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Abstract. Epicyclic Bevel Gear Trains (EBGTs) play a vital role in pro-
viding highly efficient solutions for power transmissions between shafts in
various engineering applications, such as wind turbines and jet airplane
engines. The kinematic analysis of EBGTs involves identifying funda-
mental cycles, and utilizing screw theory to understand the velocities
and relative motion of the system’s components. In this paper, we pro-
pose to use higher-order-logic theorem proving for the formal kinematic
analysis of EBGTs. In particular, we formalize a directed graph repre-
sentation of EBGT systems, consisting of links and joints (pairs). Next,
we formalize a corresponding cycle matrix form of the EBGT in order to
analyze fundamental cycles in the graph. Moreover, we formalize the lin-
ear and angular velocities of the joint components in the systems using
various notions of screw theory, such as screw and twist. We use the
above to formally verify the kinematic equations providing a sound rela-
tionship between the relative angular joint velocities. In order to illus-
trate the utility of our proposed formalization, we formally analyze the
Bendix wrist, which is a well-known industrial geared mechanism, by
providing a verified solution of its kinematic equations.

Keywords: Epicyclic Gear Trains · Kinematic Analysis · Cycle
Matrix · Screw Theory · Higher-Order Logic · Theorem Proving ·
Isabelle/HOL

1 Introduction

Epicyclic Bevel Gear Trains (EBGTs) [22], known as transmission mechanisms,
are composed of gear pairs that have intersecting axes, and at least one gear axis
is in circular motion with respect to the ground/fixed link of the mechanism.
EBGTs are integrated to a variety of mechanisms for the purpose of transmitting
rotational motion and/or adapting the speed of various components of mecha-
nisms. EBGTs are used in a wide range of engineering and mechanical appli-
cations, such as automotive, avionics, aerospace and renewable energy, thanks
to their advantages like altered speed ratios and higher efficiency of the power
transmission. For instance, EBGTs are of key importance in the design of robotic
wrists for power transmission, which assist in reducing the weight and inertia of
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a robotic manipulator and thus enhancing the efficiency of the mechanism [18].
Due to their aforementioned abilities and usage in safety-critical applications,
e.g., wind turbines and jet airplane engines, their kinematic analysis becomes
quite significant since the occurrence of any unexpected behavior may result in
financial loss and even fatalities.

To perform a kinematic analysis of an EBGT mechanism, we need to develop
a set of kinematic equations capturing the relative angular velocities1 of various
components of the system, such as joints and links, which are further analyzed by
finding out their solutions providing a relationship between the output and input
velocities. There are several techniques used for the kinematic analysis including
tabular methods [14], train value methods [4] and graph theory methods [20,21].
For instance, one of the commonly used methods in textbooks is the tabular
method based on Willis’ inversion method [24]. However, this method is appli-
cable to non-parallel axis gear trains mechanisms only. Similarly, the train value
method solely focuses on the overall angular velocity ratios, and thus cannot deal
with the velocities of intermediate links. On the other hand, the graph theory
with the fundamental cycle concept [16] is suitable for systems with plenty of
gears and multitude Degree of Freedoms (DOF). Here, the analysis starts with
a synthesis of the kinematic structure of the system using fundamental cycles,
from which a cycle matrix, as an algebraic representation, is used to capture
the relationship between the edges and the cycles. Next, by utilizing the screw
theory [5], the velocity of each joint is represented by screws and twists based
on the fixed frame of each component. Then, the orthogonality conditions are
established using the cycle matrix and screw/twist matrices in order to derive the
kinematic equations. Finally, these equations for the relative angular velocities
of joints are analyzed to conclude the analysis.

Conventionally, EBGTs are analyzed using paper-and-pencil proof and
computer-based simulation techniques. However, the former is prone to human-
error, while the latter frequently relies on unverified numerical algorithms in the
core of the associated tools that can introduce approximation errors, leading to
potential inaccuracies in the results. In consideration of these limitations, con-
ventional methods do not provide the necessary level of accuracy and precision
required for a comprehensive analysis of systems. On the other hand, formal
methods, such as higher-order-logic (HOL) theorem proving, provides a more
rigorous approach by constructing computer-based mathematical modelling of
systems and verifying its properties through logical reasoning. HOL theorem
proving is hence well-suited for the formal modeling and analysis of EBGT mech-
anisms since it provides soundness and a high level of expressiveness.

In this paper, we propose to use the Isabelle/HOL [13] for performing the
kinematic analysis of EBGTs. In particular, we formalize cycle matrix based
directed graph models of EBGT mechanisms using higher-order logic theorem
proving. In general, an EBGT can be modeled using either an undirected graph
with adjacency matrix or a directed graph with cycle matrix. Unlike undirected

1 Relative angular velocity, or rotational velocity, is the difference between the rota-
tional speeds of two links.
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graphs with adjacency matrices, a directed graph based analysis does not require
additional rules to identify graph cycles, which are obtained using a cycle matrix
that is further used to generate the kinematic equations of the system [19]. Fur-
thermore, directed graphs can model symmetric and asymmetric relationships
between components, making them more generic. Therefore, in this paper, we
use a directed-graph based modeling approach to analyze EGBT mechanisms.
Next, we formalize the screw for describing spatial geometry of local frames
assigned to joints, which provides rotational and translational motion of joints.
Similarly, we formalize the twist vector to model angular and linear velocity of
joints. In the next step, we utilize the above formalization alongside the orthog-
onality condition to formalize a set of kinematic equations capturing the relative
angular velocities. To demonstrate the utility of our proposed formalization, we
formally analyze a Bendix wrist mechanism [19] by verifying its kinematics using
Isabelle/HOL. To the best of our knowledge, there exists no formal analysis of
EBGT systems that uses graph-based cycle matrices and screw theory.

