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Abstract. Potential flow is a theoretical model that describes the move-
ment of a fluid, e.g., water or air in situations where viscosity and tur-
bulence are assumed to be negligible. This type of flow is often used as
an idealized model to describe the behavior of fluids in specific contexts,
such as in fluid dynamics and aerodynamics. In this paper, we present a
higher-order logic formalization of potential flows that are governed by
the Laplace equation. We focus on formally modeling fundamental flows
such as the uniform, source/sink, doublet, and vortex flows in the HOL
Light theorem prover. We then prove the validity of these exact potential
flow solutions of the Laplace equation. Moreover, we present the formal
verification of the linearity of the Laplace operator, which is essential to
apply the superposition principle. To demonstrate the practical effective-
ness of our formalization, we formally verify several applications such as
the Rankine oval, flow past a circular cylinder and flow past a rotating
circular cylinder, each of which involves combining these standard flows
using the superposition principle to model more complex fluid dynamics.

Keyword: Potential Flows, Partial Differential Equations, Laplace
Equation, Higher-Order Logic, Theorem Proving, HOL Light

1 Introduction

Potential flow theory [14] is a key concept in the discipline of fluid dynamics.
It uses harmonic functions to study a wide range of fluid-related phenomena
within the theoretical framework of this field of study. Potential flow describes
the velocity field as the gradient of a scalar function known as the velocity
potential. Moreover, it characterizes the flow as irrotational and incompressible
and provides valuable insights into fluid dynamics. This idealization is in close
approximation to real-world scenarios of practical importance. For instance, in
aerodynamics, this theory has played a pivotal role in developing analytical
models to understand airflow around airfoils, wings, and related aerodynamic
surfaces, which in turn facilitate the prediction of crucial aerodynamic forces
such as lifts [13].

The foundation of addressing aerodynamic problems lies in the equations
that govern the flow. While fluid motion is governed by the Navier-Stokes (NS)
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equations [18], which is a vector equation that includes three different scalar
equations along with the conservation of the mass equation [19], their nonlin-
ear nature renders them challenging to solve [14]. Consequently, the Laplace
equation, which is a prevalent class of partial differential equations [17] emerges
as a preferred alternative, providing an exact representation of incompressible,
inviscid and irrotational flows. Unlike the NS equations, the use of the Laplace
equation is much easier than using fully viscous NS equations. This equation
forms the basis of potential flow theory, where both the stream function and
velocity potential, as algebraic functions satisfying the Laplace equation, can be
combined to construct flow fields. Moreover, the superposition of basic potential
flow solutions is a crucial step in the analysis of aerodynamic configurations.
This method leverages the linearity of the Laplace equation, enabling for the
construction of models that represent intricate scenarios by combining simpler
flow elements [16].

Due to the fundamental importance of the Laplace equation in physics,
applied mathematics, and engineering, numerous well-established analytical and
numerical techniques exist for solving this equation, especially in the field of
aerodynamics. These techniques are also useful in developing advanced com-
putational methods for determining potential flows around the complex three-
dimensional geometries common in modern aircraft design [13]. For instance,
the method of images [9] are applied to model potential flows around airfoils
and wings, where a combination of real and image sources helps satisfy the
no-flow boundary conditions on solid surfaces. On the other hand, numerical
techniques such as the panel methods [3] are computational models that sim-
plify the assumptions concerning the aerodynamic principles and characteristics
of airflow over an aircraft. Despite the prevalence of traditional techniques in
analyzing aerodynamic problems, there exists a notable concern regarding their
accuracy. For instance, paper-and-pencil methods carry a risk of human errors.
It is possible that a mathematical result may be misapplied when using a manual
method, as it is not possible to guarantee that all required assumptions are valid.
In regard to simulation tools, the accuracy of simulation results depends on var-
ious factors, including the precision of numerical techniques, and computational
issues may arise, especially in the context of large models.

