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processing. This paper proposes the exploitation of AC to address the memory wall. The proposed model
predicts the memory load value using machine learning (ML). Subsequently, the ML model is a load value
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cases. Additionally, the applications tested ran on average 1.83× faster. The peak signal-to-noise ratio (PSNR)
exceeded 100 dB in several scenarios. The average normalized mean absolute error (NMAE) was 4.54%.
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1 INTRODUCTION
Approximate Computing (AC), or inexact computing, has recently attracted renewed attention as
a promising alternative to exact computation in error-tolerant applications. AC results in loss of
quality in favour of savings in area, power, and delay [17]. This approach is particularly useful
in fields where errors are tolerable due to reasons such as the lack of a single correct solution,
noisy input data, limited human sensitivity to noisy output or algorithms with error-mitigating
characteristics, such as the algorithms used in machine learning, multimedia processing, and
search engines. Most AC research has focused on arithmetic units. For instance the work in [13]
proposed approximate full adders that generate the result faster compared to traditional ones and
require less area overhead. A different approach of achieving AC is reducing the voltage below the
nominal voltage, i.e., voltage overscaling, such as the work in [28] with the aim of reducing the
energy consumption and increasing the device lifetime. This paper emphasizes the approximation
of the memory access process. This involves substituting conventional memory accesses with
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machine learning-based predicted values, aiming to overcome the memory wall challenges in
memory-intensive applications such as multimedia processing.
Various approaches have been proposed to mitigate the memory wall, such as the usage of

process-in-memory, approximate memory, and load value speculation. Process-in-memory shifts
repetitive computations, e.g., multiply and accumulate operations, from the CPU to memory or
its vicinity to reduce data movement [16]. Approximate memory is another solution, where for
example the content of the DRAM is manipulated for error-tolerant applications by compressing or
decompressing the data in different regions of the memory in order to provide varying levels of
accuracy [24]. In [20], a modified DRAM is proposed with transposed data storage and variable
refresh rates for different rows, where rows with less critical bits are refreshed less often to save
energy. On the other hand, load value speculation involves adding a unit to the processor that
predicts the value to be loaded from the memory, with minimal modifications to the Von Neumann
architecture [23]. Similar to branch prediction, if the load value speculation is wrong, the CPU
reverts to its state before the prediction and flushes the pipeline. In [19], the authors introduced
the principal of value locality, noting that adjacent elements in memory are often similar in value,
e.g., adjacent pixel of an image stored closely. They proposed a dynamic lookup table to predict
values during memory loads. On misprediction, the processor reverts to the previous state and
flushes the pipeline, updating the table after each access to improve predictions. The concept of
load value speculation was further explored by other researchers such as the work in [6] and [25],
however, all load value speculation techniques aim to hide memory access delays while requiring a
check to the correctness of the predictions.
Extending the concept of load value speculations, load value approximation (LVA) uses the

predicted value as-is, even if it is inaccurate. For instance, the authors of [26] proposed an LVA
approach that uses a dynamic predictor that is improved after each memory read. Additionally,
their work offers a quality-energy knob where for a higher approximation level, the energy is
reduced by decreasing the memory bandwidth. Another LVA method described in [34] is optimized
for GPU architectures. The authors used an existing predictor, i.e., two-delta predictor [8], in their
proposed approach. Similar to the work in [26], the authors of [34] provided a quality knob where
the level of approximation could be controlled. Both the approaches in [26] and [34] uses a dynamic
predictor that has to be updated periodically using values from the memory to minimize the error.
Additionally, the predictor needs an extra hardware, e.g., lookup table, in addition to complex
methods to extract and calculate the input arguments, e.g., hash values, to index the predictor.
Alternatively, in [1] we performed a preliminary investigation where we introduced a method that
entirely removes real-time memory accesses by profiling an error-tolerant application to instrument
load values and context. The context includes a history of the program counter (PC) and memory
addresses, among multiple hash values that encode the history of the store and load values and
addresses. The instrumented data, i.e., load values, is analyzed for the occurrence of the value
locality. Thereafter, if the instrumented data showed the existence of value locality it is used to
train a machine learning (ML) model. Subsequently, the ML model is used in real-time as an LVA.

Even though the model we proposed in [1] addresses the main limitations of the LVA approaches
in [26] and [34], it has the drawback of resource usage overhead to compute and store the hash
values encoding the history of execution required by the ML-based LVA. Another limitation of [1]
is its reliance on machine information, e.g., PC and memory address, for prediction. Since these vary
across machines and architectures, this approach limits portability and makes the ML-based LVA
machine and architecture dependent. Furthermore, the work in [1] failed to deliver a good quality
in all the tested scenarios, e.g., the accuracy for the model trained for the cannel benchmark [4]
did not exceed 37%. In a subsequent effort, in [2] we developed an improved model that does not
require the computation of hash values and hence eliminating its overhead, however, it is only
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suitable for repetitive access to the same set of multimedia. Since the model proposed in [2] requires
training for each set of multimedia, the overhead of training the ML model outstrips the savings of
deploying the LVA when the multimedia is not used recursively. Subsequently, the usage of the LVA
we proposed in [2] is limited in scope. In addition to the aforementioned limitations of our previous
investigations, in [1] our preliminary investigation was limited to the testing of the accuracy of the
trained ML-based LVA model , while in the subsequent investigation in [2] the analysis was limited
to simulating the load process and measuring the quality of the approximation. In this paper, we
address the limitations of all previous approaches by proposing a static ML-based LVA that does
not need to be updated in real-time, i.e., the model is trained offline. Additionally the ML model is
trained once and afterwards used for various sets of multimedia data. Furthermore, the model we
present in this paper consist of a complete implementation of an ML-based LVA approach.
The rest of the paper is organized as follows. In Section 2 we review the most significant

