A RISC-V based Load Value Approximator Accelerator for Efficient

Multimedia Processing

Alain Aoun, Mahmoud Masadeh, Sofiene Tahar

Abstract—This paper presents the hardware implementation
and evaluation of a Machine Learning-based Load Value Approx-
imator (ML-LVA) integrated into the CVA6 RISC-V processor.
The ML-LVA is deployed as a lightweight accelerator, invoked
through custom RISC-V instructions, and realized using a ROM-
based predictor. The design is synthesized using a 45nm CMOS
process with Cadence Innovus and evaluated at 3GHz under
realistic memory configurations. Image and audio processing
workloads were used to assess performance. The proposed ML-
LVA achieves up to 1.08x speedup at the application level and up
to 1.73x in memory operations, significantly outperforming prior
LVA approach. Hardware overhead remains modest, with area
and power increases of only 5.09% and 0.7 %, respectively. These
results confirm that ML-LVA can be effectively and efficiently
integrated into modern out-of-order processors to reduce memory
latency and enhance throughput with minimal resource cost.

Index Terms—Approximate Computing, Approximate Mem-
ory, Approximate Load Value, Machine Learning, RISC-V, Ac-
celerator, Multimedia Processing

I. INTRODUCTION

The widening disparity between processor speed and mem-
ory latency has long been recognized as a central bottleneck in
computer architecture. This phenomenon, commonly referred
to as the memory wall [1], stems from the fundamental
constraints of the von Neumann architecture [2], where the
performance gains in compute units have far outpaced the
improvements in memory subsystems. Since the mid-20th
century, advancements in transistor scaling, guided by Moore’s
Law, have yielded exponential growth in processor frequencies
and computational throughput. However, memory systems,
bounded by the physical limitations of charge storage and
interconnect delays, have not kept pace. As a result, modern
CPUs frequently encounter performance stalls due to delayed
memory accesses, particularly on cache misses that saturate
structures such reorder buffers (ROBs) [3].

Efforts to mitigate this latency gap have focused on mi-
croarchitectural innovations. Techniques such as out-of-order
execution, speculative execution, and advanced prefetching
have significantly improved the effective throughput of modern
processors. For instance, hardware prefetchers in architectures
like AMD’s Zen 3 [4], and machine learning-based schemes
such as DeepPrefetcher [5], attempt to anticipate memory
access patterns. These solutions primarily attempt to mask
memory latency rather than eliminate it, and often incur trade-
offs such as cache pollution [6] or increased complexity.
Another line of work addresses memory latency through
Load Value Speculation (LVS) [7], wherein processors predict
the value of a pending memory load to continue execution
speculatively. LVS introduces minimal architectural disruption,
similar to branch prediction, but entails complex validation
mechanisms and costly rollbacks on misprediction.

Recently, researchers have investigated relaxing the strict
correctness requirement of Load Value Speculation (LVS)
within the broader framework of Approximate Computing
(AC) [8], particularly for applications that can tolerate mi-
nor inaccuracies, such as multimedia processing, machine
learning, and gaming. This has given rise to Load Value
Approximation (LVA), where predicted values are allowed to
be imprecise, thereby avoiding costly rollbacks associated with
mispredictions. Despite its promise, existing LVA implementa-
tions often incur significant hardware overhead. This is primar-
ily due to the use of predictor lookup tables, complex hash-
ing mechanisms, and dynamic predictors requiring frequent
memory accesses to maintain acceptable quality. To address
these challenges, this work explores a Machine Learning-based
Load Value Approximation (ML-LVA) approach that leverages
the principles of AC while reducing prediction overhead.
The proposed ML-LVA is static and lightweight, requiring
minimal runtime resources. We introduce a low-cost hardware
implementation of the ML-LVA predictor. In contrast to prior
designs, our approach eliminates the need for complex runtime
structures, offering a more efficient and scalable solution.

The remainder of this paper is organized as follows. Sec-
tion II surveys related work in load value approximation
(LVA) and memory latency mitigation. Section III describes
the proposed architecture and predictive model. Section IV
presents the implementation details of the LVA, followed by
an experimental performance analysis in Section V. Section VI
compares the proposed implementation with the state-of-the-
art, and Section VII discusses the associated overhead. Finally,
Section VIII concludes the paper and outlines directions for
future work.

II. RELATED WORK

A range of research efforts has been directed toward mit-
igating memory bottlenecks in modern computing systems.
While early studies focused on exploiting memory locality,
more recent approaches have explored approximate comput-
ing, value prediction, and intelligent prefetching to address
this challenge. In this section, we restrict our discussion
to methods that are most relevant to the proposed solution
in this paper. These include approximate memory systems,
machine learning-based memory prefetchers, traditional load
value speculation (LVS), and load value approximation (LVA)
techniques.

A. Approximate Memory

Approximate memory systems offer energy and bandwidth
savings by allowing imprecise data storage when applica-
tions can tolerate minor inaccuracies. The work in [9] in-

vestigates a transposed DRAM architecture with variable re-
fresh rates—refreshing rows containing Most Significant Bits
(MSBs) more frequently than those with Least Significant Bits
(LSBs). This mechanism enables selective loading of MSBs
to reduce memory access time and improve throughput. Sim-
ilarly, [10] proposes a DRAM design that compresses error-
tolerant data, allowing different memory regions to operate
under varying precision constraints through software-hardware
coordination.

While both approaches offer innovative mechanisms for
trading off precision for energy and bandwidth efficiency, they
also face significant limitations. In [9], the transposed stor-
age and region-specific refresh scheduling increase hardware
complexity and pose management challenges, especially in
systems with mixed-precision requirements. Moreover, expos-
ing approximate regions can introduce security vulnerabilities,
such as susceptibility to side-channel attacks or silent data
corruption from malicious bit flipping. The method in [10], al-
though more flexible due to its software-defined approximation
levels, incurs latency overhead due to on-the-fly compression
and decompression. Additionally, it relies heavily on accurate
workload profiling, which limits its adaptability and scalability
in general-purpose systems.

B. ML-based Prefetching

ML-based prefetchers aim to anticipate future memory
accesses and load data into the cache preemptively. Deep-
Prefetcher [5] exemplifies this class by employing deep learn-
ing models trained on memory access traces to detect com-
plex, non-linear patterns that conventional prefetchers fail to
capture. Its ability to adapt in real-time makes it particularly
effective in workloads with irregular or data-dependent mem-
ory access patterns, significantly improving cache hit rates and
reducing latency.

However, ML-based prefetchers are not without drawbacks.
One common issue is cache pollution, where inaccurate pre-
dictions result in unnecessary data being fetched and evict
useful cache lines, potentially worsening performance [6].
Additionally, DeepPrefetcher’s reliance on continuous online
training incurs substantial computational and energy over-
heads. The model must be frequently updated to remain
accurate across dynamic workloads, necessitating specialized
hardware support and raising concerns about scalability, espe-
cially in energy-constrained environments.

C. Load Value Speculation

Load Value Speculation (LVS) seeks to reduce effective
memory latency by predicting the value to be loaded before
it arrives. Foundational work in [7] introduced value locality
and proposed lookup tables that speculate load values based
on previous memory behavior. Later studies, such as [11]
and [12], refined this approach with techniques including
last-value, stride-based, and context-based prediction. Hybrid
schemes and confidence mechanisms were also developed
to enhance prediction accuracy and reduce misspeculation
penalties.