In contrast, formal verification employs computer-based techniques for the
mathematical modeling, analysis, and verification of abstract and physical sys-
tems. A prominent technique in formal verification is higher-order logic (HOL)
theorem proving [11], which is an interactive approach that involves human-
machine collaboration for the development of correct proofs. Its expressive capa-
bilities are sufficient for the description of the majority of classical mathematical
theories, including differentiation, integration, higher transcendental functions,
and topological spaces. Given the fundamental role of potential flow theory in
the early stages of aircraft design, where it is used to predict the behavior of
airflow around wings, the safety-critical nature of potential flow applications
becomes evident. Therefore, it is imperative to employ robust verification tools
that can ensure the accuracy and reliability of these theoretical models.
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In this paper, we propose to use higher-order logic theorem proving for the
formalization of standard potential flows that are governed by the Laplace equa-
tion. We also provide the formal verification of these exact potential flow solu-
tions for the Laplace equation, along with their applications in aerodynamics.
While there exist some formalization work of other types of partial differential
equations, such as the wave equation [4], the heat equation [7] and the telegra-
pher’s equations [8], to the best of our knowledge, there is no formalization of
the Laplace equation in the literature. Therefore, the formal analysis of potential
flows governed by the Laplace equation using HOL theorem proving is the first
of its kind, which could be very useful for safety-critical applications.

The rest of the paper is organized as follows: Sect. 2 describes some prelimi-
nary details of the potential flow theory and the HOL Light theorem prover that
are necessary for understanding the rest of the paper. We present the formal-
ization of standard potential flows in Sect. 3. In Sect. 4, we provide the formal
verification of the validity of the exact potential flow solutions for the Laplace
equation. Sect. 5 provides the formal verification of the linearity of the Laplace
operator as well as the verification of more complicated flows that are constructed
by combining the standard potential flows. Finally, Sect. 6 concludes the paper.

2 Preliminaries

In this section, we briefly describe the HOL Light theorem prover as well as some
of the associated functions and symbols that are necessary for understanding the
rest of the paper. We also provide some background knowledge about potential
flow theory.

2.1 HOL Light Theorem Prover

Interactive theorem proving is a collaborative process between a machine and
a human user, where they work together interactively to generate a formal proof.
The use of theorem proving systems is common in the verification of both soft-
ware and hardware as well as in pure mathematics. For instance, a verification
engineer can manually build a logical model of the system and subsequently
verify the desired properties while providing guidance to the theorem proving
tool. Similarly, a mathematician can use theorem provers in the verification of
standard pure mathematical contexts. HOL Light [12], developed by Harrison,
is one of the theorem provers in the HOL family [11], characterized by its small
logical kernel. In HOL Light, the process of proving a theorem begins with the
user entering the theorem’s statement as the goal in a new proof. The proofs in
HOL Light rely on tactics that break down complex goals into more straightfor-
ward subgoals. Furthermore, HOL Light provides a variety of automated proof
procedures and proof assistants to assist users in guiding and completing their
proofs. In addition, users have the flexibility to craft and implement their own
personalized automation methods.

Table 1 provides the mathematical interpretations of some of the HOL Light
symbols and functions used in this paper.
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Table 1. HOL Light Symbols

HOL Light Symbols Standard Symbols Description

&a N → R Type casting from natural numbers to reals

&num {1, 2..} Positive integers data type

λx.t λx. t Function that maps x to t(x)

real R Real data type

@f Hilbert choice operator Returns f if it exists

atreal x Real net At real variable x

--x −x Unary negation of x

a / b
a

b
Division (a and b should have same type)

a pow b ab Real or complex power

2.2 Brief Review of Potential Flow Theory

Potential flow can be defined as steady, incompressible and irrotational flow. A
condition that is necessary and sufficient to identify a flow as irrotational:

−→∇ × −→
V = 0 (1)

This indicates that the velocity field V is a conservative vector field denoted by
the gradient of a scalar velocity potential function (φ):

−→
V =

−→∇φ (2)

If the velocity potential is known, then the velocity at any point can be deter-
mined using

u =
∂φ

∂x
, v =

∂φ

∂y
(3)

The irrotationality condition for two-dimensional flows vorticity is given by:

∂v

∂x
− ∂u

∂y
= ξ (4)

Here, ξ = 0 since the flow is irrotational.
Similarly, in the case of an incompressible flow, it follows from the continuity

equation that:
−→∇ .

