= $U

j

∂LD
m,j

∂dm,j
− ðj cos θm,j

=
20$U

j

dm,j ln(10)
− ðj cos θm,j = 0, (5.18)

∂L1

∂θm,j
= $U

j

∂LD
m,j

∂θm,j
+ ðjdm,j cos θm,j

=
$U
j ab

180
π

(ξLoS − ξNLoS) exp
(
−b (180

π
θm,j − a)

)(
1 + a exp

(
−b (180

π
θm,j − a)

))2 (5.19)

+ ðjdm,j cos θm,j = 0.
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The new value of ðj can be calculated using the gradient-decent method as follows:

ðj(i+ 1) = [ðj(i)−∆ðm,j(hm,min − dm,j cos θm,j)]
+, (5.20)

where ðj(i) is the value ðj at the ith iteration, 4ðj is the iteration step, and [x]+ =

max(0, x). The procedure for finding the optimal positions of the UAVs is summarized

in Algorithm 5.1, where the results of this algorithm will be used in OP2.

Algorithm 5.1. 3D UAV Location Optimization
Input: $U

j , ξLoS, ξNLoS a, b, hm,min, f , rm, rUAV, and ERs’ I.D; ∀j, ∀m.
Output: (xm,ym,hm)∗, ∀m.

Initialization : (xm,ym,hm)0, ðj = 0, ∀j, ∀m.
1: Determine χm,j, as per (5.1) and (5.2), ∀j, ∀m.
2: Update ðj according to (5.20), ∀j, ∀m.
3: Solve (5.18) for dm,j, ∀j, ∀m.
4: Solve (5.19) for θm,j, ∀j, ∀m.
5: Compute the optimal (xm,ym,hm)∗, ∀m, by solving (5.16).

5.4.4 Energy-Efficient Resource Allocation

Based on the constraints that have been treated in OP1, and the results of Algorithm

5.1, we formulate OP2 as follows:

OP2 : max
PD
m,j

η

subject to:PD
m ≤ PD

m,max, ∀m,

PU
m,j ≤ PU

m,j,max, ∀j, ∀m,

αm < 1, ∀m,

RU
m,j ≥ RU

m,j,min, ∀j, ∀m, (5.21)

PU
thr ≤ PU

m,jzm,j −
J∑

l=j+1

PU
m,lzm,l, ∀j, ∀m
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OP2 is a fractional programming problem that can be converted into a convex problem

by introducing the variable F ∗ as the optimal EE when we have the optimal power for

each UAV [87]. This concludes that the optimization of the converted problem is also

the optimization of the original one [87]. Moreover, we introduce ςςς ≥ 0, ϕmϕmϕm ≥ 0, λλλ ≥ 0,

µmµmµm ≥ 0, and φmφmφm ≥ 0, as the Lagrange multipliers associated with the constraints

in OP2, where ςςς = [ς1, ς2, ..., ςM ], ϕmϕmϕm = [ϕm,1, ϕm,2, ..., ϕm,J ], λλλ = [λ1, λ2, ..., λM ],

µmµmµm = [µm,1, µm,2, ..., µm,J ], and φmφmφm = [φm,1, φm,2, ..., φm,J ].

The Lagrangian function of OP2 can be formulated as:

L2(ςςς,ϕmϕmϕm,λλλ,µmµmµm,φmφmφm, P
D
m,j)

=
M∑
m=1

RU
m − F ∗(

M∑
m=1

PDCm +
M∑
m=1

PD
m)

−
M∑
m=1

ςm(PD
m − PD

m,max)−
M∑
m=1

J∑
j=1

ϕm,j(P
U
m,j − PU

m,j,max)

−
M∑
m=1

λm(αm − 1)−
M∑
m=1

J∑
j=1

µm,j(R
U
m,j,min −RU

m,j) (5.22)

−
M∑
m=1

J∑
j=1

φm,j

[
PU

thr − PU
m,jzm,j +

J∑
l=j+1

PU
m,lzm,l

]
.

To get the optimized transmit power towards each ER in each cluster, we derive the

Lagrangian function (5.22) w.r.t. PD
m,j and set the derivative to zero:

∂L2(ςςς,ϕmϕmϕm,λλλ,µmµmµm,φmφmφm, P
D
m,j)

∂PD
m,j

= 0 (5.23)

The updating of the Lagrangian variables ςςς, ϕmϕmϕm, λλλ, µmµmµm, and φmφmφm can be done using

the gradient method similar to what has been done in the previous subsection for ððð

in (5.20). Algorithm 5.2 summarizes the solution for OP2.
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Algorithm 5.2. Energy-Efficient Resource Allocation
Input: (xm,ym,hm)∗, ξLoS, ξNLoS a, b, hm,min, ERs’ I.D, f , η, σ, and RU

min, ∀j, ∀m.
Output: (PD

m,j)
∗, ∀j, ∀m.

Initialization: (PD
m,j)

0, ςςς = 000, ϕϕϕm = 000, λλλ = 000 , µµµm = 000, φφφm = 000.
1: Update the Lagrangian variables, ςςς, ϕmϕmϕm, λλλ, µmµmµm, and φmφmφm.
2: Solve (5.23) to obtain PD

m,j.
3: Compute (PD

m,j)
∗, ∀j, ∀m by solving (5.21).

5.4.5 Complexity Analysis

Both algorithms that we use to solve the optimization problem are based on the

gradient-descent method, where the worst complexity is O(n × 1
ε
) [79], with n being

the number of optimization variables and ε the solution accuracy. Thus, for Algorithm

5.1, the complexity depends on the 3D plane size that the UAVs consider for moving,

i.e., x× y× (hm,max − hm,min), where (hm,max − hm,min) is the allowable altitude range

for moving. For Algorithm 5.2, the complexity depends on the numbers of UAVs (M)

and ERs (J). Accordingly, the total complexity for both algorithms is O(x × y ×

(hm,max − hm,min)× 1
ε
) +O(M × J × 1

ε
).

5.5 Simulation Results

In this section, we perform simulations to evaluate the effectiveness of the proposed

algorithms for different cases and access schemes. In the simulation, we consider

100×100 m2 as the ROI, with M = 4 UAVs to provide the coverage for that area.

Also, HUAV,min = 10 m, and rUAVm = 0.5 m for all UAVs, and rC = 25 m for all

clusters. In addition, we set a = 9.6, b = 0.28, ξLoS = 1 dB, ξNLoS = 20 dB, f = 2

GHz,W = 200 kHz, η = 0.8 and σ2 = 1. We also set PU
thr = 0.05 Watt, PDC = 5 Watt,

Pmax = 3 Watt, and RU
min= 12 Kbps. We consider that eight ERs ask to be served,

two in each cluster at the same time. These ERs are ER0,0, ER3,0 in the first cluster,

95



ER1,2, ER3,2 in the second cluster, ER5,0, ER5,2 in the third cluster, and ER4,2, ER2,5

in the fourth cluster. We consider three different cases:

• Case 1 “No consideration for the service demands of the ERs": Each UAV will

hover at the minimum allowable height over the center of its cluster.