assessment methods of approximate computing. We describe the proposed model of ML-based load
value approximation in Section 3. In Section 4, we present the implementation of the trained ML
model in software, followed by the performance and quality analyses of the proposed LVA method
in Sections 5 and 6, respectively. We compare the proposed approach with the state-of-the-art in
Section 7 and conclude the paper in Section 8.

2 EVALUATING APPROXIMATE COMPUTING
An Approximate Computing (AC) design can be deemed usable if the delivered quality is within an
acceptable range of tolerable error. Furthermore, the AC design must ensure savings in physical
metrics, i.e., area, delay and/or power, otherwise the purpose of approximation is defeated. For this
reason, in this section, we review important evaluation metrics of AC and quality assessment.
The generated quality of an AC design can be measured using different metrics. Some of these

metrics include:

• Error Distance (ED) is the arithmetic distance between the exact value (𝐸𝑣) and the approx-
imate value (𝐴𝑣) for a given set of inputs. Hence the 𝐸𝐷 can be written as: 𝐸𝐷 = 𝐸𝑣 −𝐴𝑣 .

• Relative Error Distance (RED) is the ratio of the relative 𝐸𝐷 with respect to the exact
value (𝐸𝑣), i.e., 𝑅𝐸𝐷 = 𝐸𝐷

𝐸𝑣
.

• Mean Absolute Error (MAE) is the average of the absolute values of all 𝐸𝐷 in space,
i.e.,𝑀𝐴𝐸 =

(∑ |𝐸𝐷 |
𝑛

)
, where 𝑛 is the number of instances.

• Normalized Mean Absolute Error (NMAE) is measured to have a better analysis for
the worst-case scenario error. 𝑁𝑀𝐴𝐸 is computed as 𝑁𝑀𝐴𝐸 = 𝑀𝐴𝐸

𝐸𝐷𝑚𝑎𝑥
, where 𝐸𝐷𝑚𝑎𝑥 is the

maximum 𝐸𝐷 in space, e.g., 𝐸𝐷𝑚𝑎𝑥 = 255 for 8-bit applications.
• Mean Squared Error (MSE) is the average of the ED squared, i.e.,𝑀𝑆𝐸 =

∑
𝐸𝐷2

𝑛
.

• Root Mean Squared Error (RMSE) is the square root of MSE, i.e., 𝑅𝑀𝑆𝐸 =
√
𝑀𝑆𝐸.

• Normalized Root Mean Squared Error (NRMSE) is computed in a similar fashion to
NMAE, where 𝑁𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸

𝐸𝐷𝑚𝑎𝑥
.

• Peak Signal-to-Noise Ratio (PSNR) evaluates the quality of an image or video by comparing
the original signal to the noise introduced by the new design. For 8-bit applications, the PSNR
is computed as 𝑃𝑆𝑁𝑅 = 20 log10

( 255
𝑅𝑀𝑆𝐸

)
.

• Bit-Error Rate (BER) is the percentage of faulty bits in the output. The BER can be expressed
in terms of False Negative (FN), False Positive (FP), True Negative (TN) and True Positive
(TP) as 𝐵𝐸𝑅 = 𝐹𝑁+𝐹𝑃

𝐹𝑁+𝐹𝑃+𝑇𝑁+𝑇𝑃 . The BER is different from all previously discussed error metrics
since it disregards the arithmetic error.
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• Accuracy is the overall proportion of correct predictionsmade out of all predictions. Accuracy
can be computed as 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 − 𝐵𝐸𝑅 = 𝑇𝑁+𝑇𝑃

𝐹𝑁+𝐹𝑃+𝑇𝑁+𝑇𝑃 . Similar to BER, the accuracy also
does not measure arithmetic error.

• Precision is the fraction of predicted positive instances that are indeed correct, emphasizing
the accuracy in making positive predictions. Precision is computed as 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃+𝐹𝑃 .
Similar to BER and the accuracy metrics, precision does not measure arithmetic error.