The remainder of the paper is organized as follows: Sect. 2 discusses an
overview of the related work regarding the formal kinematic analysis of engi-
neering and physical systems, topology matrices and screw theory. We present
a foundational formalization of EBGTs analysis in Sect. 3. As an application,
in Sect. 4, we develop the formal kinematic analysis of the Bendix wrist mecha-
nism in Isabelle/HOL. Finally, Sect. 5 concludes the paper with pointers to some
future directions.

2 Related Work

Higher-order-logic theorem proving has been used for the formal kinematic anal-
ysis of engineering and physical systems. For instance, Farooq et al. [10] used the
HOL Light theorem prover to formally analyze the kinematics of two-link pla-
nar manipulators. Similarly, Rashid et al. [15] formally analyzed the dynamics
of robotic cell injection systems up to 4-DOF using HOL Light. Chen et al. [7]
also used HOL Light to formalize a camera pose estimation algorithm based
on Rodrigues formula for robotic systems. Moreover, Wang et al. [23] formally
verified the inverse kinematics of a three-fingered dexterous hand by analyzing
the Paden-Kahan-sub-problem based on the screw theory in HOL Light.

On the other hand, Affeldt et al. [1] developed some geometrical founda-
tions in 3-Dimensions (3D), including rotation matrices, screw motion as well
as Denavit-Hartenverg (D-H) convention for forward kinematics of robot manip-
ulators using the Coq theorem prover. Similarly, Wu et al. [25] formalized a
Jacobian matrix to perform the forward kinematic analysis of a 3-DOF planar
robot manipulator in the HOL4 theorem prover. Later, Shi et al. [17] extended
this work by formally verifying the kinematic Jacobian for serial manipulators
using the screw-based methods. In particular, the authors formalized twists to
represent relative motion of a rigid body using exponential mapping. Recently,
Xie et al. [26] used Coq to formalize coordinate transformation for robots, espe-
cially for spiral motion of rigid bodies, using Rodrigues formula and homogeneous
matrices.
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The aforementioned methods, including the screw-based approach, are
focused on formally analyzing serial robotic manipulators, and do not consider
any topological aspects of the systems, which are required for a comprehensive
analysis of EGBTs.

Regarding topological matrices, there exist only a few formalizations in
higher-order-logic theorem provers. For example, Heras et al. [11] formalized inci-
dence matrices for undirected graph-based representations using Coq and used
it to formally analyze 2D digital image processing systems. Recently, Edmonds
et al. [9] formalized incidence matrices in Isabelle/HOL to represent a design in
order to verify the Fisher’s inequality. However, these contributions are able to
only analyze systems represented by undirected graphs. Moreover, they do not
focus on the kinematic analysis of EBGTs mechanisms, which is the scope of the
current paper.

3 Formalization of EBGTs Analysis Foundations

3.1 Formalization of Cycle Matrices

A directed graph is defined by an ordered pair DG = (N,E), where N represents
a set of nodes and E is a set of edges, where each of them is a pair of distinct
nodes. For the case of EBGT mechanisms, in a mechanical digraph (directed
graph) representation, links are represented by nodes and connectors between
the links, called joints/pairs are represented by directed edges. The mechanical
digraph of the mechanisms with cycles can be algebraically represented as a
matrix, called cycle matrix. This matrix captures the relationship between the
cycles and joints of a mechanism represented by a (mechanical) directed graph.
A cycle matrix is mathematically defined as follows [8]:

Definition 1. Cycle Matrix of a Directed Graph
Consider a set of edges {e1, · · · , en} and cycles {L1, · · · , Ll}. C is an l × n

cycle matrix of the directed graph, such that

Ci,j =

⎧
⎨

⎩

1 if ej ∈ Li, and the direction of ej andLi are the same
−1 if ej ∈ Li, and the direction of ej andLi are opposite
0 if ej /∈ Li

Here a cycle of a graph is a closed path, defined as a finite sequence of distinct
edges where the start and the end nodes of the path are the same. It is worth
to note that in this paper, we consider mechanical digraphs EGBTs without
self loops, and having distinct cycles in a cycle-basis2. This concept, known as
fundamental cycles, enables the analysis of the system on any cycle basis, which
is sufficient to understand the kinematics of the entire mechanism. Moreover,
the cycle matrix of the mechanism in this concept holds an important property

2 A cycle basis in a directed graph is defined as the set of independent cycles.
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that the number of gear pairs is the same as the number of cycles in a cycle
basis.

In order to formalize a cycle matrix in Isabelle/HOL, we first formally model a
mechanical digraph utilizing locale modules [6] in Isabelle/HOL. A locale module
provides a series of context elements, needed to structure abstract algebraic
concepts. These elements, namely parameters and assumptions, are declared
using the keywords fixes and assumes, respectively. Locales can be expanded
by adding new parameters, definitions and assumption into existing ones, which
makes them flexible and reusable.