• Case 2 “Same service demands for both ERs in the cluster” (e.g., in the first

cluster, $U
0,0 = $U

3,0 = 0.5): At the beginning of the process, each UAV will

hover at the minimum allowable height over the center of its cluster, then move

to the optimal position according to the same ERs’ service demands.

• Case 3 “Different service demands for each ER in the cluster" (e.g., in the first

cluster, $U
0,0 = 0.75 and $U

3,0 = 0.25): At the beginning of the process, each

UAV will hover at the minimum allowable height over the center of its cluster,

then move to the optimal position according to different ER service demands.

5.5.1 3D Positions of the UAVs

The UAVs in Case 1 will be hovering at the minimum allowable height over the

centers of their clusters. Note that these positions will be fixed during the whole

process. Accordingly, the positions for UAV1, UAV2, UAV3 and UAV4 are, respec-

tively, (25,25,10), (75,25,10), (75,75,10) and (25,75,10) as shown in Figure 5.3. For

Case 2, the UAVs will move from the initial positions to the optimal points accord-

ing to Algorithm 5.1 depending on the same service demands for both ERs in each

cluster. Accordingly, the optimal positions of UAV1, UAV2, UAV3, and UAV4 will be

(32.5,25,10), (75,37.5,10), (87.5,87.5,10), and (18.628,77.5,10), respectively, as shown

in Figure 5.4.

The optimal positions of the UAVs for Case 3, which handles different ER service

demands, are shown in Figure 5.5.
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Figure 5.3: Locations of the UAVs for Case 1 (MUAV-WPCN).
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Figure 5.4: Optimal locations of the UAVs for Case 2 (MUAV-WPCN).
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Figure 5.5: Optimal locations of the UAVs for Case 3 (MUAV-WPCN).

5.5.2 Energy Efficiency Optimization for All Cases

We compare the performance of applying the algorithms on the three cases for NOMA

and OMA schemes, as shown in Figure 5.6, which exhibits EE with respect to the

normalized charging time (αm) that is set to be the same for all UAVs. One can notice

that in all cases, NOMA outperforms OMA. However, the differences are varying from

one case to another. In the first case, there is a feasible distinction between the links

of the two scheduled ERs in each cluster from their associated UAV, and this is where

the superiority of NOMA becomes clear. According to our proposed method, which

suggested that the moving of the UAVs depending on the ERs’ service demands, Cases

2 and 3 outperform Case 1 for NOMA and OMA. However, NOMA’s superiority over

OMA almost disappears in Case 2, as each UAV will hover almost over the middle

distance between both ERs in its cluster as they have similar service demands. In

Case 3, where different node service demands are considered, the EE performance is
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the best among all cases, and the NOMA scheme is better than OMA.
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Figure 5.6: System energy efficiency versus normalized charging time for MUAV-WPCN

5.6 Summary

In this chapter, we investigated the resource allocation for multiple UAV networks

that are deployed for sending wireless energy to several ERs to enable their uplink

communications. The optimization problem was decomposed into two sub-problems.

In the first one, and to enhance the communication links between the UAVs and

ERs, the UAVs move to the optimal positions depending on the service demands from

ERs in their clusters. Secondly, the maximization of the network’s EE was solved by

optimizing the transmit powers towards the ERs in all clusters. The results showed

that the proposed allocation scheme could achieve significant EE. In particular, for

most cases, the EE of the NOMA-based system outperforms that of OMA w.r.t. the

normalized charging time.

This chapter tackled the optimization problem with M UAVs and J ERs, which is
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comprehensive and general. However, this scenario is limited to the using of multiple

UAVs to charge ERs, where as we mentioned before, in many cases, UAVs are called

to not only charge devices, but also to send and/or collect information to/from them.

Therefore, in the next chapter, we will discuss the integration of the proposed scheme

in the context of multi-UAV within SWIPT networks.
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Chapter 6

Multiple UAV Simultaneous Wireless

Information and Power Transfer

In this chapter, we investigate the EE optimization in a wireless communication net-

work that consists of multiple UAVs, ERs and IRs. We consider several cases de-

pending on different combinations of the devices’ rate requirements. We present the

details of the most general scenario, i.e., MUA-SWIPT, where partial ULI is consid-

ered. The optimization problem to maximize the overall EE is formulated and solved

using Lagrangian optimization and gradient-descent methods. The optimization pro-

cess is decomposed into two sub-problems that handle the optimization of the 3D

positions of the UAVs at first, and then, allocate the available resources to maximize

the system EE.

6.1 MUAV-SWIPT System and Channel Models

A network of multiple devices that are enabled by multiple UAVs is considered. There

are two types of devices; IRs and ERs. We consider M multi-antenna UAVs serving

several single-antenna devices that are distributed in a ROI (Figure 6.1). We assume
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that the area can be divided into a number of clusters that can be determined to

be able to provide the required coverage for a given ROI, where each cluster will be

served by only one UAV. Hence, the UAV does not have perfect ULI of the GNs in its

cluster. The total number of antennas at the UAV is N = NE +NI , with NE used for

the ERs, and NI dedicated to the IRs; this is the same for all UAVs. The time slot T

is divided into two phases. In the first phase, αmT (0 < αm < 1), each UAV transmits

energy signals to the scheduled ERs in its cluster. In the second phase, (1 − αm)T ,

the ERs make use of the harvested energy to transmit their always-available data to

the associated UAV. Simultaneously, the UAV transmits information to the IRs. The

data transmissions on the uplink (U) and downlink (D) are performed according to

the NOMA protocol. Without loss of generality, the time slot duration T is set to

unity. The position of UAVm is denoted by (xUAVm , yUAVm , hUAVm).

Figure 6.1: MUAV-SWIPT system model
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6.1.1 Distribution of Devices

Similar to Chapter 5, we consider the partial ULI approach where, initially, the UAV

will not have perfect information about the locations of the GNs (ERs and IRs). Each

UAV will be sent to a specific cluster in the ROI. The partial information related to

the GNs that is known by the UAV is their distribution within the cluster. In this

work, we consider the uniform distribution for circles and segments within the cluster

to increase the number of GNs’ possible locations, which will be the intersection

between any circle and segment (Figure 6.2). At the beginning, the UAV will be

hovering at the minimum allowable height over the center of the cluster, then the

devices that need to be served will send side information about their identities to the

UAV with the best link to each of them, which usually has the shortest distance to

each of them. This information is related to their segment and circle (e.g., ID of GN

that is located in the intersection between segment no. ψ and circle no. φ is ψ,φ

(GNψ,φ)) along with their rate demands. Based on this received information and the

predetermined number of the scheduled GNs, the UAV chooses the devices that will be

served, and positions itself accordingly to start sending power and sending/receiving

data.

For simplicity in the rest of the formulation, we replace the notation GNψ,φ

depending on its type. For ER, it becomes ERm,j, and for IR, it becomes IRm,k.