The aforementioned error metrics are either magnitude-based or error-rate-based. The selection
criterion of the error metric is driven by the type of application. For instance, in a system that
generates a true or false response, the error-rate-based metrics are the suitable ones. On the
other hand, physical metrics are also relevant when assessing an AC design which are measured
quantitatively. General metrics such as area, delay and power, are usually multiplied to form
composed metrics like power area delay product (PADP) and energy-delay product (EDP). These
metrics are usually selected subjectively depending on the targeted field. For instance, some
researchers opt for EDP which presents a dominance of the delay since the EDP can be written
as 𝐸𝐷𝑃 = 𝑃 × 𝐷2, where 𝑃 and 𝐷 are the power and delay, respectively. Furthermore, execution
time can be a more significant metric for software-based approximation since if the application is
executed in a shorter period, the hardware consumes less energy. Thus, speedup in the execution
of a software is also a relevant metric in approximate computing when assessing a software-based
approximate implementation.

3 PROPOSED METHODOLOGY
To alleviate the challenges of existing LVAmethods, in this paper, we propose an LVA that combines
the advantages of previously proposed approaches. The key benefits of this LVA are: (i) static
predictor, (ii) quality/performance trade-off in software, and (iii) simple predictor requiring minimal
overhead.
The proposed LVA requires six steps as shown in Fig. 1. It has an offline phase where we

perform the training of the ML-based LVA, the generation of the load predictor and synthesis of an
approximated version of the error tolerant application while in the online phase the application is

Safe-to-
Approximate LI

Error Tolerant 
Application

<>                 </>

Approx. Error 
Tolerant Application

<>                 </>
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Load Context

3
Training Data

    Determining Control     
 Flow Independent LI
2Profiling Load 
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Call to the Subroutine
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Fig. 1. Proposed Load Value Approximation
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𝐸 𝐴1 𝐴2 𝐴𝑛−1 𝐴𝑛 𝐸 𝐴1 𝐴2 𝐴𝑛−1 𝐴𝑛

Fig. 2. Prediction Sequence

executed on multimedia inputs and generates approximated data. As shown in the figure, the offline
phase accepts three inputs: (i) the training multimedia dataset, (ii) the error tolerant application and
(iii) the approximation level. The training multimedia consists of images or audio files, the error
tolerant application is an assembly program implementing a multimedia application such as image
blending [31]. The approximation level defines the ratio of approximated load instructions, which
is given by the user. It specifies the quality-performance trade-off where a higher approximation
level results in a higher speed-up for potential decrease in quality. Based on these three inputs,
the LVA produces an approximate executable code of the error tolerant application that is used in
the online phase. The proposed LVA exploits the principal of value locality introduced in [19] to
accurately approximate the value where the predicted load value is based on the most recent load
value which can be exact or approximate. The example shown in Fig. 2 depicts how the prediction
is applied in our proposed LVA where a square and a circle represent an exact and approximate load
value, respectively. The approximation (prediction) is based on the preceding value regardless of
whether it is exact or approximate. For instance, the first approximate value (𝐴1) predicted by the
LVA is based on the exact value (𝐸) loaded from the memory. Thereafter, the second approximate
value (𝐴2) is based on its preceding value 𝐴1 which is predicted/generated by the proposed LVA.
This prediction sequence is repeated 𝑛 times, i.e., 𝐴1 to 𝐴𝑛 . After predicting 𝑛 approximate values
an exact value (𝐸) is loaded again from the memory and the sequence is repeated.

The offline phase of the approximation process in the proposed LVA shown in Fig. 1 performs a
profiling of the load instructions of the error tolerant application in step 1 . In step 2 , the load
instructions that are not part of the control flow are identified as “safe-to-approximate” instructions.
An example of a “safe-to-approximate" load instruction is a load that retrieves a pixel value.
Contrarily, a load that retrieves a loop boundary is not, as it may cause a control flow hazard. In
parallel, the training multimedia is fed to step 3 where the load context is instrumented to generate
a training database. The load context instrumented is the value locality which is the adjacent element
in the memory. Consequently, the database consists of two columns that contain a value and its
adjacent value in the memory. The database is thereafter used in step 4 to generate an ML-based
load value predictor. In the ML training, the first column is used as prediction argument, i.e., feature,
while the second column, i.e., the adjacent element in memory, is the prediction value, i.e., target. In
step 5 the ML-based load value predictor is compiled to become a subroutine that can be called by
the assembly program to predict the load value. Subsequently, in step 6 the approximation level (𝑛)
is used to replace a given ratio of load instructions with a call to the ML-based load value predictor
subroutine and hence producing approximate load instructions, i.e., LVA. For example, for𝑛 = 19, the
LVA will consist of 1 exact load followed by 19 approximate load instructions, i.e., 1 out of 20 load
instructions are exact. Thus for 𝑛 = 19, we perform a 95% approximation. As shown in Fig. 1,
step 6 generates a software-based implementation of the approximate application which is a
modified assembly code of the error tolerant application where some of the load instructions are
approximated. The code generated in step 6 is used in the online phase where the application can
accept multimedia as input to generate an approximate output, e.g., the blending of two images.

The advantage of the proposed model is the usage of a static predictor that does not require new
load values to update its prediction. Furthermore, the approximation level is user-specified and
adjustable where with more approximation, i.e., higher value of 𝑛, a higher speed-up is achieved
for a potential reduction in quality. Finally, the ML-based predictor used in this paper exploits the
principle of value locality [19], where the subsequent value is predicted by knowing the previous
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value, i.e., previously used value either fetched frommemory or generated by theML-based predictor.
To measure the quality and performance of the proposed methodology, we tested it using a variety
of multimedia applications as described in the next section.