−→
V =

∂u

∂x
+

∂u

∂y
= 0 (5)

The two-dimensional continuous flow is described by the stream function (for
incompressible flow) ψ, which determines the velocity at any point as:
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u =
∂ψ

∂y
, v = −∂ψ

∂x
(6)

Substituting Eqs. (3) and (6) into Eqs. (5) and (4), respectively, yields the con-
ditions for continuous irrotational flow:

∂2φ

∂x2
+

∂2φ

∂y2
= 0 =

∂2ψ

∂x2
+

∂2ψ

∂y2
(7)

which is the Laplace equation for the stream function and the velocity potential
in Cartesian coordinates [13]. The Laplace equation can also be written in polar
coordinates as:

∂2ψ

∂r2
+

1
r

∂ψ

∂r
+

1
r2

∂2ψ

∂θ2
= 0 (8)

Both the velocity potential (φ) and the stream function (ψ) are employed to
describe the flow field in fluid dynamics and they satisfy the Laplace equation.
There are notable similarities and differences between the stream function and
the velocity potential. For instance, while the stream function can be employed
to describe both rotational and irrotational flows, the velocity potential is only
defined for irrotational flow. On the other hand, the velocity potential is appli-
cable to three-dimensional flows, whereas the stream function has only been
defined for two-dimensional flows.

There are several techniques available to determine both the velocity poten-
tial (φ) and the stream function (ψ). For instance, commmon numerical and
analytical techniques such as Finite Element Method (FEM) [5] and seperation
of variables [10], respectively are frequently used to solve the Laplace equation
with the appropriate boundary conditions. Another popular technique is to find
some simple functions that satisfy the Laplace equation and to model the flow
around the body of interest, which is possible due to the linearity of the Laplace
equation. The focus of this paper will be this latter method, which is the most
widely used procedure for potential flows. In the next section, we will present
the formalization of these basic flows.

3 Formalizing Standard Potential Flow Solutions

In this section, we present some basic functions which satisfy the Laplace equa-
tion. Any function that satisfies this equation describes a potential flow. It is
noteworthy that in this work, we are interested in employing exact potential
flow solutions to formally validate them for the Laplace equation. Furthermore,
our objective is to use these elementary flows as building blocks to construct a
desired flow field, rather than deriving them.
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3.1 Uniform Flow

The most basic type of flow is a uniform steady flow as shown in Fig. 1. A uniform
flow directed in the positive x-direction has the velocity components u = U and
v = 0 everywhere. This type of flow is irrotational and therefore possesses a
velocity potential φ, which can be shown as follows:

φ = Ux (9)

Fig. 1. Uniform Flow

Additionally, the stream function can be
expressed as:

ψ = Uy (10)

The formal representations of a uniform
flow for the stream function and the velocity
potential are given as follows:

Definition 1. Uniform Flow
�def ∀U y. stream uniform U y = U * y

�def ∀U y. velocity uniform U x = U * x

3.2 Source/Sink Flow

In two-dimensional fluid dynamics, a source is defined as a point where fluid
propagates radially outward, while a sink represents a point of negative source
characterized by inward radial fluid movement as illustrated in Fig. 2(a) and 2(b),
respectively.

(a) Source Flow (b) Sink Flow

Fig. 2. Source/Sink Flow

The exact potential flow solutions centered at point (x0, y0) for the stream
function and the velocity potential are mathematically expressed as [13]:

ψ(x, y) =
m

2π
tan−1

(
y − y0
x − x0

)
(11)

φ(x, y) =
m

4π
ln((x − x0)2 + (y − y0)2) (12)
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Here, m denotes the strength of the source. A positive m (m > 0) denotes a
source flow, whereas a negative m (m < 0) indicates a sink flow.

Now, we formalize the above equations, i.e., Eqs. (11) and (12) in HOL Light
as follows:

Definition 2. Source Flow for the Stream Function
�def ∀m x y x0 y0.

stream source m x y x0 y0 =

m / (&2 * pi) * atn ((y - y0) / (x - x0))

Definition 3. Source Flow for the Velocity Potential
�def ∀m x y x0 y0.

velocity source m x y x0 y0 =

m / (&4 * pi) * log ((x - x0) pow 2 + (y - y0) pow 2)

Here, atn and log indicate the inverse of the tangent function and the natural
logarithm, respectively.

In the next subsections, we will use the polar coordinates r and θ to
describe the doublet and vortex flows. Note that uniform and source/sink flows
can be similarly represented using polar coordinates, utilizing the relationships
x = r cos θ, y = r sin θ. These transformations are particularly useful for prac-
tical examples.