In each cluster, there are K IRs and J ERs. The location of ERm,j is denoted

(xERj , yERj , hERj), and the one of IRm,k is denoted (xIRk , yIRk , hIRk). A quantized

level of the uplink rate requirement is sent from each ER to its associated UAV to

indicate its power demand. Based on this side information, and knowledge of the rate

requirements of the IRs, each UAV determines the relative demand of each ER and

IR, denoted ΥU
j and ΥD

k , respectively, such that
∑

j,k ΥU
j + ΥD

k = 1. Here, a larger
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Figure 6.2: Distribution of devices in cluster m for MUAV-SWIPT.

value of Υ means a higher rate demand. A binary variable of ER association with a

specific UAVm is denoted χm,j, and the one for IR is denoted χm,k. If ERm,j is served

by UAVm, then χm,j = 1, otherwise it is zero. Note that UAVm can serve multiple

ERs; however, ERm,j can only be served by one UAV, and this is also applicable for

IRm,k with UAVm. These can be formulated as follows:

M∑
m=1

χm,j = 1, ∀j. (6.1)

M∑
m=1

χm,k = 1, ∀k. (6.2)

χm,j ∈ {0, 1} ∀m, ∀j. (6.3)

χm,k ∈ {0, 1} ∀m, ∀k. (6.4)
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6.1.2 Channel Models

There are three types of channels in the network: air-to-ground (A2G) from the UAVs

to IRs and ERs, ground-to-air (G2A) from the ERs to the UAVs, and ground-to-

ground (G2G) between the ERs and IRs. The complex channel vector of link UAVm-

IRm,k is denoted hm,k ∈ C1×NI , m = 1, · · · ,M , and k = 1, · · · , K. For ERm,j, j =

1, · · · , J, the complex channel vector of the A2G link is denoted gm,j ∈ C1×NE . The

G2A channel related to ERm,j is zj,m ∈ CNE×1. First, we have gm,j = g′m,j/
√
LD

ERm,j
,

where LD
ERm,j

is the average path-loss, and g′m,j = [g′m,j1 , g
′
m,j2

, . . . , g′m.jNE
] is the nor-

malized channel fading vector. For Rician fading, g′m,j can be written as in (5.3).

The average A2G free-space distance-dependent path loss of ERm,j, LD
ERm,j

in dB, is

given as in (5.4). The probability that UAVm has LoS with ERm,j is given as in (5.7),

and the Euclidean distance, dm,j, is given as in (5.8). Accordingly, we can obtain

the average A2G free-space distance-dependent path loss of ERm,j, LD
ERm,j

in dB, as

follows:

LD
ERm,j

=
ξLoSm,j − ξNLoSm,j

1 + a exp
(
−b

(
180
π
θm,j − a

)) + 20 log

(
4πfdm,j

c

)
+ ξNLoSm,j , (6.5)

The A2G channel model described above w.r.t. ERs (g) applies to the IRs (h) by

replacing k with j, and IR with ER in (5.3)-(5.8) and (6.5). For the channel between

ERm,j and UAVm, zm,j, we also consider a Rician model as for gm,j, with zm,j =

z′m,j/
√
LU

ERm,j
, and LU

ERm,j
being the G2A distance-dependent path-loss. For the G2G

channel, the complex channel of link ERm,j-IRm,k is denoted ej,k, j = 1, · · · , J , and

k = 1, · · · , K, which includes the Rayleigh fading from the jth ER to the the kth IR

along with the path loss as adopted in [91].

105



6.2 Energy Transmission

For cluster m, UAVm transmits energy signal xm,1 ∈ CNE×1, which consists of J

energy beams, one for each ER, i.e.,

xm,1 =
√
βmPm

J∑
j=1

wm,j s
ER
m,j, (6.6)

where Pm is the transmit power of UAVm, sER
m,j ∈ CN (0, 1) denotes the energy-carrying

signal, and wm,j ∈ CNE×1 is the corresponding energy beamforming vector. Here, βm

indicates the percentage of power destined to the ERs in mth cluster, and (1 − βm)

indicates the percentage of power destined to the IRs. Hence, a larger value for βm

means that higher priority will be given to the WPT. For the jth ER served by the

UAVm in the mth cluster, its received signal is given by:

yER
m,j = gm,j

√
βmPmwm,js

ER
m,j +

M∑
l=1,l 6=m

gl,j
√
βlPl

J∑
i=1

wl,i s
ER
l,i + nER

m,j, (6.7)

where nER
m,j ∼ CN (0, σ2) is the AWGN, with equal noise powers assumed for all ERs,

i.e., σ2. The second term in (6.7) represents the effect on ERm,j from the simultaneous

WPT from other UAVs to the ERs in their clusters. It is assumed that the harvested

energy results from the energy signals in the cluster where the device is located, and

that noise does not take part in it. Assuming the availability of perfect channel

state information (CSI), the optimal weight vector w?
m,j is g†m,j/‖gm,j‖. Hence, the

harvested energy by ERm,j during the first phase is given by

Em,j = ζjαm|gm,jw?
m,j|2

J∑
i=1

PD
m,i = ζjαm

‖g′m,j‖2

LD
m,j

PD
m , (6.8)
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where 0 < ζj ≤ 1 is the energy-harvesting circuit efficiency [73], assumed the same

for all ERs, and PD
m = βmPm =

∑J
j=1 P

D
m,j is the sum-power dedicated by UAVm to

its J ERs.

6.3 Information Transmission

In the second phase, ERs use the harvested energy for their uplink communication

with the UAVs, simultaneously with the downlink transmission from the UAVs to the

IRs.

6.3.1 Uplink Information Transmission

The transmit power from the jth ER in cluster m served by UAVm is PU
j,m =

Em,j
1−αm .

The UAV receives the superposed message signal of J ERs, and applies SIC to decode

each device’s message. The received signal at UAVm, yUAVm ∈ CNE×J , is expressed as

ym =
J∑
j=1

√
PU
m,jzm,js

ER
m,j + HSIm

√
(1− βm)Pm

K∑
k=1

vm,ks
IR
m,k + nm, (6.9)

where sm,j ∈ CN (0, 1) is the normalized data symbol of ERm,j towards UAVm. Fur-

ther, HSIm ∈ CNI×NE is the self-interference (SI) channel due to the simultaneous

uplink and downlink processes [82], with independent entries drawn from CN (0, σ2
SI)

where σ2
SI account for the residual SI power after suppression [92], vm,k ∈ CNI×1 is the

corresponding beamforming vector, sIR
m,k ∈ CN (0, 1) denotes the information-bearing

signal of the kth IR, and nm is the AWGN vector with zero mean and covariance ma-

trix E{nmnm
†} = σ2INE

, where INE
is the identity matrix. We assume that powerful

SI cancellation is in place [82], but since some SI will remain [93], we consider the

effect of the residual SI.
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6.3.2 Downlink Information Transmission

The data signal xm,2 ∈ CNI×1 sent by UAVm to its IRs consists of K information

beams, one for each IR:

xm,2 =
√

(1− βm)Pm

K∑
k=1

vm,k s
IR
m,k. (6.10)