4 ML PREDICTOR IMPLEMENTATION
Optimizing the implementation of an ML-model in assembly is not a straightforward task. For

instance, in a tree-based prediction, the tree will consist of if-else conditions that translate to
conditional branching in assembly. However, branching can consume a large number of cycles and
cause the predictor to require a substantial number of clock cycles to predict. On the other hand,
since in this paper the proposed LVA targets a 1-byte load, the predicted value can be from 0 to
255, i.e., 256 unique values. Subsequently, we choose to implement the predictor in a subroutine
that uses an unconditional branch. Since the predictor is static, for a given history value, i.e.,
preceding value, the predicted value will always be the same. Subsequently, we extract the 256
possible predictions from the ML model in order to implement it in assembly. The implementation
in assembly consists of using the history value, i.e., preceding value, as a multiplier for the jump
address. The implementation of the predictor subroutine is shown in Listing 1. In this snippet it
is assumed that the history value, i.e., preceding value, to be used for the prediction is available in
the ecx register. In this snippet, if the history value is 0, we must execute the instructions on lines
#10 and #11 to predict a value of 41 and exit the subroutine. Alternatively, if the history value is
254, we must execute the code shown on lines #21 and #22 to predict a value of 240 and exit the
subroutine. Since the instruction mov ecx, #Pred_Val and ret are 5 and 1 byte(s), respectively,
we must skip 6 bytes multiplied by the history value, i.e., 6 × ecx, to branch to the targeted portion
of the code and predict the load value. Subsequently, the history value in ecx is multiplied by 6 and
the resulting value is stored in ecx. Thereafter, we add the address of the label vals to the value in
ecx, i.e., which is 6× history value, where the resulting value is used as a jump address in jmp ecx.

Listing 1. Assembly Subroutine of the ML-based Predictor for x86 Architecture

1 ; ECX contains the history value, i.e., the preceding value.
2 ; Multiply by 6 the history value in ECX since MOV and RET are 6 bytes
3 ; Jump to Base Address (vals) + ECX
4 ; Move the predicted value to ECX and exit the subroutine
5 predictor:
6 imul ecx , ecx, 6
7 lea ecx , [vals + ecx]
8 jmp ecx
9 vals:
10 mov ecx , 41 ; if history value = 0
11 ret
12 mov ecx , 18 ; if history value = 1
13 ret
14 . . .
15 # < skipped portion of the code>
16 . . .
17 mov ecx , 240 ; if history value = 254
18 ret
19 mov ecx , 220 ; if history value = 255
20 ret
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5 QUALITY ANALYSIS
In this section, we apply the proposed LVA on six multimedia applications, namely, multiplication-
based image blending [31], multiplication-based audio blending known as RingModulation (RM) [14],
audio binarization known as infinite clipping [29], image binarization known as image threshold-
ing [11], polarity inversion of audio [30] and image inversion known as image negatives [12]. We
chose these applications to represent a practical usage of the proposed methodology and its impli-
cation on quality and performance. For instance, the blending is used in image editing tools [31]
and in audio mixing tools [3]. Additionally, image binarization is used in optical character recogni-
tion (OCR) as it eliminates noise in a scanned image [33]. Furthermore, audio polarity inversion is
widely used in active noise cancellation (ANC) systems where the polarity of the noise is inverted so
that when combined with the original noise, the two cancel each other out through the destructive
interference principle [7]. We used 4,094 images out of 8,189 images from the Flowers dataset [21]
as “training multimedia” (Fig. 1) while the remaining 4,095 images from this dataset were used as
multimedia input. Additionally, to diversify the objects in the images used in the multimedia input,
we used the 8,041 images from the Cars dataset [18] and 16 images from the Places dataset [35].
Furthermore, we used 1,255 files of the audio dataset of Babylon 5 [32] as “training multimedia”
while using the remaining 1,181 as multimedia input. The audio files were split according to the file
size to ensure an even distribution between the training and the application datasets. We chose this
method instead of dividing by the number of audio files, as the lengths of the audio vary between
the files. Among the chosen applications, binarization requires a parameter, i.e., threshold, while
the others have fixed behavior. Subsequently, for the binarization, we determined a global threshold
per dataset using Otsu’s Method. [22]. In a previous work [2], we have shown the superiority of
the Extra Decision Trees (EDTs) [27] among other ML training algorithms which we adopt in this
paper to generate the ML-based LVA. Finally, using the aforementioned multimedia we built two
ML-based load value predictors one based on images and the other on audio files. Subsequently,
each of the built ML-based load value predictors was tested on the same type of multimedia used
for the training. In the remainder of this section, we will perform the quality analysis of the trained
ML-based LVA when tested in various image and audio processing applications.