Despite these advancements, LVS inherently requires val-
idation through actual memory access, meaning incorrect
predictions necessitate pipeline rollbacks. These rollbacks not
only incur performance penalties but also complicate the
processor design due to the need for speculative state tracking
and recovery mechanisms. Furthermore, as workloads become
increasingly irregular, the effectiveness of deterministic predic-
tors declines, making LVS less suitable for modern, dynamic
applications.

D. Load Value Approximation

To eliminate the cost of rollbacks in LVS, Load Value Ap-
proximation (LVA) allows approximate predictions to proceed
without validation, thus trading precision for performance. The
approach in [13] implements an LVA system using dynamic
predictors that uses Global History Buffer (GHB) and Local
History Buffer (LHB). These structures help estimate load
values based on recent patterns, and the system uses relaxed
confidence windows to tolerate small errors. The technique
also defines an approximation degree to control the reuse of
predicted values before retraining, enabling a performance-
quality trade-off.

Nevertheless, the proposed design in [13] is burdened by
significant hardware complexity. The need to maintain hash
complex history buffers, along with continuous updates to
the dynamic predictor, demands both memory bandwidth and
computational resources. Moreover, the effectiveness of this
approach hinges on the quality of recent history, making it
less reliable in irregular or noisy workloads.

Similarly, RFVP [14] introduces an LVA scheme tailored
for GPUs, which predicts load values for cache misses using a
history-based predictor indexed by hashed program counters. It
accommodates GPU-specific execution patterns, such as warp
divergence, by precomputing predictions for inactive threads.
Although RFVP improves consistency and prediction stability
using stride tracking, it also shares the drawbacks of dynamic
prediction. The hashing mechanism, value history tracking,
and selective discarding policies all add to the computation
overhead, complicating hardware implementation. Moreover,
like [13], it relies heavily on precise control logic to maintain
acceptable quality across varying workloads.

In [15], we introduced a machine learning-based Load Value
Approximation (ML-LVA) technique specifically tailored for
multimedia applications, where approximate computations are
often acceptable due to the inherent error tolerance of audio
and image processing tasks. The ML-LVA model was imple-
mented entirely in software, utilizing a static predictor that
leverages recent load history to generate high-quality approx-
imations of memory values with minimal error. This static
prediction approach presents an advantage over prior dynamic
predictors, which incur additional overhead by continuously
updating prediction tables and performing complex memory
accesses. By employing a static predictor, the method reduces
runtime complexity and achieves competitive approximation
quality without the costly overhead associated with dynamic
prediction schemes. Experimental results demonstrated that
the proposed approach consistently outperformed conventional

load value speculation and approximation techniques in terms
of both approximation accuracy and overall system perfor-
mance.

However, the software-based implementation in [15] relied
on subroutine calls within application code, which introduced
performance overhead due to the dependence on general-
purpose processor execution and frequent memory accesses
during model inference. Additionally, lacking hardware accel-
eration limited the ability to fully exploit architectural features
such as speculative execution and memory access pipelining.
Consequently, while the software ML-LVA demonstrated clear
potential, its capability for system-wide speedup and energy
savings remained constrained compared to a dedicated hard-
ware implementation.

In this work, we address these limitations by presenting
a hardware implementation of the ML-LVA model. This
architecture-aware deployment minimizes inference latency
and runtime overhead by integrating the ML-LVA directly into
the processor pipeline via a custom instruction extension. By
synthesizing the design for ASIC implementation and evaluat-
ing its performance on representative multimedia workloads,
we demonstrate that the proposed hardware ML-LVA achieves
significantly higher speedup and energy efficiency than the
prior software-only version, enabling practical deployment in
high-performance, error-tolerant systems.

III. PROPOSED METHODOLOGY

This section outlines the approach taken to integrate the
ML-LVA model into a hardware implementation. Rather than
focusing on software translation, the discussion here centers
on adapting the trained model for synthesis and deployment
within a hardware design flow. Particular attention is given to

how the ML-LVA is integrated in a processor and how the
applications will make use of the new hardware.

To this end, we proposed the methodology shown in Fig. 1.
In Step @, we perform the first step towards determining
the safe-to-approximate load instructions by profiling the load
instructions and determining the effect on the program. There-
after, in Step @ we determine the control flow independent
load instructions. This is a crucial step since if the control
flow is affected by the approximation, e.g., approximating
(predicting) the loop boundary read from the memory, could
result in crashes, such as segmentation faults, infinite loops,
execution of unintended code, stack corruption and/or breaking
the logic of the program. Thus, based on Step (2), we deter-
mine the safe-to-approximate load instructions by determining
those that are not part of the control flow.

In parallel, in Step @, we instrument the load behavior
by simulating the execution of load instructions, capturing the
dynamic sequence of load values generated by each instruction
instance. This sequence forms the training dataset, effectively
encoding the load context in terms of past observed values.
The output of Step @ is thus a structured dataset mapping his-
torical load values to the subsequent target value. In Step (4),
we train the machine learning model using the Extra Trees
algorithm [16]. Extra Trees was selected based on its favorable
characteristics for our task as it offers fast training times,
robustness to noisy inputs, and strong predictive accuracy
when using only simple features, such as the previous load
value, as input. Our previous exploration in [17] corroborated
the effectiveness of Extra Trees for this prediction setting. The
output of Step @ is a trained ML-LVA.

In Step @, we implement the ML-based Load Predictor
within the hardware domain. A pragmatic and computationally

Offline

@ Profiling Load
Instructions (LI)

@Determining Control
Flow Independent LI

Safe-to-
Approximate LI

Error Tolerant
Application -

+@ Instrumenting
Load Context

Training
Multimedia
Dataset .

e . i" ©) ML Training

MIL-based .
Load Predictor :

@Hardware Implemen-

tation of the Predictor
v
@Replacing LI with

B

Approximation
Level (n)

o

Input
Multimedia

Fig. 1. Methodology to Implement the Proposed LVA in Hardware

(1 out of n + 1 element)

v

New Approx. Load Inst. :

.. Onlive

o -:- a nn,‘"
. e

Approx. Error Output
Tolerant Application - Multimedia,

efficient solution is achieved using a lookup table. This
approach is particularly suitable for the ML-LVA model de-
veloped in this paper, as it is designed to predict one byte
per load operation. Accordingly, the complete predictor can be
encapsulated in a lookup structure comprising 256 entries, with
each entry occupying a single byte. Thus, the total memory
footprint required for the predictor is merely 256 bytes. To
store this table, a Read-Only Memory (ROM) structure is
selected due to its minimal area and power overhead relative
to more complex alternatives such as Static Random Ac-
cess Memory (SRAM). Furthermore, the immutable nature of
ROM enhances security by safeguarding against unauthorized
modifications, such as those introduced by malware aiming
to manipulate prediction outcomes for malicious purposes.
Nonetheless, a ROM presents a significant limitation: its
contents are fixed post-fabrication, thereby precluding updates
or reprogramming. To address this constraint, an Electrically
Erasable Programmable Read-Only Memory (EEPROM) can
be utilized as a more flexible alternative. EEPROM offers a
favourable trade-off between hardware simplicity, resilience
to tampering, and the ability to update the predictor post-
deployment, thereby extending the hardware’s applicability to
a broader range of workloads and future enhancements.