3.3 Doublet Flow

As depicted in Fig. 3, the doublet is a special flow pattern that arises when a
source and a sink of equal strength are constrained to have a constant ratio of
strength to distance (κ), as the distance approaches zero.

Fig. 3. Doublet Flow

The resulting solutions for the stream
function and the velocity potential are as fol-
lows:

ψ(r, θ) = − κ

2πr
sinθ (13)

φ(r, θ) =
κ

2πr
cosθ (14)

The next step is to formalize the above equa-
tions (Eqs. (13) and (14)) in HOL Light:

Definition 4. Doublet Flow for the Stream
Function
�def ∀K theta r.

stream doublet K theta r =

--(K / (&2 * pi * r)) * sin (theta)

Definition 5. Doublet Flow for the Velocity Potential
�def ∀K theta r.

velocity doublet K theta r =

(K / (&2 * pi * r)) * cos (theta)

where stream doublet and velocity doublet accept the strength K, the radius
r and the angle theta and return the corresponding functions.
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3.4 Vortex Flow

A two-dimensional, steady flow that circulates about a point is known as a line
vortex. In this type of flow, the streamlines form concentric circles around a
specific point as shown in Fig. 4. It is important to note that the irrotational
nature of the flow is not contradicted by the potential vortex formulation.

Fig. 4. Vortex Flow

Fluid elements travel in a circular path
around the vortex centre without rotating about
their axes, thus meeting the condition of irro-
tational flow. The exact potential flow solu-
tion centered at the origin is mathematically
expressed as:

ψ(r, θ) =
Γ

2π
ln(r) (15)

φ(r, θ) = − Γ

2π
θ (16)

where Γ represents the circulation, which is
often positive when moving counter-clockwise.

Next, we formalize the vortex flow for the stream function and the velocity
potential, i.e., Eqs. (15) and (16) as:

Definition 6. Vortex Flow for the Stream Function
�def ∀gamma r. stream vortex gamma r = gamma / (&2 * pi) * log (r)

Definition 7. Vortex Flow for the Velocity Potential
�def ∀gamma theta. velocity vortex gamma theta = --gamma / (&2 * pi) *

theta

Table 2 summarizes the potential flows that are presented in this section.

Table 2. Standard Flows Overview

Flow Type Stream Function Velocity Potential

Uniform flow in
the x-direction

ψ(x, y) = Uy ψ(x, y) = Ux

Source/Sink ψ(x, y) =
m

2π
tan−1

(
y − y0

x − x0

)
φ(x, y) =

m

4π
In((x − x0)

2 +

(y − y0)
2)

Doublet ψ(r, θ) = − κ

2πr
sinθ φ(r, θ) =

κ

2πr
cosθ

Vortex ψ(r, θ) =
Γ

2π
In(r) φ(r, θ) = − Γ

2π
θ
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4 Formal Verification of the Laplace Equation’s Solutions

In this section, we present the formal verification of the exact potential flow
solutions of the Laplace equation. The purpose of this verification is to ensure
the correctness of analytical solutions and then establish their foundational role
in describing fluid behavior and facilitating engineering applications.

For this verification, our first step is to formalize the Laplace equation in
both Cartesian and polar coordinates in the HOL Light as follows:

Definition 8. The Laplace Equation in Cartesian Coordinates
�def laplace equation psi(x,y) ⇔ laplace operator psi(x,y) = &0

where laplace equation accepts the real function psi: R × R → R, the space
variables x:R and y:R and returns the corresponding Laplace equation. The
function Laplace operator is formalized as:

Definition 9. Laplace Operator�def ∀psi x y.

laplace operator psi(x,y) =

higher real derivative 2 (λx. psi(x,y)) x +

higher real derivative 2 (λy. psi(x,y)) y

Here, higher real derivative represents the nth-order real derivative of a
function.

The formal representation of the Laplace equation in polar coordinates, i.e.,
Eq. (8) is formalized as follows:

Definition 10. The Laplace Equation in Polar Coordinates
�def ∀psi r theta. laplace in polar psi r theta =

higher real derivative 2 (λr. psi(r,theta)) r +

&1/r * higher real derivative (λr. psi(r,theta)) r +

&1/(r pow 2) * higher real derivative (λtheta. psi(r,theta)) theta = &0

where the HOL Light function laplace in polar mainly accepts the function
psi of type R × R → R, the radial distance r and the angle theta and returns
the corresponding equation. We can also formalize the Laplace equation for the
velocity potential in a similar manner. With the formal definitions outlined pre-
viously, an important step is to verify that these potential flow solutions satisfy
the Laplace equation. In other words, this is the main condition for potential
flows to be valid, which is fundamental for understanding fluid behavior in var-
ious contexts. We start with the verification of the source flow for the stream
function, i.e., Eq. (11) in HOL Light as follows:

Theorem 1. Verification of the Source Flow for the Stream Function
�thm ∀m x0 y0 psi.