5.1 Image Processing
In the first experiment, we perform a blending of two Flowers together. In our second experiment,
we test the training ML-based load value predictor in the blending of two Cars together. Finally, we
perform a blending of 16 Places and 129 Cars. Additionally, using the same dataset we perform image
inversion and image binarization. Throughout the various experiments, we tested the proposed
LVA in more than 40 Million instances. All experimenting instances were tested for 𝑛 = 1 to 𝑛 = 19,
i.e., 50% to 95% approximation. The quality of the resulting images of blending and inversion is
assessed using PSNR, NMAE, and NRMSE. The quality of the binarized images is measured using
the accuracy and precision metrics. The average for each of the metrics is depicted in Figs. 3 and 4.
We can notice that the PSNR, NMAE and NRMSE range from 74.11 to 101.30, 0.50% to 10.42% and
1.07% to 15.67%, respectively. In multimedia applications, a PSNR greater than 40 dB is normally
considered as very good [5]. Thus, we can conclude that the PSNR exceeds what is considered a very
good quality in multimedia. We also notice from Fig. 3 that for a higher approximate level (𝑛) the
rate of change in the error is smaller, i.e, the curves flatten. This is because we approximated 𝑛 out of
(𝑛 + 1) load instructions, i.e., approximation = 𝑛

𝑛+1 , which flattens for a large value of 𝑛. Furthermore,
we can notice that the quality of image inversion outperformed the one of image blending. We
attribute this difference to the nature of each application where image inversion involves a single
input, whereas blending requires two images. Consequently, in image blending, errors from both
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(a) (b)

(c)

Fig. 3. (a) PSNR, (b) NMAE and (c) NRMSE for Various Image Blending and Image Inversion

(a) (b)

Fig. 4. (a) Accuracy and (b) Precision for Various Image Binarization

images accumulate, leading to a larger overall error in the combined result.Finally, as shown in
Fig. 3 we can observe that the quality trend is very similar in a given application regardless of
the dataset used in the experiment. For the image binarization experiment, we can notice from
Fig. 4 that the maximum loss of accuracy and precision was 15.20% and 19.20%, respectively, which
occurred for a 95% approximation, i.e., 𝑛 = 19. On the other hand, for a 50% approximation the
average accuracy and average precision were 97.72% and 97.49%, respectively. Additionally, we
notice that for a 90% approximation the accuracy was on average 91.21%.
Analyzing the quality objectively, we can notice from Figs. 5 – 8 that for various approximate

levels, the pixels are in general predicted accurately, i.e., the color of the pixels are predicted
accurately. Additionally, we can notice that for a higher approximation sharp edges that consist
of significant color changes could be less accurately approximated, whereas less sharp edges and
shapes are predicted accurately. Finally, we notice that for a 50% approximation, the quality loss is
barely noticeable and at 80% approximation the quality is considered acceptable. However, at 90%
approximation the quality loss becomes more visible yet still consumable if the performance gain
is the ultimate goal.
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(a) (b) (c) (d)

Fig. 5. Image Blending Example 1: (a) Exact, (b) 50% Approximation (𝑛=1), (c) 80% Approximation (𝑛=4) and
(d) 90% Approximation (𝑛=9)

(a) (b) (c) (d)

Fig. 6. Image Blending Example 2: (a) Exact, (b) 50% Approximation (𝑛=1), (c) 80% Approximation (𝑛=4) and
(d) 90% Approximation (𝑛=9)

(a) (b) (c) (d)

Fig. 7. Image Inversion Example: (a) Exact, (b) 50% Approximation (𝑛=1), (c) 80% Approximation (𝑛=4) and
(d) 90% Approximation (𝑛=9)

(a) (b) (c) (d)

Fig. 8. Image Binarization Example: (a) Exact, (b) 50% Approximation (𝑛=1), (c) 80% Approximation (𝑛=4) and
(d) 90% Approximation (𝑛=9)
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5.2 Audio Processing
We tested the quality of the audio blending, audio inversion and audio binarization for all possible
instances in the “application dataset”. The results are summarized in Fig. 9. We can notice that the
quality of the audio processing applications exceeds those achieved for image image counterparts
where the PSNR, NMAE, and NRMSE range from 86.95 to 101.57, 0.45% to 3.03% and 1.09% to 4.62%.
With the lowest PSNR being 86.95 dB for an approximate level (𝑛) of 19, i.e., 95% approximation, the
achieved quality when testing the proposed ML-based load value predictor is double the minimum
value needed for the result to be considered good [5]. Additionally, from Figs. 9(b) and 9(c) we can
notice that both metrics did not exceed 5% even for an approximation of 95%. Furthermore, we
can notice that in the audio processing, the trend is similar to the one of image processing where
inversion performed better than blending. Finally, from Fig. 10, we can notice that the accuracy
and precision ranged from 89.30% to 97.30% and 89.78% to 97.93%, respectively. Therefore, the loss
in accuracy and precision did not surpass 11% even with a 95% approximation. Subsequently, we
note that in the audio binarization application, the quality was also superior to the one of images.