Following the integration of the predictor into hardware
via a lookup table, Step @ involves modifying the processor
microarchitecture to enable seamless communication between
the software layer and the newly instantiated hardware predic-
tor. This necessitates augmenting the processor’s Instruction
Set Architecture (ISA) to include custom instructions capable
of invoking the ML-LVA functionality. Such modifications
are feasible in many processor designs, particularly those
based on extensible ISAs. A notable example is the RISC-
V architecture [18], which explicitly reserves certain opcode
spaces—specifically the Custom-0 and Custom-1 instruction
groups—for user-defined extensions [19]. This architectural
feature permits the addition of bespoke instructions without
interfering with existing ISA semantics. Once these custom
instructions have been integrated into the ISA, the application
code is revised such that load instructions previously marked
as “safe-to-approximate” are substituted with the newly added
load value prediction instructions. During the application
runtime, these instructions trigger the predictor to estimate
load values using the precomputed lookup table, thereby
eliminating the need for conventional memory access and
reducing memory latency. This marks a fundamental shift in
execution behavior, with the processor relying on predictive
computation in place of deterministic memory retrieval for
selected operations.

To illustrate how the structural changes introduced in
Step @ affect the behavior of the error-tolerant application,
we present the prediction sequence in Fig. 2. This figure
visualizes the operation of the proposed LVA, where squares
represent exact load values while circles denote approximate
(predicted) values. Each approximation is derived from the
most recent value, regardless of whether it was exact or
approximate. For example, the first approximate value (A7) is
predicted based on the exact value (E) fetched from memory.
Subsequently, the second approximate value (As) is predicted

E A A

Fig. 2. Prediction Sequence

based on A;, which is itself a predicted value. This prediction
sequence repeats for n times, where n corresponds to the
approximation level, thereby producing values A; through
A,,. After generating n approximations, an exact value (FE)
is fetched again from memory to resynchronize the prediction
stream, and the cycle repeats.

To enable a seamless interaction with the hardware-
embedded ML-LVA predictor, two new R-type custom instruc-
tions have been introduced: AXAU (Approximate Audio Load)
and AxIM (Approximate Image Load). These instructions are
specifically crafted to invoke the ML-LVA predictor directly
within the processor pipeline, facilitating efficient prediction of
load values without engaging in conventional memory access.
Although the R-type instruction format traditionally requires
two source operands along with a destination register, the
semantics of these new instructions diverge intentionally from
this norm to better suit the operational characteristics of the
ML-LVA. In both AxAU and AxIM, only the first source
operand is meaningful, which represents the “history value”
or previously loaded data. This value serves as the index into
a dedicated ROM. Notably, AxXAU and AxIM access separate
ROMs, one specifically allocated for audio prediction data
and the other for image prediction data, to deploy the two
ML-LVA. Additionally, the second source operand, while still
encoded in the instruction to preserve structural compatibility
with the R-type format, is effectively ignored during execution
and does not influence the instruction’s behavior.

When executed, the instruction uses the first operand to ac-
cess the corresponding entry in the appropriate ROM, retriev-
ing the predicted approximation generated by the ML-LVA
model. This predicted value is then written directly into the
destination register, effectively substituting the traditional load
operation. By leveraging a low-latency ROM lookup instead
of accessing the main memory, these instructions substan-
tially reduce load latency and improve execution throughput.
By adhering to the RISC-V custom instruction specification,
particularly leveraging the reserved opcode spaces for user-
defined extensions, these instructions maintain broad portabil-
ity across RISC-V-based cores that support ISA customization.
This strategic alignment enhances the scalability and appli-
cability of the ML-LVA accelerator, allowing future designs
to incorporate these instructions with minimal modification
while preserving the benefits of load value approximation in
latency-critical workloads such as real-time image and audio
processing.

IV. HARDWARE IMPLEMENTATION

To accurately evaluate the performance impact of the hard-
ware implementation of the ML-LVA, a detailed integration
and a realistic hardware simulation environment were required.
This section outlines the processor core into which the ML-
LVA was integrated, as well as the testing infrastructure used

for performance analysis, including the surrounding memory
hierarchy and external DRAM model that enabled realistic
system-level evaluation. Each component was selected or
developed to reflect practical design constraints and to enable
cycle-accurate simulation of the full system. In this work, the
hardware in which the ML-LVA was integrated consists of a
RISC-V processor called CVA6 [20], which has L1 cache, an
L2 cache and a DRAM as shown in Fig. 3. All components
are connected via the Advanced Microcontroller Bus Architec-
ture (AMBA) Advanced eXtensible Interface version 4 (AXI4)
protocol [21]. In the rest of this section, we will present the
details of each of these components and the reasoning for their
selection.

Fig. 3. Hardware Implementation Environment

A. CVAG6 Processor

At the core of the testing environment is the CVA6 proces-
sor, a 64-bit in-order RISC-V core [20]. The CVA6 features
a six-stage pipeline architecture, as illustrated in Fig. 4.
The CVAG6 supports in-order instruction issue, out-of-order
execution and write-back, and an in-order commit stage, and
thus preserving the original execution order of the program.
The core of the CVA6 implements the Integer (I), Multipli-
cation/Division (M), Atomic (A), and Compressed (C) exten-
sions, as defined in [19], along with [22]. Additionally, the
CVAG supports three privilege levels—Machine (M), Supervi-
sor (S), and User (U)—enabling compatibility with Unix-based
operating systems. It incorporates several advanced features,
including a configurable microarchitecture, dedicated transla-
tion lookaside buffers (TLBs), a hardware page table walker,
and branch prediction mechanisms such as a branch tar-
get buffer and a branch history table.

A notable architectural feature of the CVAG is its decoupled
frontend pipeline. In this design, the instruction fetch and
decode stages operate independently of the backend execu-
tion stages. This decoupling allows the frontend to continue
fetching and decoding instructions even when the backend is
stalled, thereby improving instruction throughput and overall
pipeline efficiency. By buffering instructions between the
frontend and backend, this architecture helps mitigate memory
latency and enhances the performance of branch prediction and
instruction prefetching.

The CVAG6 also includes separate Level-1 (L1) instruction
and data caches, both of which offer configurable associativity
and replacement policies. Furthermore, it supports the AXI4
protocol [21] for memory and peripheral interfacing, enabling
seamless integration with second-level (L2) caches. The pro-
cessor also provides infrastructure for integrating tightly cou-
pled accelerators via custom instruction support. This feature
permits the definition of new opcodes that directly interface
with user-defined hardware modules. We chose the CVA6 in
this work due to its modular and extensible architecture, open-
source availability, and robust support for custom instructions.

These characteristics make it an ideal platform for integrating
hardware accelerators. Additionally, its support for modern
microarchitectural features, such as out-of-order execution and
advanced branch prediction, further enhances its suitability for
architectural exploration and the implementation of cutting-
edge processor techniques. The primary reason for selecting
the CVAG6 processor is its open-source nature, which ensures
that its design and implementation are publicly accessible. This
transparency allows unrestricted access to the core’s architec-
tural details, enabling comprehensive study and use without
licensing constraints. In contrast, widely used architectures
such as ARM and x86 are proprietary and closed-source. Their
designs are not made publicly available, limiting the ability to
examine or modify them freely. Therefore, in the hardware-
based implementation, we switch from the x86 architecture to
the CVA6 RISC-V processor.