We now introduce a locale mech digraph consisting of a list of nodes (N s)
and a list of edges (Es), as well as the component relationships as well-formed
assumptions3. It is worth mentioning that we chose the parameter types as real
for the purpose of labeling the nodes and thus edges.

locale mech digraph =

fixes nodes list :: nodes (Ns) and edges list :: edges (Es)
assumes mechdg wf: e ∈ set Es=⇒ fst e ∈ set Ns ∧ snd e ∈ set Ns ∧ fst e �= snd e

assumes distincts: distinct Ns distinct Es

where the function set accepts a list of nodes and edges and returns a set.
Similarly, the functions fst and snd accept a pair, and extract its first and
second elements, respectively. The function distinct takes a list and ensures
that elements of the list are disjoint. Furthermore, the assumption mechdg wf
ensures that the digraph has no self-loop. Next, we formalize the system with
cycles by adding cycle parameter and well-formed assumptions on the locale
nempty mechdg by ensuring a valid digraph with a non-empty list of nodes and
edges.

locale cycle system = nempty mechdg +

fixes cycle basis :: edges list (Ls)
assumes wf 1: ls ∈ set Ls=⇒ set ls ⊆ symcl E ∧ length ls ≤ length Es
assumes wf 2: ls ∈ set Ls=⇒ cycle ls ∧ cycle (reverse ls)

and distinct: distinct Ls

where symcl accepts a Cartesian set and guarantees that this set contains ele-
ments with their reversed version. The assumption wf 1 provides a validity of
every cycle by ensuring that every element of the cycle basis Ls is a subset
of the symmetric relation of edges. It also makes sure that the size of the cycle
cannot be larger than the number of edges in a graph. Similarly, wf 2 guarantees
that every element of the cycle list is a cycle and its reverse is also a cycle. The
assumption distinct ensures the non-repetition of cycles in the cycle basis.
Additionally, we formally define a nempty cycle system locale on top of the
cycle system, which ensures that the cycle system has at least one cycle in the
cycle basis.

3 We abbreviate real as node, real list as nodes, real×real as edge, and
(real×real) list as edges for a better readability.
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locale nempty cycle system = cycle system +

assumes cycle basis nempty: Ls �= [ ]

We now describe the relationship between the directions of a cycle and its
corresponding edges. The direction of edges in a cycle is the same as that of
a cycle, called positively oriented cycle, whereas the cycle is said to be nega-
tively oriented with the edge if the edge is in the reversed cycle. For instance, a
positively oriented cycle is formalized as follows:

definition in pos cycle x es ≡ (x,es) ∈ Cp

where Cp is a set of pairs consisting of the edge and the cycle, formalized as:

definition Cp ≡ {(x,es). x ∈ set Es ∧ es ∈ set Ls ∧ x ∈ set es}

Similarly, the formalization of the relation between the edge and the cycle
where the edge is negatively oriented with the cycle is given as:

definition in neg cycle x es ≡ (x,es) ∈ Cn

where Cn is a set of pairs consisting of the edge and the cycle

definition Cn ≡ {(x,es). x ∈ set Es ∧ es ∈ set Ls ∧ x /∈ set es

∧ x ∈ set (reverse es)}

Here, the function reverse takes a pair list and reverses its order by swapping the
elements of each pair in the list. Therefore, we obtain the concept of negatively
oriented cycles using the function reverse. Note that we explicitly indicate the
direction of the cycle while assuming each edge is positively directed. Next, the
cycle matrix is formalized in Isabelle/HOL as follows:

definition cycle matrix :: edges list ⇒ edges ⇒ real mat

where cycle matrix Ls Es ≡ mat (length Ls) (length Es)

(λ(k,j). if (Es!j) ∈ set (Ls!k) then 1 else

if (Es!j) ∈ set (reverse (Ls!k)) then -1 else 0)

3.2 Formalization of Screw Theory Notions

The screw theory provides a unified framework for describing the spatial dis-
placement (screw motion) of a rigid body, encompassing both rotational and
translational components. Similarly, the linear and angular velocities of a rigid
body can be expressed within a single concept using a screw, called twist. A
screw [5] is mathematically defined as a dual vector consisting of two three-
dimensional vectors, where the first vector represents the direction vector of a
line (screw axis) and the second describes the moment vector specifying the
translation along the screw axis. When a screw has zero pitch4, resulting in pure
4 A pitch is a scalar quantity that describes the ratio between the translational and

rotational part of the screw.
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rotation without translation, its six elements become mathematically equivalent
to the Plücker coordinates [12]. In the analysis of EBGTs, a screw is analogous
to Plücker coordinates that can define the spatial geometry of the axis zk of
the locale frames attached to the pair k [20]. The screw u0

c,k is mathematically
expressed as follows:

u0
c,k =

(
u0
k

I0c,k × u0
k

)