(a) (b)

(c)

Fig. 9. (a) PSNR, (b) NMAE and (c) NRMSE for Various Audio Blending and Audio Inversion

(a) (b)

Fig. 10. (a) Accuracy and (b) Precision for Various Audio Binarization
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6 PERFORMANCE ANALYSIS
In order to analyze the speedup resulting from the proposed LVA, we use the GEM5 simulator [10],
which allows cycle-accurate measurements of the software execution. By running the assembly
codes in GEM5, we ensure that measurements are isolated and unaffected by any background
processes or system-level disturbances that could otherwise interfere with timing accuracy. Sub-
sequently, using GEM5 provides an ideal environment for analyzing precise execution behavior
and performance. The CPU configuration used in GEM5 is based on the most recent trends in
commercially available computers. We applied the proposed LVA when varying the cache settings,
the type of DRAM, e.g., DDR3 and DDR4, and the frequency of the CPU. For instance, the latest
generation of Intel processors has mainly two cache configurations, where low to medium-end
processors have the same cache settings while high-end models differentiate in their cache settings.
Furthermore, all Intel processors have efficient (E) and performance (P) cores where the cache hier-
archy is also different. The cache settings of the various Intel processors and cores are summarized
in Table 1 [15].
In this paper, we use an acronym to reference the cache configuration of the E cores of the

Low-end Intel processor as LE cache. We apply a similar format to all three other configurations,
namely, LP, HE and HP. On the other hand, GEM5 only accepts cache sizes and associativity that
are of the power of two. Subsequently, the LP and HP caches cannot be modeled in GEM5. For this
purpose, we created variations based on the Intel cache configurations that are power of two. The
various cache settings used in this paper are summarized in Table 2. For instance, we created LP0
and LP1 which are variations of the LP where the 10-way set associativity is modified to 8-way
and the 1.25MB L2 cache is transformed to 1MB. Furthermore, since the L1 Data cache is 48KB
which is a middle value between two powers of two values, i.e., 32KB and 64KB, the two variations

Table 1. Cache Settings of the Intel Processor [15]

Description L1 Data L1 Instruction L2

Low/Medium-End Intel Processor – E Cores (LE) 32KB
8-way

64KB
8-way

2MB
16-way

High-End Intel Processor – E Cores (HE) 32KB
8-way

64KB
8-way

4MB
16-way

Low/Medium-End Intel Processor – P Cores (LP) 48KB
12-way

32KB
12-way

1.25MB
10-way

High-End Intel Processor – P Cores (HP) 48KB
12-way

32KB
12-way

2MB
16-way

Table 2. Cache Configurations used to Test the Proposed LVA

Description L1 Data L1 Instruction L2

LE 32KB
8-way

64KB
8-way

2MB
16-way

HE 32KB
8-way

64KB
8-way

4MB
16-way

LP0 32KB
16-way

32KB
16-way

1MB
8-way

LP1 64KB
16-way

32KB
16-way

1MB
8-way

HP0 32KB
16-way

32KB
16-way

2MB
16-way

HP1 64KB
16-way

32KB
16-way

2MB
16-way
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(a) (b)

(c)
Fig. 11. Speedup in Memory Access when varying (a) Cache, (b) RAM and (c) CPU Frequency Settings

LP0 and LP1 are chosen accordingly to avoid biased configuration. Similarly, we created variations
based on the HP cache configuration named HP0 and HP1. In addition to the variations in cache
configurations, we tested the proposed LVA while varying the frequency of the CPU from 1 GHz to
4 GHz, i.e., 1 GHz, 2 GHz, 3 GHz and 4 GHz. These values are chosen based on the base frequencies
of the latest generation of Intel processors. Finally, we added a layer of variations in our CPU
configuration in GEM5 where we selected two types of DRAM, namely, “DDR3_1600_8x8" and
“DDR4_2400_8x8". Subsequently, with six cache configurations, four frequencies and two DRAM
types, we were able to generate 48 hardware configurations that cover all possible combinations.
Furthermore, the configurations used in GEM5 use the “X86 Timing Simple CPU”[9] where we opt
for an architecture that has L1 (separate) and L2 (unified) caches only.
The 48 hardware configurations are tested at two levels, namely, the speedup achieved for the

memory load operation only in the various applications and at the application level, i.e., overall
speedup. For the performance analysis, we tested the six multimedia applications using 16 and 129
images from the Places and Cars dataset, respectively. Additionally, we select 65 audio files to analyze
the performance of the audio processing applications when implementing the proposed ML-based
load value approximator.1 With 19 different levels of approximation, 48 hardware configurations
and the image and audio combinations, we base our analysis in the sequel on 4,381,440 experiments
that were conducted on a machine with two 32-cores AMD EPYC 7001 series CPUs and 200GB of
RAM.
Fig. 11 depicts the average speedup in the memory operation achieved when varying one

hardware configuration at a time. From Figs. 11(a) and 11(b), we can notice that the variations in the
cache and DRAM configurations result in a minimal impact on the speedup achieved. On the other
hand, we can notice in Fig. 11(c) that for a higher frequency, the proposed LVA achieves a higher
1Since the simulation in GEM5 requires an excessive amount of time and given the 48 hardware configurations tested, it is
only possible to test a limited set of combinations even when using High-Performance Computing (HPC).
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speedup. The various cache and DRAM configurations achieved a similar trend in speedup as these
variations affect the execution of the exact and approximate models in the same ratio. Alternatively,
a higher frequency achieved a higher speedup since the proposed LVA runs at CPU speed while
conventional loads are limited by the memory wall. Subsequently, the proposed LVA achieves a
higher performance gain at higher CPU frequencies. In the rest of this section, we will present
the achieved speedup for the six applications when varying the frequency and the approximate
level (𝑛). However, due to the large number of simulation instances, we will limit the presentation
to the average speedups achieved when varying the frequency.