To preserve a conventional execution model, the
custom instruction implementing the ML-LVA was
integrated into the CVA6 using its accelerator extension
interface. Accordingly, we modified the source codes
of “cvab_accel_first_pass_decoder_stub” [23] and
“acc_dispatcher” [24] blocks. Subsequently, the modified
codes affect the Instruction Decode (ID) and Execute stages
shown in Fig. 4. Furthermore, the decoder is updated to
support two new custom instructions for predicting load
values in audio and image applications, respectively. These
instructions are encoded as R-type instructions using the
“ACCEL” opcode as defined in the ariane package [25],
with the funct3 field set to 3’b000 for audio and 3’b001
for image predictions. Subsequently, the code of the
“cvab_accel_first_pass_decoder_stub” is extended to decode
these newly added instructions. In parallel, the logic for the
predictor (ML-LVA ROM and its indexing mechanism) was
added to the “acc_dispatcher” block, where the predicted
values are produced in a single clock cycle. Additionally, we
set the parameters of L1 caches to: i) 4-way set associative
organization, ii) cache lines of 64 bytes each, and iii) total
size of 65,536 Bytes. This cache configuration was chosen to
simulate the L1 cache of the ARM Cortex-A720 [26]. The

Decoded Instr, >

[Vatid >

~

Fig. 4. Architecture of the CVA6 [20]

data cache was configured as an OpenPiton cache [27] with a
write through policy. Finally, the simulation environment for
the modified CVA6 was developed in SystemVerilog [28] to
run the custom chip at 3 GHz, providing a robust framework
for functional validation and waveform inspection during the
design and integration of the ML-LVA accelerator.

B. AXI Last Level Cache

To complement the memory hierarchy of the CVA6-based
testing platform, the AXI Last Level Cache (LLC) [29] is
employed as a unified Level-2 (L2) cache. The AXI LLC is
an open-source configurable development within the Parallel
Ultra-Low Power (PULP) platform [30]. It is designed to
interface seamlessly with AXI4-compliant masters and slaves,
making it highly suitable for integration into RISC-V-based
architectures, specifically, the CVA6 adopted in this thesis.

The AXI LLC functions as a shared L2 cache that sits
between the private L1 data and instruction caches of the
CVAG and the off-chip memory system. By providing a high-
bandwidth, low-latency intermediary, the LLC significantly re-
duces the frequency of expensive memory accesses to external
DRAM, thereby improving both application-level performance
and energy efficiency. The cache supports multiple config-
urable parameters, including cache size and associativity,
allowing for tailored optimization depending on system-level
requirements and workload characteristics.

Architecturally, the AXI LLC is designed to operate under
a write-back cache policy, meaning that modified cache lines
are only written back to main memory when they are evicted
from the cache. This approach reduces the frequency of write
operations to memory, thereby minimizing memory traffic
and enhancing overall system bandwidth. Such a policy is
well-suited to systems where reducing latency and conserving
memory bandwidth are critical performance goals.

In our hardware implementation, the LLC is integrated into
a CVAG6-based and configured with specific parameters tailored
to balance capacity, associativity, and access granularity. The
LLC is configured to replicate the L2 of a recent ARM Cortex
A720 processor [26]. We chose to adopt this approach as
ARM is a popular RISC architecture that is widely used in
the industry and thus serves as a representative reference
point for modern RISC-based designs. In alignment with
the Cortex-A720, the LLC is implemented as an 8-way set-
associative cache. The data width of the LLC, denoted as
DataWidthFull, is determined by the AXI interface and
set to 64 bits. Since the Cortex-A720 uses a 64-byte cache
line, the number of data blocks (Npp) per line is calculated
as Npg = 6341’&[‘25 = 8. To maximize the number of cache
lines (N¢p,), we adhere to a constraint imposed by the AXI
LLC design [29], which requires that log,(Npp) does not
exceed the width of the AXI len_t signal. Given that len_t
is 8 bits wide, this constraint leads us to select Npg = 256.
Based on this configuration, the total size of the LLC can be
calculated using the following formula:

DataWidth
Size LLC = Assoc. X Nop, X Npg X MTl)

Substituting the appropriate values, we compute the cache
size as:

64
Size LLC =8 x 256 x 8 x - =131,072 (2)

This results in a total cache size of 131,072 bytes, or 128 KB.
The size of this L2 aligns with one of the possible L2 configu-
ration of the ARM Cortex-A720. Such a configuration yields a
relatively large and highly associative L2 cache, well-suited for
workloads with strong spatial and temporal locality. The high
associativity reduces the likelihood of conflict misses, while
the presence of multiple blocks per line enhances data reuse
across sequential accesses, improving overall cache efficiency.

From a system integration perspective, the AXI LLC is
instantiated as a standalone, modular component that connects
directly to the AXI interconnect without requiring changes to
the internal pipeline or memory interface of the CVA6 core. Its
parameterizable structure allows easy adaptation to different
performance, area, and power constraints. In the context of
PULP-based systems, the LLC offers a scalable and efficient
method to extend the memory hierarchy, supporting high-
throughput and bandwidth-sensitive applications with minimal
design effort.

C. Micron DDR4 Model

To complete the memory hierarchy of the testing platform,
a DRAM memory based on the publicly available DDR4
Verilog simulation model [31], provided by Micron Inc., is
connected to the AXI LLC. This memory model serves as
the off-chip main memory and provides a realistic behavioral
representation of DDR4 memory timing and operation. It
supports a configurable range of data rates, spanning from
1066 to 4000 megatransfers per second (MT/s), where each
transfer represents the movement of data on both the rising and
falling edges of the clock signal, as is characteristic of double
data rate (DDR) memory. For this evaluation, a data rate of
3200 MT/s (corresponding to a clock cycle time (tCK) of
0.625 nanoseconds) was selected to reflect a high-performance
memory configuration. To facilitate seamless communication
with the rest of the AXI-based system, an AXI-compatible
memory interface and DRAM controller were developed and
integrated into the testing platform.

The DRAM model itself, obtained from Micron, offers
cycle-accurate behavioral modeling of DDR4 memory, includ-
ing command timing, burst access behavior, bank manage-
ment, and timing constraint such as Row to Column Delay
(tRCD), Row Precharge Time (tRP), and Column Address
Strobe (CAS) latency, as defined by the DDR4 standard [32].
However, the original model is not directly compatible with the
AXI protocol, which is used throughout the testing platform
developed to test the proposed ML-LVA. To bridge this gap,
we design a custom AXI-to-DRAM controller to translate
AXI4 memory transactions into appropriate DDR4 command
sequences, while adhering to the timing and ordering con-
straints imposed by the DRAM specification.

The AXI interface operates as a slave connected to the AXI
interconnect fabric, accepting read and write transactions from

the AXI LLC. Upon receiving a request, the controller sched-
ules and issues the corresponding DDR4 commands, such as
activate, read, write, and precharge to the DRAM model. It
also handles address translation and manages multiple open
row policies across banks to improve memory throughput.
This setup ensures accurate timing emulation and provides a
representative evaluation of how real DRAM would behave
under the memory access patterns generated by the CVA6
processor and its attached accelerators.

From a system-level perspective, the inclusion of the DRAM
model allows the testing platform to approximate the latency
and bandwidth characteristics of real hardware deployments
more closely. It introduces realistic memory delays and access
contention scenarios that would not be captured by idealized
memory models. This is particularly valuable when evaluating
the performance impact of the ML-LVA accelerator, as it
provides insights into how memory traffic interacts with cache
behavior and custom instruction execution under realistic
memory access patterns.