(1)

where the subscripts k and c refer to all pairs5 and gear pairs, respectively.
Similarly, the superscript 0 denotes that the components of the vectors in a screw
are measured with respect to the base frame. The first vector in the screw, u0

k,
describes the orientation of the unit vectors of a frame pair k with respect to
the base frame 0. The first vector u0

k can mathematically be derived using a
direction cosines matrix as follows [20]:

u0
k = Θ0,k · u =

⎡

⎣
1 0 0
0 cosϕz0,zk sinϕz0,zk

0 −sinϕz0,zk cosϕz0,zk

⎤

⎦ ·
⎡

⎣
0
0
1

⎤

⎦ (2)

where u is the unit vector along the z-axis. Moreover, Θ0,k is a direction cosines
matrix that describes the instantaneous orientation of the z-axis in the base
frame with respect to the z-axes of all pairs frames, and thus provides their
rotation about the respective axes. In addition, ϕz0,zk presents the angle between
the z-axes of the base and the pair frames and is equally represented by ̂(z0, zk).
By simplifying Eq. (2), we obtain the first vectors of screw for EBGTs as follows:

u0
k =

⎛

⎝
0

sin(ẑ0, zk)
cos(ẑ0, zk)

⎞

⎠ (3)

Similarly, the second vector in Eq. (1), I0c,k × u0
k, called the moment of the

unit vector u0
k, is defined as the cross product of two vectors such that

I0c,k × u0
k = r0c,k =

⎛

⎝
xk − xc

yk − yc
zk − zc

⎞

⎠ × u0
k (4)

Here, I0c,k is a distance vector between the points on the frames k and c. Moreover,
the EBGT mechanism exhibits pure rotation around the x-axis and there is no
translation for the components of the system along the x-axis. This implies that
the vector moment of u0

k is parallel to the x-axis. The generic form of the moment
vector can be obtained by using Eq. (3) in Eq. (4) as follows [19]:

r0c,k =

⎛

⎝
(zc − zk) · sin(ẑ0, zk) + (yk − yc) · cos(ẑ0, zk)

0
0

⎞

⎠ =

⎛

⎝
Pc,k

0
0

⎞

⎠ (5)

5 All pairs of an EBGT mechanism consist of turning and gear pairs.
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We use Pc,k as an abbreviation of the first element of the moment vector. More-
over, it can also be expressed as the function of the pitch diameters of the mech-
anisms, which is further used to represent a coefficient matrix in terms of the
speed ratio of gear pairs as described in Sect. 4 [19]. In general, a pitch diameter
of a gear indicates the diameter of the pitch circle, which is an imaginary circle
that measures the distance between a point on a tooth and its corresponding
point on the adjacent tooth. It is used for the characterization of speed ratio of
a gear train, which refers to the relative speed of rotation between two rotating
components of a gear train. The speed ratio, also known as tooth or gear ratio,
is defined as the pitch diameter of the tail component of a gear pair divided by
the pitch diameter of its head component. It can be defined as ig = dgtail

/dghead

where g = [gtail, ghead].

Now, we formalize a screw vector in Isabelle/HOL as:

definition screw :: real vec ⇒ real vec ⇒ real vec

where screw u r ≡ u @v (r ×j u)

where @v is the operator for appending vectors, and the operator ×j is used for
the cross-product. Note that, r refers to the distance vector in 3D space, which
will be explicitly modeled in Sect. 4. Next, we formalize the rotation system
providing orientation of the unit vectors (Eq. (2)) as follows:

definition mat rot sys :: real mat ⇒ real vec ⇒ real vec ⇒ bool

where mat rot sys Θ u uk ≡ (uk = Θ ∗v u)

where Θ denotes the direction cosines matrix and ∗v is an operator modeling
multiplication between a matrix and a vector. Utilizing this formalization, we
verify the general form of angular velocities of each pair (Eq. (3)) as follows:

lemma fstvec form:

assumes dim: u ∈ unitvecs and unitz: w = vec of list [0, 0, 1]

and rotx sys: rotx (vec first (screw u r) 3) w α

shows u = vec of list [0, sin α, cos α]

Here, assumption dim ensures that u is 3-dimensional unit vector, while unitz
asserts that w is a unit vector of the z-axis. Similarly, rotx sys ensures that the
orientation of u is about the x-axis with an angle α. The function vec first
accepts a vector and the number 3 and becomes a new vector partitioned accord-
ing to its first 3 elements (Eq. (1)). Furthermore, the function vec of list takes
a list and returns it to a vector. Next, we verify the moment vectors for EBGT
systems (Eq. (5)) in Isabelle/HOL as follows:

lemma sndvec form:

assumes dimI: r ∈ points3D and xdist0: r$0 = 0

and dim: u ∈ unitvecs

and unitz: w = vec of list [0, 0, 1]

and rotx sys: rotx (vec first (screw u r) 3) w α

shows vec last (screw u r) 3 = vec of list [-(r$2)*sin θ+(r$1)*cos θ, 0, 0]
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Here, points3D is a set of 3 dimensional vectors and xdist0 ensures that there
is no translation on the x-axis. vec last is a function that takes a vector v and
a number n, and returns a partitioned vector based on the last n elements of
the vector v. The verification of the above lemma is based on the fstvec form
lemma, alongside some reasoning on vectors, lists and sets. Next, we verify the
orthogonality relationship between these vectors as follows:

lemma rel fs orth:

assumes dim: u ∈ unitvecs and dimI: r ∈ points3D

shows vec first (screw u r) 3) • vec last (screw u r) 3) = 0

The verification of the above lemma is based on the already verified lemmas,
such as fstvec form and sndvec form, along with some simplifications on dot
product and dimension of the screw vector. Next, the relative angular and linear
velocity are defined in a compact form (block/dual vector), called twist s0c,k as
follows:

s0c,k = u0
c,k · q̇k =

(
q̇0
k

I0c,k × q̇0
k

)