6.1 Image Processing
Fig. 12 shows the speedups achieved for the various CPU frequencies used in the experiment when
varying the approximate level (𝑛) for the three selected image processing applications. The results
demonstrated in Fig. 12 are the average speedup for each application for the various cache and
DRAM configurations. The speedups achieved when 𝑛 increases follows the same flattening trend
observed in in the quality analysis. Furthermore, we can notice a higher speedup when the CPU is
running on a faster frequency.
The speedups in memory access operations when using the proposed LVA achieved a range

between 1.45 and 6.77 as shown Fig. 12(a). The minimum speedup occurred for 𝑛 = 1, i.e., 50% ap-
proximation, and a frequency of 1 GHz while the maximum speedup was achieved for 𝑛 = 19,
i.e., 95% approximation, and a frequency of 4 GHz. Furthermore, for a 50% approximation, i.e., 𝑛 = 1,
an average speedup among the three applications of 1.51 and 1.73 is obtained for 1 GHz and 4 GHz,
respectively. Furthermore, as presented previously, the proposed LVA achieved a higher gain for a
higher frequency, i.e., higher speedup. In addition, an average speedup of 3.97 and 6.60 was achieved
for 𝑛 = 19 when the CPU runs at 1 GHz and 4 GHz, respectively. Examining the speedups at the
application level we can notice as shown in Fig. 12(b) that the speedup in the application is less
than the one achieved in the memory read operation. This is because memory access is a portion
of the image processing application where the remaining portion, e.g., arithmetic operations, are
executed precisely. Nonetheless, a speedup was achieved at the application level. From Fig. 12(b)
we can notice an average speedup of 1.25, 1.31, 1.35 and 1.39 at an approximation of 50%, i.e., 𝑛 = 1,
for CPU frequencies of 1 GHz, 2 GHz, 3 GHz and 4 GHz, respectively. Additionally, we can notice
that the highest speedups achieved in the execution of the application were for 𝑛 = 19, i.e., 95%
approximation, with average speedups among the three applications of 1.70, 1.92, 2.10 and 2.26
at 1, 2, 3 and 4 GHz, respectively. Finally, from the results shown in Fig. 12, we can notice that

(a) (b)

Fig. 12. Average Speedups at the (a) Memory and (b) Application Levels for Various Image Processing
Applications
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the binarization and inversion applications had a similar performance gain at the memory and
application levels. Additionally, we notice that the two aforementioned applications attained a
higher speedup compared to the blending application. The difference in memory access speed can
be attributed to how the applications interact with memory. The blending application reads from
two separate memory regions, while the binarization and inversion applications access only one.
When accessing a single region, consecutive memory accesses will target the same memory bank
and/or row, causing delays due to row activation and precharge overhead caused by the preceding
memory access. In contrast, when accessing two distinct memory regions mapped to different
banks, the memory controller can interleave operations, allowing the second access to proceed
while the first is completing, reducing overall access latency. Consequently, fetching two elements
from separate images stored in different banks is often faster than accessing two consecutive
elements that reside in different DRAM rows within the same bank. Hence, the memory access in
the binarization and inversion is slower compared to the blending application and applying the
proposed LVA led to a better speedup. On the other hand, the speedup at the application level was
higher for binarization and inversion, as they require fewer arithmetic operations compared to
blending. In image blending, memory access constitutes a smaller fraction of the total executed
instructions, resulting in a lower speedup gain. Conversely, in binarization and inversion, where
memory access plays a more significant role, the proposed LVA yields a higher speedup.

6.2 Audio Processing
For the audio applications, we also tested for the various configurations of hardware in GEM5. Fig. 13
depicts the average speedups achieved per audio processing application for the various DRAM and
cache configurations when varying the approximate level (𝑛) and the frequency. Figs 13(a) and 13(b)
show the speedup achieved in the memory access and the overall application, respectively. From the
two measurements shown in Fig. 13, we can notice that for a higher approximate level (𝑛), a higher
speedup is achieved. Additionally, similar to the performance of image processing applications
we can notice that for a higher approximate level the speedup achieved flattens. From Fig. 13(a)
we can notice that the average speedup in memory access operation ranges from 1.45 to 6.77. The
minimum speedup was achieved for 𝑛 = 1 and a frequency of 1 GHz while the maximum speedup
occurred for the highest approximate level, i.e., 𝑛 = 19, where the CPU is running at a frequency
of 4 GHz. We can also notice from Fig. 13(a) that for 𝑛 = 19 the speedup achieved at 4 GHz was
almost twice as much as the one achieved when the processor is running at 1 GHz.
The observed trend of increasing 𝑛 and the frequency resulting in a higher speedup is also

observed in the speedup in the execution of the application. However, as shown in Fig. 13(b), we