The integration of the DRAM controller and AXI interface
was carried out without modifying the existing AXI LLC
or CVAG6 processor design, thus preserving the modular ar-
chitecture of the system. This decoupled approach facilitates
independent development, testing, and reuse of each subsys-
tem. Overall, the external DRAM model serves as a critical
component to validate the end-to-end memory hierarchy of
the platform and supports comprehensive functional and per-
formance evaluation under realistic memory access conditions.

V. EXPERIMENTAL RESULTS

This section presents a detailed performance evaluation of
the proposed ML-LVA technique using a full-system sim-
ulation environment composed of the CVA6 processor, the
AXI LLC acting as a L2 cache, and an external DDR4
DRAM model based on Micron’s Verilog simulation package.
The objective of this analysis is to assess the impact of the
proposed ML-LVA on execution performance when integrated
into a realistic hardware memory hierarchy. Since the same
ML-LVA used in this study was already thoroughly evaluated
in terms of prediction quality in our previous work [15], we
limit this section to performance analysis. In [15], we showed
that the quality of the ML model consistently outperformed
existing state-of-the-art LVA techniques [13], [14], achieving
a peak signal-to-noise ratio (PSNR) exceeding 100 dB in
several scenarios and an average normalized mean absolute
error (NMAE) of 4.54%.

To explore the applicability of ML-LVA in multimedia
processing, four representative applications were selected from
both the image and audio domains, namely, image blend-
ing [33], image inversion [34], audio blending [35], and audio
inversion [36]. These applications were chosen to cover a spec-
trum of memory access behaviors and computational patterns,
providing a meaningful evaluation of ML-LVA’s effectiveness
across different workloads.

Performance measurements are carried out by quantifying
the speedup achieved when employing the ML-LVA compared
to a baseline execution without approximation. The evaluation

considers two distinct performance levels: overall application
speedup, which captures the end-to-end impact on total exe-
cution time, and memory load speedup, which focuses specifi-
cally on the duration of memory load operations. The analysis
spans multiple operating frequencies and approximation levels
(n), where each level controls the aggressiveness of value
approximation in load instructions. The performance analysis
was performed using Siemens Questasim 2024.1 [37].

The structure of this section follows a task-specific or-
ganization, grouped into two categories based on process-
ing modality: image and audio. Each category is further
divided into two application subtypes: blending and inversion.
For each application, we analyze the effect of varying the
approximate level (n) on the performance. Using a cycle-
accurate simulation platform with realistic memory modeling,
this evaluation provides practical insights into the trade-offs
introduced by the ML-LVA mechanism. The results underscore
the performance benefits and limitations of using ML-based
value approximation in a memory-centric architecture and
demonstrate the potential of such techniques in accelerating
multimedia workloads under modern processor-memory sys-
tem designs. Thereafter, we compare the performance of the
design proposed in this work with the state-of-the-art, followed
by an analysis of the synthesis results to assess the overhead
of the proposed ML-LVA when implemented in hardware.

A. Image Processing

This subsection presents a performance analysis of image
processing tasks executed on the memory processor enhanced
with the proposed ML-LVA, in comparison to their execution
using a conventional baseline. The tasks under evaluation,
i.e., image blending and image inversion, represent distinct
categories of operations, each characterized by different levels
of computational complexity and memory access behavior.

1) Image Blending: The image blending application, which
merges two input images by computing a per-pixel weighted
average, benefits substantially from ML-LVA-based approxi-
mation due to its consistent memory access patterns. The per-
formance improvements measured at both memory and appli-
cation levels show a robust upward trend as the approximation
aggressiveness increases, i.e., increasing n. The application
overall and memory level speedups are shown in Fig. 5.

From Fig. 5a, we notice that for the overall application, the
performance trends are more subdued but still meaningful.
At the lowest setting of approximate level, i.e., n = 1, the
speedup is slightly under 1 at 0.992x, indicating a minor
overhead, possibly due to hardware instruction routing. When
the approximate level increases, the overall speedup rises to
1.013x and reaches 1.029x when n = 3. The trend continues
with incremental gains, hitting 1.057x and 1.065x for n = 10
and n = 15, respectively. The highest recorded speedup is
1.068x, i.e., 6.8% speedup, for the highest tested approx-
imate level, i.e., n = 19. This relatively slower improve-
ment is expected since memory access acceleration translates
into broader application speedup only partially, especially in
workloads that are not fully memory-bound. Nonetheless, the
positive correlation, across all levels, demonstrates that the

1.08 — T T T T T T T T T T T T T
‘o
1.06 R SR -
—
» 4
21.04F) .
=
§ »
»n1.02F / 1
#
l, 4
098 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19
Approximate Level (n)
(@)
1.7 — T T T T T T T T T ; p——
161 — -
X o
.
1.5 24 J
o *
S14F ’ ,
3]
(2_1.3> ' -
12F 1
#
1.1F 1
l 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19

Approximate Level (n)
(b)

Fig. 5. Average Speedups at the (a) Application, and (b) Memory Levels for
Image Blending

ML-LVA leads to a stable and scalable performance advantage
even when used as a tightly coupled accelerator within a
general-purpose processor.

From Fig. 5b, we notice that at the memory level, the
speedup begins at a baseline of 1.00x for n = 1. Nonetheless,
as the approximate level increases to n = 2, the average
speedup rises to 1.14x. This early gain signals that even lim-
ited prediction of load values can significantly reduce memory
latency in such structured workloads. As the approximation
level increases, this improvement continues almost linearly up
to approximate level 10, where the speedup reaches 1.58x.
Beyond n = 10, the curve begins to flatten, though the gains
do not vanish. The speedup continues to rise in a slower pace,
reaching 1.66x at approximate level 15 and culminating in a
peak of 1.69x at the highest approximate level, i.e., n = 19.
The marginal gains beyond n = 15, i.e., increase from 66%
to 69%, indicate that most of the exploitable redundancy is
captured by this point, as the percentage of load that are
approximated is calculate as # which has a flattening pattern
as it increases.

2) Image Inversion: The speedups achieved in the image
inversion are given in Fig. 6. For the application overall
speedup, we notice from Fig. 6a that the effect of ML-LVA
is also strong. Similar to the image blending, the speedup
at approximate level 1 is below 1 and was measured to
be 0.999x. As the approximation increases, the performance
quickly improves, where we measured a speedup of 1.08x,
1.19x and 1.24x for n = 2, n = 4 and n = 6, respectively.
When the approximate level is increased to 10, the speedup
reaches 1.30x, with further increments taking it to 1.34x at

14
" 1 7
13} e .
8 ol
*x
D12t . 1
o
N *
LiF .
l | NS S NS Y [N S SN E— S _—
1 23456 7 8 9 101112131415 16 17 18 19

Approximate Level (n)

(a)

1.8
—rF
— T
161 J— 1
*
*
[=¥ *
3 x
S 14r 1
2 *
w
¥
12r N
*
1 I I I I I I I I I

7 8 9 10 11 12 13 14 15 16 17 18 19

Approximate Level (n)
(b)

Fig. 6. Average Speedups at the (a) Application, and (b) Memory Levels for
Image Inversion

n = 16 and peaking at 1.348x for the highest approximate
level.