In each cluster, each IR encounters interference from the uplink signals of ERs towards

the UAV, as well as interference from the UAVs’ downlink beams to other IRs. hence,

the received signal at IRm,k is given by

yIR
m,k = hm,k

√
(1− βm)Pm

K∑
i=1

vm,is
IR
m,i +

M∑
m=1

J∑
j=1

√
PU
m,jem,j,ks

ER
m,j

+

M∑
l=1,l 6=m

hl,k
√

(1− βl)Pl
K∑
i=1

vl,is
IR
l,i + nIR

m,k, (6.11)

The third term in (6.11) represents the interference on IRm,k from the downlink signals

to the IRs in other clusters. For any IRm,k, since the interferences from the ERs and

IRs in other clusters are small compared to the interferences from ERs and other IRs in

its cluster, their effects can be neglected. Hence, the signal-to-interference-plus-noise

ratio (SINR) at IRm,k is

γm,k =
QD
m,k|hm,kv?m,k|2

(QD
m −QD

m,k)
K∑
i=1
i6=k

|hm,kv?m,i|2 +
J∑
j=1

PU
m,j|em,j,k|2 + 1

, (6.12)

where QD
m,k is the transmit power used for the data transfer from UAVm to IRm,k.
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6.4 Energy Efficiency Maximization

6.4.1 Energy Efficiency Formulation

To formulate the EE of the system under consideration, we have to construct the

throughputs of the downlink and uplink stages for all clusters. For the downlink

information NOMA setup, where the channel gains of IRs are increasing when closer

to the UAV (channel gain of IRm,1 is larger than IRm,2, and so on until IRm,K), the

rate related to a given IR can be expressed in the unit of bps as [83]:

RD
m,k=(1−αm)W log2

1+

QD
m,k‖h

′
m,k‖

2

LD
IRm,k

(1−αm)

((1−βm)Pm−QD
m,k)

K∑
i=1,i6=k

‖h′
m,k
‖2

LD
IRm,i

(1−αm)
+
J∑
j=1

ζPD
m,j
‖g′
m,j
‖2‖z′

m,j
‖2|e′

m,j,k
|2αm

LU
ERm,j

LD
ERm,j

LNLoSj,k
(1−αm)

+1

.

(6.13)

whereW is the bandwidth, assumed the same for all GNs. According to the principles

of power-domain NOMA, for a given IR, the strong interfering signals are mainly

due to the transmissions to devices with low channel gains. The weakest-channel

device, IRm,K , which receives low interferences due to the relatively low powers of

devices’ messages with high channel gains, cannot cancel any interference. However,

the highest channel gain device, IRm,1, which receives strong interference due to the

relatively high powers of the transmissions to weak devices, can cancel all interfering

signals [85]. On the other hand, for the uplink NOMA throughput, knowing that the

channel gains are stronger when ERs are closer to the UAV (channel gain of ERm,1

is larger than ERm,2, and so on until ERm,J), then based on (6.8) and (6.9), the rate
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related to a given ER in a given cluster can be expressed as [83]:

RU
m,j=(1−αm)W log2

1+

ζPD
m,j‖g

′
m,j‖

2‖z′m,j‖
2αm

LU
ERj,m

LD
ERm,j

(1−αm)

(βmPm−PD
m,j)

J∑
l=j+1

ζ‖g′
m,l
‖2‖z′

m,l
‖2αm

LU
ERm,l

LD
ERm,l

(1−αm)
+(1−βm)Pm

K∑
k=1
‖HSIm

vm,k‖2+1

.

(6.14)

The signal of the highest channel gain device, ERm,1, is decoded first at the UAV.

As a result, ERm,1 experiences interference from all other ERs. Then, the signal for

the second-highest channel gain device is decoded, and so on until the last device,

ERm,J , [85]. For a specific UAVm, let us define the uplink throughput as the sum-rate

of all ERs in the cluster, i.e., RU
m =

∑J
j=1 R

U
m,j, and the downlink throughput as the

sum-rate of all IRs, i.e., RD
m =

∑K
k=1 R

D
m,k. The EE of the system is expressed as

η =

M∑
m=1

(Total Throughput)m
M∑
m=1

(Total Consumed Energy)m

=

M∑
m=1

RU
m +RD

m

M∑
m=1

PDCm + PD
m +QD

m(1− αm)

, (6.15)

where PDCm is the constant power consumption of UAVm, and where PD
m = βmPm =∑J

j=1 P
D
m,j and QD

m = (1− βm)Pm =
∑K

k=1 Q
D
m,k are the powers dedicated to the ERs

and the IRs, respectively, i.e., Pm = PD
m +QD

m.

6.4.2 Problem Formulation

The optimization problem which aims to maximize EE is formulated as follows:

(OP) max
PD
m,j ,Q

D
m,k,dm,j ,θm,j

η

s.t.: Pm ≤ Pm,max, ∀m,

PU
m,j ≤ PU

m,j,max, ∀j, ∀m,
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αm < 1, ∀m,

0 ≤ βm ≤ 1, ∀m,

hm,min ≤ dm,j cos θm,j, ∀j, ∀m,

hm,min ≤ dm,k cos θm,k, ∀k, ∀m,

dm,max ≤ rm − rUAVm , ∀m,
M∑
m=1

χm,j = 1, ∀j

χm,j ∈ {0, 1}, ∀j, ∀m (6.16)
M∑
m=1

χm,k = 1, ∀k

χm,k ∈ {0, 1}, ∀k, ∀m

RU
m,j ≥ RU

m,j,min, ∀j, ∀m,

RD
m,k ≥ RD

m,k,min, ∀k, ∀m,

PU
m,thr ≤ PU

m,jzm,j −
J∑

l=j+1

PU
l,jzl,j, ∀j, ∀m,

QD
m,thr ≤

(
QD
m,k −

K∑
i=1,i6=k

QD
m,i

)
hm,K , ∀k, ∀m,

where PD
m,max and PU

m,j,max are the maximum transmit powers of UAVm and ERm,j,

respectively, hUAVm,min is the minimum allowed height for UAVm, dUAVm,max is the

maximum allowable distance that UAVm can travel during T , rm is the cluster radius,

rUAVm is the UAV radius, RU
m,j,min and RD

m,k,min denote the minimum required rates of

ERm,j and IRm,k, respectively. Finally, PU
m,thr and QD

m,thr are the SIC detection thresh-

olds of the uplink and downlink, zm,j (‖z′m,l‖2/LU
ERm,j

) is the channel gain between

ERm,k and UAVm, and hm,K (‖h′m,K‖2/LD
IRm,K

) is the channel gain between UAVm

and IRm,K .
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The optimization problem is a non-convex problem with highly coupled vari-

ables; therefore, it is hard to be solved directly by existing convex optimization meth-

ods. Accordingly, we decompose the optimization problem into two sub-problems. In

the first one (OP1), we aim to find the UAVs’ optimum positions, i.e., the optimal

distances and elevation angles w.r.t. the ERs and IRs according to their demands and

their associations to the UAVs. After getting the UAVs’ optimum positions, in the

second problem (OP2), we determine the optimal powers towards each user in each

cluster.