(6)

where q̇k is a scalar velocity variable of a pair (e.g., turning or gear pair) in
the mechanism, called twist intensity. The twist intensities assigned to each pair
describe the scalar magnitude of the motion between one component of the pair
and the other. Similarly, the 3-dimensional vector q̇0

k represents the pairs’ relative
velocities that are also equal the difference between angular velocity of the pair’s
component (links). Now, we formalize a twist (Eq. (6)) in Isabelle/HOL as:

definition twist:: real ⇒ real vec ⇒ real vec ⇒ real vec

where twist q u r ≡ q ·v (screw u r)

where ·v is an operator providing multiplication of a scalar and a vector. Similar
to the screw, the orthogonality relation between the first and second vector in
the twist shall be satisfied, which we verify in Isabelle/HOL as follows:

lemma twist fs orth:

assumes dim: u ∈ unitvecs and dimI: r ∈ points3D

shows vec first (twist q u r) 3) • vec last (twist q u r) 3) = 0

This lemma is verified using the relationship between screw and twist as well as
simplifications on cross and dot product.

3.3 Orthogonality Condition for Kinematic Equations

In order to develop the kinematic equations of an EBGT system, we define the
following two orthogonality conditions for angular and linear velocities of pairs,
respectively.

[C ◦ û0
k] · q̇0

k = 0c (7)
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[C ◦ r̂0c,k] · q̇0
k = 0c (8)

Here, we use the symbol ̂ to represent a matrix whose elements are vectors.
Similarly, ◦ represents the Hadamard product, which is used for element-wise
multiplication between matrices of the same sizes. û0

k is a matrix whose elements
are unit vectors assigned to each pair of the system, and the matrix has the
same dimension as a fundamental cycle matrix C. Moreover, r̂0c,k denotes a c×k
matrix whose entries are moment vectors, and 0c is a c-dimensional vector with
zero vector entries. Note that we drop the superscript 0 from the elements of
aforementioned matrices for better readability. Since Eqs. (7) and (8) describe
the relative velocities and moments of unit vectors, the following conditions are
satisfied for every cycle in the cycle basis:

– The sum of twist intensities q̇k = 0,
– The sum of twists’ moments with respect to gear pairs is 0.

Utilizing the above equations, the kinematic equations for the relative veloci-
ties of joints can be developed for a given system. For instance, the first condition
above provides to obtain twists of gear pairs in terms of twist of turning pairs.
Similarly, the solutions of the kinematic equations can be derived in a closed-
form by solving the equations for the total number of DOF in terms of speed
ratios as given in Sect. 4.

The formalization of the orthogonality conditions requires the notion of the
Hadamard product, which is formalized in Isabelle/HOL as follows:

definition hadamard prod :: ′a :: semiring 0 mat ⇒ ′a vmat ⇒ ′a vmat

where hadamard prod A B = (let ra = dim row A; ca = dim col A in

if ra = dim row B ∧ ca = dim col B

then (mat (ra) (ca) (λ(i, j). A $$ (i,j) ·v B $$ (i,j)))

else undefined)

where dim row and dim col are functions that accept a matrix and return the
number of rows and columns in the matrix, respectively. Moreover, ′a vmat and
′a vvec are the abbreviations for the type synonyms of ′a vec mat and ′a vec
vec, respectively. Next, we formalize a new operator over reals that provides the
multiplication between a matrix (where its components are vectors) and a vector
with scalar entries and returns a vector with elements are vectors.

definition mult vmat vec :: real vmat ⇒ nat ⇒ real vec ⇒ real vvec

where mult vmat vec A n v ≡ vec (dim row A) (λi. (vec n (λk.

Σ j < dim col A. (v $ j) * A $$ (i,j) $ k)))

Here, n denotes the size of the vectors in the matrix A. Next, we formalize an
m-dimensional vector whose elements are n-dimensional zero vectors, denoted
by 0vv, as:

definition zero vvec :: nat ⇒ nat ⇒ ′a zero vvec ("0vv")

where 0vv m n ≡ vec m (λi. 0v n)
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where 0v n describes a n-dimensional zero vector. Using preceding definitions,
we now formalize the generic form of the orthogonality condition, which is used
to develop Eqs. (7) and (8) for the Bendix wrist mechanism (Sect. 4), as follows:

definition orth cond imp

where orth cond imp A n v ≡ mult vmat vec A n v = 0vv (dim row A) n

4 Formal Analysis of the Bendix Wrist Mechanism

In this section, we formally analyze a Bendix wrist mechanism (BWM) [19] based
on the formalization that we developed in Sect. 3. A BWM is a 3-DOF rotational
mechanism which consists of 6 moving links and 6 turning pairs (revolute pairs)
and 3 gear pairs as depicted in Fig. 1.