From the results shown in Fig. 6b, we notice that at
the memory level the gains are both steep and sustained.
Starting from a speedup of 1.00x for n = 1 and rising to
1.14x for n = 2. The growth in speedup continues with:
1.27x, 1.43x and 1.56x for the approximate levels 3, 5
and 8, respectively. This consistent acceleration shows that
prediction remains effective even as more speculative loads
are deployed. Unlike image blending, where speedup gains
tapered off around an approximate level 15, image inversion
continues to benefit across all tested levels. At approximation
level 14, the speedup reaches 1.67x, and achieves a maximum
speedup of 1.73x for n = 19.

Interestingly, while the image blending’s overall speedup
flattens early, image inversion continues to show small but
steady gains well into the higher approximation levels. This
sustained growth suggests that image inversion is more tightly
bound by memory latency, and therefore more responsive to
approximate memory load acceleration.

B. Audio Processing

This subsection presents the performance evaluation of
audio processing tasks executed on the hardware platform
integrating the proposed ML-LVA accelerator. In contrast
to image processing, which operates on spatial data, audio
processing deals with time-continuous signals typically han-
dled in discrete frames or windows. This framing makes
throughput and latency especially critical for maintaining real-
time performance. Furthermore, audio workloads differ in their

computational characteristics, with varying levels of arithmetic
intensity and control flow complexity, which influence how
effectively they benefit from acceleration near memory. The
evaluation focuses on the observed speedups measured when
executing audio tasks with the ML-LVA. We analyze how
different classes of audio operations respond to hardware-level
LVA and identify the greatest performance gains. These results
provide insight into the suitability of the adapted CVAG6 to
integrate the ML-LVA in its architecture when accelerating
audio tasks.

1) Audio Blending: The speedup results of the audio
blending, depicted in Fig. 7, show an increased gain as
the approximate level n increases. From Fig. 7a, we notice
that for the overall application, the improvements are more
modest, reflecting the fact that not all parts of the audio
blending process are equally memory-bound. Starting from
1.0005x at approximate level of 1, the speedup reaches
1.050x when n = 4 and continues upward in small but
consistent steps. By the approximate level 10, the overall
speedup is 1.073%, and it gradually climbs to 1.0799x when
the approximate level reaches 15. The final speedup at level
19 is 1.0819x. The tight clustering of these values in the later
stages demonstrates the onset of saturation, where memory
latency is no longer the principal bottleneck. Still, the gain
of over 8% in execution time at high approximation levels is
significant for embedded or real-time systems, where energy
or throughput constraints are tight. The results confirm that
audio blending is a strong candidate for approximate memory
techniques, delivering high memory load gains and consistent

0 e e e I S e TR B o e e e M m

1.08 PEPETES S e R
_e—*
,/’/.J ol
51.06 — 1
=
Q
2 /
n'1.041 1
/
/
d
1.02F / 1
e
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Approximate Level (n)
(@)
1.7 — T T T T T T T T T T T T T T
o« o
1.6 I . s 1
T ol
1.5¢ — .
)
2 14r 1
bt
(2-1.3* 1
12F / 1
1L1F / |
l 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19

Approximate Level (n)
(b)

Fig. 7. Average Speedups at the (a) Application, and (b) Memory Levels for
Audio Blending

application level improvements.

At the memory level, we notice from Fig. 7b that the
benefits of approximation are immediate and substantial. The
speedup grows from the baseline of 1.00x for n = 1 to 1.14x
when n = 2 and reaches 1.34x when n is increased to 4.
The steepness of this growth continues through approximate
levels 5 to 10, reaching a speedup of 1.56x. Beyond level 10,
the growth becomes more incremental, yet it remains steady.
The maximum speedup achieved is 1.66x at level 18, with
level 19 maintaining this value. This consistency suggests
that even at aggressive approximation levels, the ML-LVA
performs reliably.

2) Audio Inversion: The ML-LVA delivers solid gains when
tested in audio inversion as shown in Fig. 8. The results of
application overall speedup shown in Fig. 8a, reflects more
striking improvements. Beginning from a near-unity value of
1.0003x at approximate level 1, the speedup surges to 1.15x
and 1.22x for the approximate levels 3 and 5, respectively.
This rapid climb indicates a high dependence on memory
performance. The growth continues with 30% and 33%,
ie., 1.30x and 1.33x, at levels 10 and 15, respectively. At
level 19, the maximum overall speedup is 1.34x. With a 34%
improvement in the overall performance, the hardware-based
implementation of the ML-LVA achieved a notable result
demonstrating its practicality. These results are among the best
observed in the study, suggesting that the ML-LVA not only
accelerates memory operations but also significantly reduces
the execution time of the entire application. The monotonic
increase across all approximation levels indicates that the

135 T
= —
13f e |
125+ N
o
5 12f .
8
S115¢ 1
1.1r 7
1.05F // b
/
A S S S S S S S S N
1 23 45 6 7 8 9 1011 1213 14 15 16 17 18 19
Approximate Level ()
(@)
I T P
—
1.6F a -— i
//'//.
1.5¢ - b
St]
]
13F b
2]
1.2F 1
1.1F N
| A e S S S S S S
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19
Approximate Level (n)
(b)

Fig. 8. Average Speedups at the (a) Application, and (b) Memory Levels for
Audio Inversion

load values in audio inversion, remain within a predictably
learnable range for the model.

From Fig. 8b, we notice that at the memory level, the
speedup begins at 1.00x, rising to 1.26x at level 3 and 1.41x
at level 5. The increase continues smoothly with speedups
of 1.56x and 1.63x for approximate levels of 9 and 13,
respectively. By approximation level 19, the memory speedup
peaks at 1.69x. The absence of slowed gain at extreme approx-
imation levels suggests that the ML-LVA manages to maintain
improved performance when deployed in image inversion for
the various approximate levels tested.

VI. COMPARISON WITH RELATED WORK

To validate the effectiveness of the hardware-based ML-LVA
presented in this paper, it is important to compare its speedup
against existing state-of-the-art methods. The software-based
evaluation reported in [15] has already shown that the ML-
LVA surpasses the quality of the LVAs proposed in [13]
and [14]. Building on these results, we focus our hardware-
level comparison on the LVA introduced in [13]. We omit
the method from [14] from this analysis, as it targets GPU
architectures, whereas our work is designed for approximating
load values in CPU-based systems.

Table I shows the average speedup achieved for the various
approximate levels among the various applications. From
Table I, we can notice that the LVA proposed in [13] deliver
a higher speedup for a 50% approximation, i.e., n = 1. How-
ever, at approximate level 3 and higher, i.e., more than 75%
approximation, the proposed LVA outperforms the state-of-the-
art, where our model delivered an increased speedup when n
increases, while the one proposed in [13] delivered a constant
speedup. Subsequently, we conclude that the hardware-based
ML-LVA also outperforms the LVA proposed in [13].

TABLE I
SPEEDUP COMPARISON OF THE PROPOSED HARDWARE-BASED ML-LVA
WITH [13]

| Approximate Level (n) | LVA [13] [Proposed ML-LVA |

1 1.08 1.00
3 1.07 1.09
5 1.08 1.14
9 1.08 1.18
17 1.08 1.21

VII. OVERHEAD MEASURES

In order to analyze the resource usage overhead of incorpo-
rating the ML-LVA in the CVA6, we synthesized the original
CVAG6 and the version with the ML-LVA using Cadence
Innovus [38]. The synthesis is performed using a Cadence
Generic Process Design Kit (GPDK) based on the 45nm
CMOS technology node. The results of the synthesis are
summarized in Table II. From these results, we can notice
that the area and power increases in rate of 5.09% and
0.79%, respectively, when the ML-LVA is added to the CVA6.
Nonetheless, this is expected since an additional hardware was
added to the processor. However, with a speedup in memory
load value surpassing 70% in multiple cases, the measured
overhead can be deemed acceptable.