6.4.3 UAV Positioning and User Association

In OP1, we care about (θm,j, dm,j) and (θm,k, dm,k) which are contained in (6.5), for all

scheduled ERs and IRs that are associated with any specific UAV in each cluster at

the same time. This can be achieved by connecting the path losses for A2G channels

related to each GN by the parameters pertaining to the nodes’ demands. So, OP1

will be as follows:

(OP1) min
dm,j ,dm,k,θm,j ,θm,k

∑
j

ΥU
j L

D
ERm,j

+
∑
k

ΥD
k L

D
IRm,k

s.t.: hm,min ≤ dm,j cos θm,j, ∀j, ∀m,

hm,min ≤ dm,k cos θm,k, ∀k, ∀m,

dm,max ≤ rm − rUAVm , ∀m,
M∑
m=1

χm,j = 1, ∀j

χm,j ∈ {0, 1} ∀j, ∀m (6.17)
M∑
m=1

χm,k = 1, ∀k

χm,k ∈ {0, 1} ∀k, ∀m.
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Given that each UAV, at the beginning of the process, will be hovering at

the minimum allowable height over the center of its cluster, each device (ER or IR)

that needs to be served will send its ID to the UAV in its cluster. Accordingly,

χm,j of each ER and χm,k of each IR that ask to be served in each cluster can be

determined. This optimization problem can be solved by introducing the Lagrangian

multipliers ΩIRmΩIRmΩIRm ≥ 0 and ΩERmΩERmΩERm ≥ 0, where ΩIRmΩIRmΩIRm = [ΩIRm,1 ,ΩIRm,2 , ...,ΩIRm,K ] and

ΩERmΩERmΩERm = [ΩERm,1 ,ΩERm,2 , ...,ΩERm,J ]. The objective function then becomes

L1(ΩERmΩERmΩERm ,ΩIRmΩIRmΩIRm , dm,jdm,jdm,j , dm,kdm,kdm,k, θm,jθm,jθm,j , θm,kθm,kθm,k)

=
J∑
j=1

ΥU
j LD

ERm,j
+

K∑
k=1

ΥD
k LD

IRm,k

−
J∑
j=1

ΩERm,j (hm,min − dm,j cos θm,j)

−
K∑
k=1

ΩIRm,k(hm,min − dm,k cos θm,k). (6.18)

Exploiting the Karush–Kuhn–Tucker (KKT) conditions, one can obtain the optimal

position of the UAV by solving the first derivatives of L1 w.r.t. dm,j, dm,k, θm,j and

θm,k, respectively, as follows:

∂L1

∂dm,j
= ΥU

j

∂LD
ERm,j

∂dm,j
− ΩERm,j cos θm,j

=
20 ΥU

j

dm,j ln(10)
− ΩERm,j cos θm,j = 0, (6.19)

∂L1

∂dm,k
= ΥD

k

∂LD
IRm,k

∂dm,k
− ΩIRm,k cos θm,k

=
20 ΥD

k

dm,k ln(10)
− ΩIRm,k cos θm,k = 0, (6.20)

∂L1

∂θm,j
= ΥU

j

∂LD
ERm,j

∂dm,j
+ ΩERm,jdm,j cos θm,j
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=
ΥU
j ab

180

π
(ξLoS − ξNLoS) exp

(
−b (180

π
θm,j − a)

)
(
1 + a exp

(
−b (180

π
θm,j − a)

))2 + ΩERm,jdm,j cos θm,j = 0,

(6.21)

∂L1

∂θm,k
= ΥD

k

∂LD
IRm,k

∂dm,k
+ ΩIRm,kdm,k cos θm,k

=
ΥD
k ab

180

π
(ξLoS − ξNLoS) exp

(
−b (180

π
θm,k − a)

)
(
1 + a exp

(
−b (180

π
θm,k − a)

))2 + ΩIRm,kdm,k cos θm,k = 0.

(6.22)

The new values of ΩERm,j and ΩIRm,k can be calculated using the gradient-descent

method [76]:

ΩERm,j(i+ 1) = [ΩERm,j(i)−∆ΩERm,j
(hm,min − dm,j cos θm,j)]

+,

ΩIRm,k(i+ 1) = [ΩIRm,k(i)−∆ΩIRm,k
(hm,min − dm,k cos θm,j)]

+,

where ΩERm,j(i) and ΩIRm,k(i) are respectively the values of ΩIRm,k and ΩERm,j at the

ith iteration, 4ΩERm,j
and 4ΩIRm,k

are the iteration steps, and [x]+ = max(0, x). The

output of the optimization will be the optimum positions of the UAVs. Algorithm

6.1 summarizes the procedure. The results will be used in the second optimization

problem.
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Algorithm 6.1. 3D UAV Location Optimization
Input: ΥU

j ,ΥD
k , ξLoS, ξNLoS a, b, hm,min, f , rm, rUAVm , and GNs’ ID, ∀j, ∀k, ∀m.

Output: (xm, ym, hm)∗, ∀m.
Initialization : (xm, ym, hm)0, ΩERm,j = 0, ΩIRm,k = 0, ∀j, ∀k, ∀m.

1: Determine χm,j, as per (6.1) and (6.3), ∀j, ∀m.
2: Determine χm,k, as per (6.2) and (6.4), ∀k, ∀m.
3: Update ΩERm,j and ΩIRm,k according to (6.23) and (6.23).
4: Solve (6.19) for dm,j, ∀j, ∀m.
5: Solve (6.20) for dm,k, ∀k, ∀m.
6: Solve (6.21) for θm,j, ∀j, ∀m.
7: Solve (6.22) for θm,k, ∀k, ∀m.
8: Compute the optimal (xm, ym, hm)∗, ∀m, by solving (6.17).

6.4.4 Energy-Efficient Resource Allocation

Based on the constraints that have been treated in OP1, and the results of Algorithm

6.1, we formulate OP2 as follows:

(OP2) max
PD
m,j ,Q

D
m,k

η

s.t.: Pm ≤ Pm,max, ∀m,

PU
m,j ≤ PU

m,j,max, ∀j, ∀m,

αm < 1, ∀m,

0 ≤ βm ≤ 1, ∀m,

RU
m,j ≥ RU

m,j,min, ∀j, ∀m, (6.23)

RD
m,k ≥ RD

m,k,min, ∀k, ∀m,

PU
m,thr ≤ PU

m,jzm,j −
J∑

l=j+1

PU
m,lzm,l, ∀j, ∀m,

QD
m,thr ≤

(
QD
m,k −

K∑
i=1,i6=k

QD
m,i

)
hm,K , ∀k, ∀m.
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It is obvious that OP2 is a fractional optimization problem with the variables

PD
m,j and QD

m,k, and is non-convex. Exploiting the idea in [78], the fractional program-

ming problem can be transformed into a convex problem by introducing the variable

F ∗ as the optimal EE when we have the optimal power for each ER and IR. Accord-

ingly, the objective function becomes
M∑
m=1

RU
m+RD

m−F ∗
M∑
m=1

(PDCm+PD
m+QD

m(1−αm)).