(a) (b)
Fig. 13. Average Speedups at the (a) Memory and (b) Application Levels for Various Audio Processing
Applications
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can notice a similar trend to the speedup observed in the image processing applications where
the speedup at the application level, i.e., overall speedup, is less than the one achieved when only
considering the memory traffic shown in Fig. 13(a). The average speedup in the execution of the
audio processing applications ranges from 1.25 to 1.71, 1.31 to 1.92, 1.35 to 2.10 and 1.39 to 2.26 when
the CPU is running at frequencies of 1 GHz, 2 GHz, 3 GHz and 4 GHz, respectively. Finally, from
Figs. 13(a) and 13(b) we notice that the audio binarization and inversion gained more speedup using
the proposed LVA. This trend is similar to the one observed in the image processing applications.

7 COMPARISONWITH RELATEDWORK
We compare the proposed ML-based LVA to the state-of-the-art LVA proposed in [26, 34]. Since
these related work use different error metrics, we will compare to each of these work separately. For
instance, the authors of [26] used the NMAE as an error metric and the comparison with their work
is summarized in Table 3. We can notice that the NMAE of the work in [26] is more than double for
the various approximate levels. Additionally, the proposed LVA provides a much higher speedup
for each of the approximate levels. For instance, for 𝑛 = 17, the LVA proposed in [26] achieved an
average speedup of 1.08 over all the experiments conducted. In contrast, for the same approximation
level, our proposed LVA achieved a speedup of 1.98 over all the experiments, i.e., average of all
hardware configurations and all audio and image applications. Since the proposed LVA delivers a
better quality and a higher speedup than the LVA proposed in [26] for the various approximate
levels, we can conclude that the LVA we propose is superior.

Table 3. Comparison of NMAE and Speedup of the proposed LVA with [26]

Approximate LVA [26] Proposed LVA
Level (𝑛) NMAE Speedup NMAE Speedup

1 5.81% 1.08 1.67% 1.32
3 7.25% 1.07 2.73% 1.62
5 8.97% 1.08 3.52% 1.76
9 11.06% 1.08 4.57% 1.87
17 13.78% 1.08 6.03% 1.98

The authors of [34] proposed the Rollback Free Value Predictor (RFVP) and used the NRMSE
as an error metric and the comparison with the proposed LVA is summarized in Table 4. Even
though the authors of [34] targeted GPU architectures with different approximation levels, we can
fairly compare the quality results of their proposed model and the LVA we propose. In fact, the
quality will only vary based on the percentage of instances that are approximated, e.g., if 50% of
load values are approximated sequentially on a CPU or in parallel on a GPU the proposed LVA will
yield the same quality. Table 4 shows the normalized root mean squared error (NRMSE) for the
various approximate levels. From Table 4 we can notice that for any approximate level, our model
provides at least 3.75× better quality and hence outperforms the work in [34].

Table 4. Comparison of NRMSE and Speedup of the proposed LVA with [34]

Approximate RFVP [34] Proposed LVA
Level (𝑛) NRMSE Speedup NRMSE Speedup

1 12.21% 1.32 3.25% 1.32
3 18.65% 1.80 4.60% 1.62
4 23.46% 2.01 5.10% 1.79
9 31.25% 3.05 6.43% 1.87
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8 CONCLUSION
Approximate computing (AC) has gained traction as an alternative computing technique that
offers savings in area and power consumption. Previously, explorations of AC techniques have
focused on arithmetic operations which are beneficial for computation-intensive tasks. However,
for memory-demanding applications, thememory wall would still curb the performance. To address
this challenge, we proposed in this paper a load value approximator (LVA) that predicts the value
using machine learning (ML) and requires minimal overhead. Unlike previously proposed ML-based
LVA techniques, the model we proposed is architecture and machine independent. The proposed
model was evaluated using six multimedia applications for various approximation levels (𝑛), i.e., 50%
to 95% of load instructions were approximated. Using the proposed LVA, the memory access was
1.45× to 6.77× faster with an average speedup of 4.11×. The speedup in memory access reflected
an overall speedup ranging from 1.23 to 2.45 where on average the applications ran at 1.83× faster.
The average NMAE, i.e., average relative error, was 4.54% which is deemed as an acceptable error
in approximate computing. The lowest value of peak signal-to-noise ratio (PSNR) in all conducted
experiments was 74.11 dB. This value of PSNR is also deemed acceptable for multimedia applications.
Since the proposed model was able to achieve a decent quality when 95% of the load instructions
were approximated, we consider the proposed ML-based LVA as an efficient technique to be used
when processing multimedia applications.

As a future work, we plan to experiment with the proposed methodology using a variable
approximate level (n) in a dynamic fashion for a fine-tune in quality/energy trade-off. We also plan
to test the proposed LVA on different architectures, e.g., RISC-V and ARM, to evaluate the speedup
benefits and examine any limitations or differences in behavior compared to x86. Furthermore,
we plan to analyze the performance gain and energy saving when implementing the proposed
methodology in hardware.
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