TABLE 11
SYNTHESIS RESULTS OF THE CVA6

[Metric [CVA6 [CVA6 w/ ML-LVA | Increase |
Area (um2) 167,986.64 176,529.11 5.09%
Power (mW) 344.15 346.87 0.79%

VIII. CONCLUSION

This paper presented the hardware implementation of a
Machine Learning-based Load Value Approximator (ML-LVA)
integrated into the CVA6 RISC-V processor. The memory
hierarchy, including L1 and L2 caches and a DDR4 DRAM,
was designed to reflect modern embedded systems for accurate
performance analysis. The ML-LVA was implemented as a
lightweight ROM-based accelerator, integrated via custom
RISC-V instructions. The hardware implementation achieved
up to 1.08x speedup at the application level and 1.73x in
memory operations, with the most significant gains observed
in audio inversion. Compared to the LVA proposed in [13],
the ML-LVA demonstrated superior scalability, delivering im-
proved performance as the approximation level increased.
Synthesis results using Cadence Innovus at a 3GHz CPU
frequency showed minimal resource overhead, with 5.09% in
area and 0.79% in power, which is well justified given the
achieved speedups.

Future research could extend the ML-LVA to domains such
as edge Al bioinformatics, and wireless sensor networks,
where controlled approximation is both practical and ben-
eficial. Broadening support to additional architectures, such
as ARM, would further expand deployment opportunities,
particularly in power- and resource-constrained environments.
Lastly, formal verification of the ML-LVA is a key direction to
ensure system robustness and prevent vulnerabilities, including
potential side-channel attacks.

REFERENCES

[1] W. A. Wulf and S. McKee, “Hitting the memory wall: Implications of
the obvious,” ACM Computer Architecture News, 1995.

[2] J. L. Hennessy and D. A. Patterson, Computer Architecture: A quanti-
tative approach. Morgan Kaufmann Publishers, 2019.

[3] S. Eyerman and L. Eeckhout, “Probabilistic modeling for job symbiosis
scheduling on SMT processors,” ACM Transactions on Architecture and
Code Optimization, vol. 9, no. 2, pp. 1-27, 2012.

[4] AMD, “AMD Launches AMD Ryzen 5000 Series Desktop
Processors: The Fastest Gaming CPUs in the World,” 2020.
[Online]. Available: https://www.amd.com/en/newsroom/press-releases/
2020-10-8-amd-launches-amd-ryzen- 5000- series-desktop-process.html

[5]1 G. O. Ganfure, C.-F. Wu, Y.-H. Chang, and W.-K. Shih, “Deep-
prefetcher: A deep learning framework for data prefetching in flash
storage devices,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. 11, pp. 3311-3322, 2020.

[6] V. Seshadri, S. Yedkar, H. Xin, O. Mutlu, P. B. Gibbons, M. A.
Kozuch, and T. C. Mowry, “Mitigating prefetcher-caused pollution using
informed caching policies for prefetched blocks,” ACM Transactions on
Architecture and Code Optimization, vol. 11, no. 4, Jan. 2015.

[71 M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, “Value locality
and load value prediction,” SIGPLAN Notices, vol. , Volume 31,
no. Issue 9, p. 138-147, September 1996. [Online]. Available:
https://doi.org/10.1145/248209.237173

[8] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in IEEE European Test Sympo-
sium, 2013, pp. 1-6.

https://www.amd.com/en/newsroom/press-releases/2020-10-8-amd-launches-amd-ryzen-5000-series-desktop-process.html
https://www.amd.com/en/newsroom/press-releases/2020-10-8-amd-launches-amd-ryzen-5000-series-desktop-process.html
https://doi.org/10.1145/248209.237173

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]
[21]

[22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]
[30]

(311

D. T. Nguyen, N. H. Hung, H. Kim, and H.-J. Lee, “An approximate
memory architecture for energy saving in deep learning applications,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67,
no. 5, pp. 1588-1601, 2020.

A. Ranjan, A. Raha, V. Raghunathan, and A. Raghunathan, “Ap-
proximate memory compression for energy-efficiency,” in International
Symposium on Low Power Electronics and Design. 1EEE, 2017, pp.
1-6.

L. Ceze, K. Strauss, J. Tuck, J. Torrellas, and J. Renau, “CAVA:
Using checkpoint-assisted value prediction to hide 12 misses,” ACM
Transactions on Architecture and Code Optimization, vol. 3, no. 2, pp.
182-208, June 2006.

G. Reinman and B. Calder, “Predictive techniques for aggressive load
speculation,” in International Symposium on Microarchitecture. 1EEE,
1998, pp. 127-137.

J. San Miguel, M. Badr, and N. E. Jerger, “Load value approximation,”
in International Symposium on Microarchitecture. 1EEE, 2014, pp.
127-139.

A. Yazdanbakhsh, G. Pekhimenko, B. Thwaites, H. Esmaeilzadeh,
O. Mutlu, and T. C. Mowry, “RFVP: Rollback-free value prediction
with safe-to-approximate loads,” ACM Transactions on Architecture and
Code Optimization, vol. 12, no. 4, pp. 1-26, 2016.

A. Aoun, M. Masadeh, and S. Tahar, “Ml-based load value
approximator for efficient multimedia processing,” ACM Trans.
Multimedia Comput. Commun. Appl., May 2025. [Online]. Available:
https://doi.org/10.1145/3736582

Scikit-Learn, “Sklearn Ensemble Extra Trees Regressor,” 2024.
[Online]. Available: https://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.ExtraTreesRegressor.html

A. Aoun, M. Masadeh, and S. Tahar, “Machine learning based mem-
ory load value predictor for multimedia applications,” in International
Conference on Microelectronics, 2024, pp. 1-6.

RISC-V, “RISC-V international,” 2025. [Online]. Available: https:
/[riscv.org

A. Waterman, Y. Lee, D. Patterson, and K. Asanovié, “Chapter 9 -
RV32/64G Instruction Set Listings,” in The RISC-V Instruction Set
Manual, Volume I: User- Level ISA, Version 2.1. Electrical Engineering
and Computer Sciences, University of California at Berkeley, 2016, pp.
53-57.

Open Hardware Group, “CVA6 RISC-V CPU,”
Available: https://github.com/openhwgroup/cva6
ARM, “AMBA AXI protocol specification,” 2025. [Online]. Available:
https://developer.arm.com/documentation/ihi0022/latest

A. Waterman, K. Asanovi¢, and J. Hauser, The RISC-V Instruction Set
Manual, Volume I1: Privileged Architecture, RISC-V International, Dec.
2021.

N. Wistoff, “cva6_accel_first_pass_decoder_stub.sv,” 2023. [Online].
Available: https://github.com/openhwgroup/cva6/blob/master/core/cva6_
accel_first_pass_decoder_stub.sv

M. Cavalcante and N. Wistoff, “acc_dispatcher.sv,” 2020. [Online].
Available: https://github.com/openhwgroup/cva6/blob/master/core/acc_
dispatcher.sv

F. Zaruba, “ariane_pkg.sv,” 2017. [Online]. Available: https://github.
com/openhwgroup/cva6/blob/master/core/include/ariane_pkg.sv

ARM, “Arm® Cortex-A720 Core Technical Reference Manual -
Revision: rOp2,” 2023. [Online]. Available: https://developer.arm.com/
documentation/102530/0002

Printcton Parallel Group, “OpenPiton open source research processor,”
2017. [Online]. Available: https://www.openpiton.org

IEEE, “IEEE Standard for SystemVerilog—Unified Hardware Design,
Specification, and Verification Language,” IEEE Std 1800-2023 (Revi-
sion of IEEE Std 1800-2017), pp. 1-1354, 2024.