By introducing ϑϑϑ ≥ 0, ςmςmςm ≥ 0, εεε ≥ 0, %%% ≥ 0, ϕmϕmϕm ≥ 0, λmλmλm ≥ 0, µmµmµm ≥ 0, and

ρmρmρm ≥ 0, as the Lagrange multipliers associated with the constraints in OP2, where

ϑϑϑ = [ϑ1, ϑ2, ..., ϑM ], ςmςmςm = [ςm,1, ςm,2, ..., ςm,J ], εεε = [ε1, ε2, ..., εM ], %%% = [%1, %2, ..., %M ],

ϕmϕmϕm = [ϕm,1, ϕm,2, ..., ϕm,J ], λmλmλm = [λm,1, λm,2, ..., λm,K ], µmµmµm = [µm,1, µm,1, ..., µm,J ], and

ρmρmρm = [ρm,1, ρm,1, ..., ρm,K ], then the Lagrangian function of OP2 can be formulated as:

L2(ϑϑϑ, ςmςmςm, εεε,%%%,ϕmϕmϕm,λmλmλm,µmµmµm, ρmρmρm, Q
D
m,k, P

D
m,j)

=
M∑
m=1

RU
m +RD

m − F ∗
M∑
m=1

(PDCm + PD
m +QD

m(1− αm))

−
M∑
m=1

ϑm(Pm − Pm,max)−
M∑
m=1

J∑
j=1

ςm,j(P
U
m,j − PU

m,j,max)

−
M∑
m=1

εm(αm − 1)−
M∑
m=1

J∑
j=1

ϕm,j(R
U
m,j,min −RU

m,j)

−
M∑
m=1

%m(βm − 1)−
M∑
m=1

K∑
k=1

λm,k(R
D
m,k,min −RD

m,k)

−
M∑
m=1

J∑
j=1

µm,j

[
PU
m,thr − PU

m,jzm,j −
J∑

l=j+1

PU
m,lzm,l

]

−
M∑
m=1

K∑
k=1

ρm,k

[
QD
m,thr −

(
QD
m,k −

K∑
i=1,i6=k

QD
m,i

)
hm,K

]
. (6.24)

Our goal is to find the optimized QD
m,k, PD

m,j. We assume that UAVm uses its

maximum power, such that βmPm,max = PD
m and (1 − βm)Pm,max = QD

m. Taking into

account that OP2 is a nonlinear programming problem, this can be done through
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derivation of the Lagrangian function (6.24) w.r.t. QD
m,k and PD

m,j, and then setting

them to zero, i.e.,

∂L2(ϑϑϑ, ςmςmςm, εεε,%%%,ϕmϕmϕm,λmλmλm,µmµmµm, ρmρmρm, Q
D
m,k, P

D
m,j)

∂QD
m,k

= 0, (6.25)

∂L2(ϑϑϑ, ςmςmςm, εεε,%%%,ϕmϕmϕm,λmλmλm,µmµmµm, ρmρmρm, Q
D
m,k, P

D
m,j)

∂PD
m,j

= 0. (6.26)

The updating of the Lagrangian variables (ϑϑϑ, ςmςmςm, εεε, %%%, ϕmϕmϕm, λmλmλm, µmµmµm, and ρmρmρm) can be

done using the gradient-descent method:

ϑm(i+ 1) = [ϑm(i)−4ϑm(Pm,max − Pm)]+, (6.27)

ςm,j(i+ 1) = [ςm,j(i)−4ςm,j(P
U
m,j,max − PU

m,j)]
+, (6.28)

εm(i+ 1) = [εm(i)−4εm(1− αm)]+, (6.29)

%m(i+ 1) = [%m(i)−4%m(1− βm)]+, (6.30)

ϕm,j(i+ 1) = [ϕm,j(i)−4ϕm,j(R
U
m,j,min −RU

m,j)]
+, (6.31)

λm,k(i+ 1) = [λm,k(i)−4λm,k(R
D
m,k,min −RD

m,k)]
+, (6.32)

µm,j(i+ 1) = [µm,j(i)−4µm,j(P
U
m,thr − PU

m,jzm,j −
J∑

l=j+1

PU
m,lzm,l)]

+, (6.33)

φm,k(i+ 1) = [φm,k(i)−4φm,k(Q
D
m,thr − (QD

m,k −
K∑

i=1,i6=k

QD
m,i)hm,K)]+, (6.34)

where i is the iteration index, and the 4’s are the iteration steps.

The solution of OP2 is summarized in Algorithm 6.2.
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Algorithm 6.2. Energy-Efficient Resource Allocation
Input: (xm,ym,hm)∗, ξLoS, ξNLoS, a, b, hm,min, GNs’ ID, f , η, σ, RD

min and RU
min, ∀j,

∀k, ∀m.
Output: (QD

m,k, P
D
m,j)

∗.
Initialization: (QD

m,k, P
D
m,j)

0, ϑϑϑ = 000, ςςςm = 000, εεε = 000, %%% = 000 ϕϕϕm = 000, λλλm = 000 ,
µµµm = 000, ρρρm = 000.

1: Update the Lagrangian variables, ϑϑϑ, εεε, %%%, λmλmλm, and ρmρmρm based on (6.27), (6.29),
(6.30), (6.32), and (6.34), respectively.

2: Solve (6.25) for QD
m,k.

3: Update the Lagrangian variables, ϑϑϑ, ςmςmςm, εεε, %%%, ϕmϕmϕm, and µmµmµm based on (6.27), (6.28),
(6.29), (6.30), (6.31), and (6.33), respectively.

4: Solve (6.26) for PD
m,j.

5: Compute (QD
m,k, P

D
m,j)

∗, ∀m, ∀k, ∀j, by solving (6.23).

6.4.5 Complexity Analysis

In the previous sections, we explained that the optimization problem under consid-

eration is a highly coupled non-convex problem, thus it is extremely difficult to be

solved. However, with the suggested sub-optimal solution, we decomposed the prob-

lem into two sub-problems and were able to solve them efficiently by proposing two

algorithms. Both algorithms are based on the gradient-descent method, where the

worst complexity of such method is O(n × 1
ε
) [79], with n being the number of op-

timization variables and ε the solution accuracy. Thus, for Algorithm 6.1, the com-

plexity depends on the 3D plane size that the UAVs consider for moving, i.e., i.e.,

x × y × (hm,max − hm,min), where (hm,max − hm,min) is the allowable altitude range

for moving. For Algorithm 6.2, the complexity depends on the numbers of UAVs

(M), ERs (J), and IRs (K). As such, the total complexity for both algorithms is

O(x× y × (hm,max − hm,min)× 1
ε
) +O(M × (J +K)× 1

ε
).
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6.5 Simulation Results

In this section, we perform several simulations to evaluate the proposed algorithms’

effectiveness for multiple-UAV scenario. We adopt the UAV parameters to meet the

specifications of existing small UAVs that can handle this kind of UAV-based pro-

cesses [94]. Also, we assume the propagation parameters to correspond to an urban

environment [72]. Accordingly, in the simulations, we set a = 9.6, b = 0.28, ξLoS = 1

dB, ξNLoS = 20 dB, f = 2 GHz, W = 200 kHz, η = 0.8, and NE = NI = 2. We

set QD
thr = PU

thr = 0.05 Watt, PDC = 5 Watt, Pmax = 3 Watt, and RU
min = RD

min=

12 Kbps, unless stated otherwise. In this multiple-UAV scenario, we consider that

there are 4 UAVs (M=4) to cover the ROI of 100x100 m2, which also means that we

have four identical clusters with a radius of 25 m, the centers of clusters 1, 2, 3 and 4

are (25,25), (75,25), (75,75) and (25,75), respectively. For the GNs’ distribution, we

consider that the circles are uniformly formulated by increasing 1 m for the radius

from the center of each cluster, with the segments formed by increasing the angle of a

segment by π/2 from the positive horizontal plane in each cluster, i.e., φ = 1, · · · , 25,