Fig. 1. Bendix Wrist Mechanism [20]

The numbering of the links starts with “0”, which is assigned to the base (or
forearm). The mobile links are labeled as {1, 2, 3, 4, 5, 6}, which are the geared
wheels and carriers. The number of all pairs in the mechanism is equal to the
number of turning pairs labeled {E0, E1, E2, E3, E4, E5} and the number of
gear pairs6 labeled {E6, E7, E8}. Each pair in the mechanism is attached with
the unit vectors to describe the direction of motion. For the above BWM, the
unit vectors of turning pairs are considered as

u0 = u1 = u2 = u5 =

⎛

⎝
0
0
1

⎞

⎠ and u3 = u4 =

⎛

⎝
0
1
0

⎞

⎠ (9)

In Fig. 2, we present a directed graph of the system with nodes are labeled
as mobile links, and edges labeled as pairs. The cycle basis of the system is

6 The number of gear pairs is also the number of DOF.



Formal Kinematic Analysis of Epicyclic Bevel Gear Trains 173

{C1,C2,C3}. Each edge is represented by a pair of nodes, e.g., E6 = (5, 6) and
E8 = (4, 6). Three independent cycles in the system are given as:

C1 = [E6,−E3,−E0, E1]
C2 = [E7, E4,−E3,−E0, E2]
C3 = [E8,−E5,−E4]

Here, the negative sign represents the opposite direction between a cycle and an
edge in the cycle, e.g., −E5 is in cycle C3 but their orientations do not coincide.
Furthermore, the number of independent cycles is established to be equal to the
number of gear pairs in the mechanism.

Fig. 2. Directed Graph of BWM and its Corresponding Cycle Matrix

We begin by formally parameterizing the graph components, i.e., nodes,
edges, and cycles, which will make the rest of the formalizations easier.

definition cyc sys bwm where
cyc sys bwm ≡ Ns = [0,1,2,3,4,5,6] ∧

Es = [(0,1),(0,2),(0,3),(1,5),(4,5),(5,6),(2,5),(3,4),(4,6)] ∧
Ls = [[(2,5),(5,1),(1,0),(0,2)],[(3,4),(4,5),(5,1),(1,0),(0,3)],

[(4,6),(6,5),(5,4)]]

Here, nodes and edges are denoted as N s and Es, and the cycle basis is rep-
resented by Ls. Note that all formalizations related to cycles are done under
the locale nempty cycle system (presented in Sect. 3.1) in order to facilitate
the usage of already developed system properties, such as the dimensional and
index. We then verify the cycle matrix of BWM (given in Fig. 2b) as follows:

lemma cycle matrix bwm:

assumes cyc sys bwm

shows cycle matrix Ls Es = mat of rows list 9 [[-1,1,0,-1,0,0,1,0,0],

[-1,0,1,-1,1,0,0,1,0],

[0,0,0,0,-1,-1,0,0,1]]
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where mat of rows list accepts a number indicating the column size of the
matrix and a list, which its elements are lists that express each row of the matrix.
The verification of the above lemma involves the cycle matrix definition and
its properties such as row/column and index properties, negative and positive
cycle relationship and reasoning on sets and lists. Next, the first orthogonality
condition (Eq. (7)) for BWM is mathematically expressed as:

⎡

⎣
−u0 u1 0 −u3 0 0 u6 0 0
u0 0 u2 −u3 u4 0 0 u7 0
0 0 0 0 −u4 −u5 0 0 u8

⎤

⎦

︸ ︷︷ ︸

C ◦ û0
k

· q̇ =

⎛

⎝
0
0
0

⎞

⎠ (10)

where q̇ = (q̇0, q̇1, q̇2, q̇3, q̇4, q̇5, q̇6, q̇7, q̇8)T 7. Moreover, the characters written in
bold represent vectors. To model Eq. (10) for the case of the BWM, we first
formalize the û0

k matrix in Isabelle/HOL as:

definition unitvecs mat :: real vec list ⇒ real vmat

where unitvecs mat U ≡
(let units = [U!0, U!1, U!2, U!3, U!4, U!5, U!6, U!7, U!8]

in mat of rows list 9 [units, units, units]

Now, we formalize the first orthogonality condition (Eq. (7)) as:

definition fst orth cond :: real vec list ⇒ real vec ⇒ bool

where fst orth cond U q ≡
orth cond imp (hadamard prod C (unitvecs mat U)) 3 q

where C indicates the cycle matrix. The following lemma verifies the Hadamard
product of C and unitvecs mat utilizing the definitions of the Hadamard prod-
uct, the matrices as well as their dimensions and index properties.

lemma had mat fst bwm:

assumes cyc sys bwm and units bwm U u6 u7 u8

shows hadamard prod C (unitvecs mat U) = had mat fst U

Here, the predicate units bwm represents Eq. (9) along with the unknown vectors
assigned to gear pairs, i.e., u6, u7, and u8, which are 3-dimensional unit vectors.
Furthermore, we define had mat fst that takes unit vectors U, and returns the
explicit form of the matrix C ◦ û0

k, depicted in Eq. (10). The first orthogonality
condition is used to derive the following set of equations in matrix form, which
describes the relationship between the gear pairs and the turning pairs twists.