Pulp-Platform, “ AXI4-compliant last-level cache (LLC),” 2025.
[Online]. Available: https://github.com/pulp-platform/axi_llc

PULP platform, “PULP Platform: Open hardware, the way it should
be!” 2025. [Online]. Available: https://pulp-platform.org
Micron Technology Inc., Simulation Model:
SDRAM Verilog Model, 2018. [Online].

2025. [Online].

DDR4
Available:

(32]

[33]

[34]

[35]

[36]

[37]

[38]

https://www.micron.com/content/dam/micron/global/secure/products/
sim-model/dram/ddr4/ddr4- verilog-models.zip

JEDEC, “DDR4 SDRAM Standard,” 2021. [Online].
https://www.jedec.org/standards-documents/docs/jesd79-4a
S. Valentine, “List of blend modes,” in Hidden Power
of Blend Modes in Adobe Photoshop. Adobe Press, 2012,
ch. 7, p. 150. [Online]. Available: https://www.peachpit.com/store/
hidden- power-of-blend-modes-in-adobe-photoshop-9780321823762

Available:

R. Gonzalez and R. Woods, “Intensity transformations and
spatial,” in Digital Image Processing Global Edition. Pearson,
2017, ch. 10, pp. 119-202. [Online]. Available: https:

/Iwww.pearson.com/store/p/digital-image- processing- global-edition/
GPROG_A101708555905_learnernz-availability/9781292223049

J. Hass, “Synthesis,” in Introduction to Computer Music. Indiana
University, USA, 2021, ch. 4. [Online]. Available: https://cmtext.
indiana.edu/synthesis/chapter4_am_rm.php

E. Tarr, “Signal gain and dc offset,” in Hack Audio: An Introduction
to Computer Programming and Digital Signal Processing in MATLAB.
Taylor & Francis, 2018, ch. 6, pp. 57-78. [Online]. Available:
https://doi.org/10.4324/9781351018463

Siemens Digital Industries Software, “Questa advanced simulator,”
2025. [Online]. Available: https://eda.sw.siemens.com/en-US/ic/questa/
simulation/advanced-simulator/

Cadence, “Innovus Implementation System,” 2025.
[Online]. Available: https://www.cadence.com/ko_KR/home/tools/
digital-design-and-signoff/soc-implementation-and-floorplanning/
innovus-implementation-system.html

Alain Aoun (Gradate Student Member, IEEE) re-
ceived the B.Eng. degree in Electrical Engineering
from the Notre Dame University, Louaize, Lebanon,
in 2018, the M.A.Sc. degree in Electrical and Com-
puter Engineering from Concordia University, Mon-
treal, QC, Canada in 2021, under the supervision of
Prof. Sofiene Tahar.

Currently, he is pursuing a Ph.D. degree at Con-
cordia University under the supervision of Prof.
Sofiene Tahar. His research focuses on approximate
computing, approximate memory and approximate

Mahmoud Masadeh (Senior Member, IEEE) re-
ceived a B.Sc. degree from Yarmouk University,
Irbid, Jordan, in 2003, an M.Sc. degree from Delft
University, Delft, The Netherlands, in 2011, both
in computer engineering, and a Ph.D. degree in
electrical and computer engineering from Concordia
University, Canada, in 2020.

Currently, he is an Associate Professor of Com-
puter Engineering at Yarmouk University. He is
an author/co-author of more than 50 peer-reviewed
journal and conference papers. His research focuses

on approximate computing, machine learning and its applications, and energy-
efficient VLSI circuit design.

Sofiéne Tahar (Senior Member, IEEE) received the
Engineering Diploma degree from the University
of Darmstadt, Darmstadt, Germany, in 1990, and
the Ph.D. degree (Hons.) from the University of
Karlsruhe, Karlsruhe, Germany, in 1994.

He is currently a Professor and Senior Research
Chair in formal verification of systems-on-chip
with the Department of Electrical and Computer
Engineering, Concordia University, Montreal, QC,
Canada. He is the Founder and Director of the
Hardware Verification Group with a research interest

in formal verification of hardware and physical systems, and safety and
reliability analysis.

https://doi.org/10.1145/3736582
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesRegressor.html
https://riscv.org
https://riscv.org
https://github.com/openhwgroup/cva6
https://developer.arm.com/documentation/ihi0022/latest
https://github.com/openhwgroup/cva6/blob/master/core/cva6_accel_first_pass_decoder_stub.sv
https://github.com/openhwgroup/cva6/blob/master/core/cva6_accel_first_pass_decoder_stub.sv
https://github.com/openhwgroup/cva6/blob/master/core/acc_dispatcher.sv
https://github.com/openhwgroup/cva6/blob/master/core/acc_dispatcher.sv
https://github.com/openhwgroup/cva6/blob/master/core/include/ariane_pkg.sv
https://github.com/openhwgroup/cva6/blob/master/core/include/ariane_pkg.sv
https://developer.arm.com/documentation/102530/0002
https://developer.arm.com/documentation/102530/0002
https://www.openpiton.org
https://github.com/pulp-platform/axi_llc
https://pulp-platform.org
https://www.micron.com/content/dam/micron/global/secure/products/sim-model/dram/ddr4/ddr4-verilog-models.zip
https://www.micron.com/content/dam/micron/global/secure/products/sim-model/dram/ddr4/ddr4-verilog-models.zip
https://www.jedec.org/standards-documents/docs/jesd79-4a
https://www.peachpit.com/store/hidden-power-of-blend-modes-in-adobe-photoshop-9780321823762
https://www.peachpit.com/store/hidden-power-of-blend-modes-in-adobe-photoshop-9780321823762
https://www.pearson.com/store/p/digital-image-processing-global-edition/GPROG_A101708555905_learnernz-availability/9781292223049
https://www.pearson.com/store/p/digital-image-processing-global-edition/GPROG_A101708555905_learnernz-availability/9781292223049
https://www.pearson.com/store/p/digital-image-processing-global-edition/GPROG_A101708555905_learnernz-availability/9781292223049
https://cmtext.indiana.edu/synthesis/chapter4_am_rm.php
https://cmtext.indiana.edu/synthesis/chapter4_am_rm.php
https://doi.org/10.4324/9781351018463
https://eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator/
https://eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator/
https://www.cadence.com/ko_KR/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/ko_KR/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/ko_KR/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html

	Introduction
	Related Work
	Approximate Memory
	ML-based Prefetching
	Load Value Speculation
	Load Value Approximation

	Proposed Methodology
	Hardware Implementation
	CVA6 Processor
	AXI Last Level Cache
	Micron DDR4 Model

	Experimental Results
	Image Processing
	Image Blending
	Image Inversion

	Audio Processing
	Audio Blending
	Audio Inversion

	Comparison with Related Work
	Overhead Measures
	Conclusion
	References
	Biographies
	Alain Aoun
	Mahmoud Masadeh
	Sofiène Tahar