ψ = 1, · · · , 4, in each cluster. For the simulations, we consider that 16 GNs ask to

be served at the same time, 4 in each cluster. In cluster 1, GN1,5 and GN1,15 are

ERs, and GN3,5 and GN3,15 are IRs. In cluster 2, GN2,5 and GN2,10 are ERs, and

GN2,15 and GN2,20 are IRs. In cluster 3, GN1,25 and GN2,25 are ERs, and GN3,25 and

GN4,25 are IRs. In cluster 4, GN1,5 and GN1,15 are ERs, and GN2,5 and GN2,15 are IRs.

In this multiple-UAV scenario, we consider four different cases according to different

combinations of the GNs’ demands:

• Case-1 “No consideration for the GNs’ service demands": Each UAV will hover

at the minimum allowable height over the center of its cluster.
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• Case-2 “Same service demands for all GNs in the cluster" (e.g., in any cluster,

ΥU
1 = ΥU

2 = ΥD
1 = ΥD

2 = 0.25): At the beginning of the process, each UAV

hovers at the minimum allowable height over the center of its cluster, and then

moves to the optimal position according to the same GNs’ service demands.

• Case-3 “Different service demands for each GN in the cluster, ΥU > ΥD": The

service demands for ERs are higher than those of IRs (e.g., in any cluster, ΥU
1 +

ΥU
2 = 0.75, and ΥD

1 + ΥD
2 = 0.25): Each UAV hovers at the minimum allowable

height over the center of its cluster, at the beginning of the process, then moves

to the optimal position according to these different GNs’ service demands.

• Case-4 “Different service demands for each GN in the cluster, ΥD > ΥU": The

service demands of IRs are higher than the ones of ERs (e.g., in any cluster, ΥU
1

+ ΥU
2 = 0.25, and ΥD

1 + ΥD
2 = 0.75): Each UAV initially hovers at the minimum

allowable height over the center of its cluster, and then moves to the optimal

position according to the GNs’ service demands.

6.5.1 3D Positions of the UAVs

As the GNs’ service demands will not be taken into account in Case-1, the four UAVs

will be hovering at the minimum allowable height over the centers of their clusters.

These positions will be fixed during the whole process. The positions are (25,25,10)

for UAV1, (75,25,10) for UAV2, (75,75,10) for UAV3, and (25,75,10) for UAV4, as

shown in Figure 6.3. For the remaining cases 2, 3, and 4, the UAVs will move from

the initial positions to the optimal points according to Algorithm 6.1. In Case-2, this

will be depending on the same service demands of all GNs in each cluster; hence, the

optimal positions of UAV1, UAV2, UAV3 and UAV4 will be (25,25,10), (75,37.5,10),

(75,75,10) and (35,85,10), respectively, as shown in Figure 6.4.
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Figure 6.3: The locations of the UAVs for Case-1 (MUAV-SWIPT).
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Figure 6.4: The optimal locations of the UAVs for Case-2 (MUAV-SWIPT).

We note that each UAV will relocate its position to be somewhere between all

scheduled GNs in its cluster, as the demands are the same for all of them. In Case-3,

where the demands of ERs are higher than the ones of IRs, we notice that each UAV

will take the optimal position to be near the ERs to be able to meet their demands.

Thus, the optimal positions of UAV1, UAV2, UAV3, and UAV4 will be (35,25,10),

(75,32.5,10), (87.5,87.5,10) and (35,75,10), respectively, as shown in Figure 6.5.
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Figure 6.5: The optimal locations of the UAVs for Case-3 (MUAV-SWIPT).

When the service demands of IRs are greater as compared to the ones of the

ERs as defined in Case-4, the UAV in each cluster moves towards the IRs to satisfy

their demands. Figure 6.6 shows the optimal positions of the UAVs in the ROI. The

positions are (15,25,10) for UAV1, (75,42.5,10) for UAV2, (62.5,62.5,10) for UAV3,

and (25,85,10) for UAV4.
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Figure 6.6: The optimal locations of the UAVs for Case-4 (MUAV-SWIPT).
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Figure 6.7 shows the 2D optimal positions of the UAVs for the four cases. This

explains the changes of the positions of the UAVs from one case to another. Note that

the height is fixed for all UAVs in all cases.
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6.5.2 Energy Efficiency Optimization

We compare the performance resulting from applying the algorithms to the four cases

for NOMA and OMA schemes as shown in Figure 6.8, which illustrates the EE w.r.t.

the normalized charging time (α) which is set the same for all UAVs. One can notice

that in all cases, NOMA outperforms OMA. However, the differences vary from case to

case. It is clear that the EE for Case-2, which considers equal service demands for all

GNs, is the best compared to the other cases for NOMA and OMA schemes. Compared

to Case-1, which does not consider the GNs’ service demands at all, we notice that the

UAVs’ positioning in Case-2 enhances the system EE, as all UAVs provide better links

for all GNs in their clusters. However, the EE in Case-1 outperforms those in cases
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3 and 4, where the GNs’ demands are also considered, and this also shows the effect

of the distribution of the scheduled nodes on the overall performance. For Case-3,

where the demands of ERs are more significant than the ones of IRs, the UAVs move

closer to the ERs, providing them with much stronger links compared to the IRs.

This degrades the total downlink throughput for IRs, which is reflected in the system

EE. For Case-4, where the demands of IRs are more extensive than the ones of ERs,

the UAVs travel towards the IRs to meet their needs. This severely degrades the total

uplink throughputs of ERs, as they depend on the links for receiving the power on

the downlink and then use it on the uplink, so the both links are affected and this is

reflected in the EE.
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6.6 Summary

This chapter investigated resource allocation in a network deploying multiple multi-

antenna UAVs for transmitting data to IRs and wireless energy to ERs to enable

their uplink data communication through the NOMA protocol. A general highly

coupled non-convex optimization problem was formulated to maximize the network’s

EE while satisfying many constraints related to the user association, UAV positions,

power budgets, collision avoidance, acceptable QoS, and SIC thresholds. The problem

was solved after decomposing it into two sub-problems by minimizing the path losses

of the A2G channels according to the devices’ demands and optimizing the transmit

powers towards maximizing the EE. The results showed the superiority of NOMA

over OMA, where the case with equal rate requirement has the best performance.