⎛

⎝
q̇6

q̇7

q̇8

⎞

⎠ = −
⎡

⎣
−1 · u0 1 · u1 0 −1 · u3 0 0
−1 · u0 0 1 · u2 −1 · u3 1 · u4 0

0 0 0 0 −1 · u4 −1 · u5

⎤

⎦ ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

q̇0
q̇1
q̇2
q̇3
q̇4
q̇5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(11)

7 The superscript “0” is removed from the vectors for better readability.
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Here, q̇6, q̇7, q̇8 are the first vectors in the twists (relative angular velocity
vectors) related to the gear pairs such that q̇6 = q̇6 · u6, q̇7 = q̇7 · u7 and
q̇8 = q̇8 · u8. This relationship is verified in the following lemma.

lemma rel gear turning pairs:

assumes sys: cyc sys bwm and units: units bwm U u6 u7 u8

assumes twd: dim vec q = 9

shows fst orth cond U q =⇒ fst results eqs U q

where fst results eqs is formally modeling the set of equations for the rela-
tionship between the gear twists and the turning pair twists, described in a com-
pact form in Eq. (11). The verification of the lemma utilizes the verified lemmas
had mat fst bwm and fst orth eqs8 alongside the definition of mult vmat vec
with reasoning on dimension and index.

Next, the second orthogonality condition (Eq. (8)) for BWM mechanisms can
be mathematically expressed as

⎡

⎣
−r0,0 r0,1 0 −r0,3 0 0 r0,6 0 0
−r1,0 0 r1,2 −r1,3 r1,4 0 0 r1,7 0

0 0 0 0 −r2,4 −r2,5 0 0 r2,8

⎤

⎦

︸ ︷︷ ︸

C ◦ r̂0c,k

·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q̇0
q̇1
q̇2
q̇3
q̇4
q̇5
q̇6
q̇7
q̇8

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎝
0
0
0

⎞

⎠ (12)

where rc,k9 are entries of the matrix r̂0c,k. To formally verify the second orthogo-
nality condition, we need to formalize a few notions, such as the moment matrix
and the distance vector. For instance, the moment matrix, r̂0c,k, is formalized as:

definition moment mat

where moment mat U G T ≡
mat (length G) (length U) (λ(i,j). snd vecs U G T i j)

Here, the function moment mat accepts three real vector lists and returns them
in the form of a matrix. Each element of the matrix is obtained through the
function snd vecs that maps each index of the moment (second) vector of the
screw in the matrix. Similarly, the distance vector (Eq. (4)) is formalized as:

fun dist vec where dist vec T G i j = (T@G)!j - (G!i)

where dist vec is a function that accepts two vector lists as 3-dimensional points
in R and returns them into a difference vector. Next, we verify the relationship
between the screw and the moment vector of the screw as follows:
8 This lemma and more details about the proof can be found in our Isabelle/HOL

script [2].
9 For better readability, we remove the superscript “0” from the elements of r̂0c,k.
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lemma tw sndvecs bwm:

assume units bwm U u6 u7 u8

shows ∧i j. i < length G =⇒ j < length U =⇒
vec last (screw (U!j) (dist vec T G i j)) 3 = snd vecs U T G i j

where i and j denote the indices of the lists G and U, respectively. Based on
Eq. (4), the distance vector Ic,k = 0 when the pair is the gear pair. For the
BWM, this equality holds for the gear pairs in the system such that r0,6 =
r1,7 = r2,8 = 0. In the sequel, we verify these equations, which are further used
to generate kinematic equations.

lemma tw resultants bwm:

assume points param T G and units bwm U u6 u7 u8

shows "snd vecs U G T 0 6 = 0v 3" "snd vecs U G T 1 7 = 0v 3"

"snd vecs U G T 2 8 = 0v 3"

Here, points param ensures that the elements of the turning pair list T and the
gear pair list G are 3-dimensional points represented as vectors, and the size of
these lists are 6 and 3, respectively. The verification of above lemma is based
on the lemma tw sndvecs bwm, definitions snd vecs, dist vec, and screw, as
well as reasoning on cross product, lists and sets. Next, we formalize the second
orthogonality condition (Eq. (8)) as follows:

definition snd orth cond

where snd orth cond U G T q ≡
orth cond imp (hadamard prod C (moment mat U G T)) 3 q

Since the moment matrix entries rc,k are functions of Pc,k (see Eq. (5)), we
can derive a set of equations using the second orthogonality condition as the
following matrix form [19]:

⎡

⎣
−1 · P0,0 1 · P0,1 0 −1 · P0,3 0 0
−1 · P1,0 0 1 · P1,2 −1 · P1,3 1 · P1,4 0

0 0 0 0 −1 · P2,4 −1 · P2,5

⎤

⎦ ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

q̇0
q̇1
q̇2
q̇3
q̇4
q̇5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎝
0
0
0

⎞

⎠ (13)

Next, we verify the relation between Eqs. (12) and (13) as follows:

lemma snd eqs ver:

assumes cyc sys bwm and units bwm U u6 u7 u8 and points param T G

assumes dim vec q = 9

shows snd orth cond U G T q =⇒ snd part kin eqs U G T q

Here, snd part kin eqs represents the equations obtained from Eq. (13). The
proof of the above lemma is similar to the verification of the lemma rel gear
turning pairs. Next, we represent the set of equations (Eq. (13)) in terms of
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speed ratios by using the values of scalar Pc,k’s, which is the first entry of the
moment vector of the screw, along each cycle. These values can be given as
follows [19]:

Cycle C1 −→ P0,0 = −0.5 · d2, P0,1 = −0.5 · d2, P0,3 = −0.5 · d5

Cycle C2 −→ P1,0 = P1,2 = −0.5 · d3, P1,3 = P1,4 = −0.5 · d4

Cycle C3 −→ P2,4 = 0.5 · d4, P2,5 = −0.5 · d6

(14)

where d2, d3, d4, d5 and d6 represent the pitch diameters, which are labeled the
same way as the moving links. Moreover, the speed ratios with respect to each
gear (labeled E6, E7 and E8) can be defined using the pitch diameters as:

Gear 0 −→ E6 = (2, 5) −→ i0 = d2/d5

Gear 1 −→ E7 = (3, 4) −→ i1 = d3/d4

Gear 2 −→ E8 = (4, 6) −→ i2 = d4/d6

Establishing the speed ratios in Eq. (13) using the Eq. (14) as well as some
algebraic manipulations, Eq. (13) can be rewritten as:

⎡

⎣
−i0 i0 0 −1 0 0
−i1 0 i1 −1 1 0
0 0 0 0 i2 −1

⎤

⎦ ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

q̇0
q̇1
q̇2
q̇3
q̇4
q̇5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎝
0
0
0

⎞

⎠ (15)

Next, we utilize Eq. (15) to find the solution for relative velocities, which is
provided in the following vector form:

⎛

⎝
q̇3
q̇4
q̇5

⎞

⎠ =

⎛

⎝
−i0 · q̇0 + i0 · q̇1

(−i0 + i1) · q̇0 + i0 · q̇1 − i1 · q̇2
(i2 · i1 − i2 · i0) · q̇0 + i2 · (i0 · q̇1 − i1 · q̇2)

⎞

⎠

The last step is to formally verify the correctness of the above solution
of kinematic equations derived from the second orthogonality condition in
Isabelle/HOL as:

theorem sol vel snd kin:

assumes pitch diams d2 d3 d4 d5 d6 T G U q

and d4 �= 0 d5 �= 0 d6 �= 0 and dim vec q = 9

shows rel vel sol U G T q =⇒ snd part kin eqs U G T q

Here, pitch diams refers to the Pc,k coefficients (Eq. (14)). The proof process
of the above theorem is similar to that of verifying the relative velocities of gear
pairs using the first orthogonality condition.

To the best our knowledge, this is the first formal kinematic analysis of
epicyclic bevel gear trains based on both topological matrices and screw theory
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in higher-order-logic theorem proving. One of the primary distinctions of our
proposed approach for formally analyzing EBGTs is its generic nature. All lem-
mas are verified for universally quantified variables and functions, allowing for
the formal analysis of any EBGT system without the need for individual system
modeling, as compared to computer-based simulation methods. For example,
the Hadamard product is modeled for generic variables, and specialized for the
BWM mechanism (cf. Sect. 4) to verify the lemma had mat fst bwm. Similarly,
all lemmas are verified for an arbitrary number of components of the EBGTs,
which enables the analysis of large and complex systems. For example, we have
formalized the cycle graph model for EBGTs systems with any number of links
and pairs. Moreover, our work relied on the mathematical analysis provided in
the literature, some of which were often ambiguous or lacking in rigorous details,
posing significant challenges during the formalization process. However, the use
of the Isabelle/HOL theorem prover ensured that every assumption or fact that
may have been overlooked in a paper-and-pencil proof, is explicitly provided.
The initial focus of our formalization efforts was on providing a generic directed
graph model associated with cycle matrices, and combining it with screw theory.
To broaden the applicability of the formalization to a variety of scenarios in the
modeling and analysis of EBGT systems, we established the locale cycle system
based on lists. Moreover, using locale allows flexibility to expand the formaliza-
tion for potential future analysis and applications. The Isabelle/HOL code for
formalization and verification efforts presented in this paper are available at [2].

5 Conclusion

In this work, we proposed to use higher-order-logic theorem proving for the
formal kinematic analysis of epicyclic bevel gear train (EBGT) mechanisms.
These systems can be analyzed using directed graphs, associated topological
matrices, and screw theory concepts. Therefore, we first formally modeled a
directed graph including cycle aspects using the locale modules of Isabelle/HOL.
We then formalized cycle matrices since these can fully characterize topological
properties of the mechanisms, which ease the development and manipulation
of kinematic equation in a compact form. We also formally modeled the screw
and twist for the relative motion of joints of the mechanisms and used them
alongside the cycle matrix to formalize the orthogonality conditions. Finally, we
illustrated the effectiveness of our proposed formalization by formally analyzing
a Bendix wrist mechanism (BWM), where we formally verified the correctness
of the solution of the kinematic equations. As a future work, we plan to extend
our analysis through the use of singularity analysis, which enables the detection
of changes in the kinematics of the systems [3]. Another future direction would
be to explore dynamical aspects of geared mechanisms in order to perform the
formal dynamic analysis of more complex physical and engineering systems.
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