This scenario, i.e., MUAV-SWIPT, is the most general scenario that handles the

information and power transmissions for a general number of UAVs, ERs, and IRs

and takes into account the positioning of the UAVs for different cases according to

the devices’ demands.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Unmanned aerial vehicles (UAVs) are becoming more reachable and available to be

used in numerous applications. UAVs are considered an appealing and efficient so-

lution for many challenges with their cost-effectiveness, flexibility, 3D mobility, and

freestyle solutions. One of UAVs’ crucial applications is in the area of wireless com-

munications, where reliable and cost-effective services can be provided through a

network of single or multiple UAVs. For example, UAVs can be deployed to enable

power and information transfer in Internet of Things (IoT) networks for both energy

receivers (ER) or/and information receivers (IR), where the ground nodes (GNs) are

energy-constrained, their lifetimes are limited by the battery capacity, and may not

communicate over long ranges. Although the application and effectiveness of the UAV

wireless powered communication networks (UAV-WPCN) are promising, this comes

with many challenges related to the limited power budget, the UAV placement, the

quality of service (QoS), and many other complexities. Intuitively, many other chal-

lenges are added in terms of using multiple UAVs, which is becoming essential in many
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cases to enhance the network’s coverage. For instance, the UAVs’ placement and user

association have become more complicated.

Towards addressing these challenges, in this thesis, we proposed a novel method-

ology to optimize the performance of the UAV-WPCN with its different topologies

and applications. We provided the required steps to be followed for most applicable

networks, where specific considerations have to be accounted for in each case. The

optimization problem’s solution has two main steps; firstly, the path loss of the air-

to-ground channels is minimized by optimizing the UAV position depending on the

GNs’ service demands. Secondly, using the optimized positioning and a closed-form

expression for the energy efficiency (EE), a resource allocation aiming to maximize

EE is developed using Lagrangian optimization and gradient-descent methods.

We applied the proposed methodology for five suggested system models, which

reflect different practical cases and setups. In the first contribution of this thesis, we

proposed a UAV-WPCN system model, where a multiple-antenna UAV charges GNs

through wireless power transfer (WPT) to assist their uplink data communication

with a terrestrial base station (BS) through an orthogonal multiple access (OMA)

scheme. In the second contribution, we presented a system model, namely UAV-

WIPT, where a fixed position single UAV deploys information and power transfer

towards co-located IRs and ERs to enable downlink and uplink data transmission

through a non-orthogonal multiple access (NOMA) scheme. We extended this in

our third contribution to handle the UAV-based simultaneous information and power

transfer (UAV-SWIPT) systems for an arbitrary number of ERs and IRs. We also

proposed two hybrid access schemes depending on the NOMA and OMA schemes:

hybrid downlink OMA uplink NOMA (HDOUN) and hybrid downlink NOMA uplink

OMA (HDNUO) and derived closed-form formulas for the optimal transmit power
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towards each ER and IR. Finally, we considered multiple UAV scenarios in the con-

text of WPCN and SWIPT systems. In MUAV-WPCN systems, we considered the

partial user location information (ULI) approach, where multiple UAVs deploy WPT

towards several ERs to enable their uplink data transmissions through the NOMA

scheme. For the MUAV-SWIPT networks, we address the optimization of the EE of a

wireless network, where M multiple-antenna UAVs serve as simultaneous power and

information transmitters towards J ERs and K IRs, which also considered the par-

tial ULI approach. We also proposed collision avoidance constraints to avoid UAVs’

collisions as they move to enhance the links for the ERs and IRs.

In summary, with the five different setups, the proposed methodology provides

a comprehensive understanding for the management of the available resources for the

UAV-WPCN systems. It is clear that the consideration of the system’s EE as the

key point is essential and logical as UAV’s power significantly impacts the system

performance. Hence, the power budget of the UAV has to be able to handle the

minimum rate requirements of all users. Moreover, the distance of the users from

the UAV has multiple consequences. Generally, an increase in distances increases

the path loss and the charging time, and decreases the EE. It is worth mentioning

that although NOMA shows its superiority in many cases, however, the topology and

distribution of the ground nodes, ERs and IRs, plays a vital role in figuring out the

suitable access scheme to be used.

7.2 Future Work

The advancements in the UAV-based communication networks enable various appli-

cations and provide free-style solutions for many practical scenarios. For instance,

in the context of IoT devices, UAVs can provide energy supply for those low-power
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and hard-to-reach devices by sending RF signals to charge them simultaneously. In

this thesis, we proposed a general methodology to optimize the performance for sev-

eral topologies of the UAV-enabled WPT networks based on the EE maximization

framework. Based on this proposed methodology and experimental results, some en-

hancements can be explored. We briefly discuss these suggestions to motivate future

research directions.

• In our system specifications, we assumed the availability of the channel state in

formation (CSI), which has been widely followed in the literature. Therefore, we

did not go through the details of obtaining the CSI in the networks. However,

for a more practical system model, the details of obtaining the CSI and its

consequences on the overall system performance could be considered. This will

further enrich the proposed framework and make it more realistic.

• The proposed methodology in this thesis mainly considers the decomposition

of the main optimization problem in most cases. This is a very efficient and

standard procedure when dealing with the non-convex optimization problem.

However, this leads to a sub-optimal solution with some limitations when dealing

with online optimization, such as the placement and trajectory design, where the

channel propagation environments vary due to the presence of obstacles between

UAVs and GNs. Machine learning techniques could be a good candidate in this

regard, which will lead to an online solution that will enhance the links between

the UAVs and their related GNs.

• We considered a linear energy harvesting model at the ERs for converting the

received RF signal into usable energy, which is commonly adopted in the litera-

ture. However, in practice, this may not be precisely the case where a non-linear
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behavior is expected. As this non-linear model is not well studied in the litera-

ture in the context of UAV-enabled WPT networks, a comprehensive study in

this regard is very important. It is expected that this non-linear modeling will

make the handling of the position optimization of the UAVs more challenging.

For instance, hovering closely above the ERs could not be the best solution due

to the energy saturation at high RF power with a non-linear model.

• In the context of multiple UAV networks, there are two main approaches to

be followed, cluster-based or network-based. In the cluster-based, which we

considered in this thesis, multiple clusters for each group of the GNs can be

formulated. Usually, a single UAV is dedicated for serving this set of GNs. On

the other hand, for the network-based scheme, the UAVs will serve the GNs in

the network without any clustering consideration, and multiple UAVs may serve

a single GN or multiple GNs simultaneously. The cluster-based approach is more

manageable and practical. However, considering the network-based approach for

UAV-WPT networks is a valuable research to be done.

• With the availability of the dominant line of sight (LoS) air-to-ground links

in UAV-based communication networks, new security threats at the physical

layer are expected. UAV-based networks are hence more susceptible to the jam-

ming/eavesdropping attacks by malicious ground nodes than terrestrial commu-

nications over fading channels. The security of UAV-enabled WPT networks is

outside the scope of this thesis; however, efficient security techniques for such

networks are essential to be investigated.

• For more realistic and practical understanding of the optimization for the UAV-

WPT networks, it is worth to conduct field experiments and apply the proposed
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methodology and algorithms therein. This will give an engineering aspect to

the work and will take into consideration more constraints that could have been

ignored in the simulations. This is also important in order to ensure the validity,

scalability, and practicality of the general proposed scenarios.
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