[A1] (∀x. x �= x0) ∧ [A2] (∀y. y �= y0) ∧
[A3] (∀x y. psi(x,y) = stream source m x y x0 y0)

⇒ laplace equation psi x y
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Assumptions A1 and A2 ensure that the points in a Cartesian coordinate system
are different from each other. Assumption A3 provides the solution of the Laplace
equation for source flow, i.e., Eq. (11). The proof of the above theorem is mainly
based on the real differentiation of the source flow solution with respect to the
parameters x and y.

Our next step is to formally verify the doublet flow (Eq. (13)) as the following
HOL Light theorem:

Theorem 2. Verification of the Doublet Flow for the Stream Function
�thm ∀K u.

[A1] (λr. &0 < r) ∧
[A2] (∀r theta. psi(r,theta) = stream doublet K theta r))

⇒ laplace in polar psi r theta

Assumption A1 ensures that the radial distance is greater than zero. Assumption
A2 provides the solution of the Laplace equation in polar coordinates (Eq. (8))
for doublet flow (Eq. (13)). The verification of Theorem 2 is mainly based on
the properties of real derivative [1] and some real arithmetic reasoning.

Finally, the vortex flow, i.e., Eq. (15) is verified as the following theorem:

Theorem 3. Verification of the Vortex Flow for the Stream Function
�thm ∀gamma u.

[A1] (λr. &0 < r) ∧
[A2] (∀r theta. psi(r,theta) = stream vortex gamma u r theta))

⇒ laplace in polar psi r theta

Assumption A1 is the same as that of Theorem 2. A2 provides the vortex flow
solution for the stream function, i.e., Eq. 15. The conclusion of Theorem 3 pro-
vides that the vortex flow solution satisfies the Laplace equation. The proof
of Theorem 3 is primarily based on the real differentiation of the vortex flow
solution with respect to the parameters r and theta. In this section, we only
presented the theorems for the stream function for the sake of brevity. The veri-
fication of the velocity potential function is done in a similar way. Details about
verification of the rest of the theorems can be found in our proof script [6]

In the next section, we use these formally verified solutions to build more com-
plicated flows which are widely applied in the analysis of flow patterns around
an airfoil [15].

5 Applications of Standard Flows

The Laplace equation is a second-order, linear, eliptic partial differential equa-
tion. Thanks to the linearity of the Laplace equation, more complicated flow
fields can be constructed from the superposition of basic solutions. If ψ1 and
ψ2 are the solutions (stream functions) of the Laplace’s equation and then their
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linear combination ψ1 + ψ2 will also be a solution for a two-dimensional incom-
pressible and irrotational flow. This unique feature makes this equation a power-
ful tool to analyze fluid flow problems. The ability to obtain new flow patterns by
superimposing known flows is fundamental to wing theory, as it provides simple
solutions to complex problems [2].

Our first step is to formally verify the linearity of the Laplace operator due
to its importance for the superposition principle.

Theorem 4. Linearity of Laplace Operator
�thm ∀psi phi a b.

[A1] (∀x. (λx. psi(x,y)) real differentiable atreal x) ∧
[A2] (∀x. (λx. phi(x,y)) real differentiable atreal x) ∧
[A3] (∀y. (λy. psi(x,y)) real differentiable atreal y) ∧
[A4] (∀y. (λy. phi(x,y)) real differentiable atreal y) ∧
[A5] (∀x. (λx. real derivative (λx. psi(x,y)) x)

real differentiable atreal x) ∧
[A6] (∀x. (λx. real derivative (λx. phi(x,y)) x)

real differentiable atreal x)

[A7] (∀y. (λy. real derivative (λx. psi(x,y)) y)

real differentiable atreal y)

[A8] (∀y. (λy. real derivative (λy. phi(x,y)) y)

real differentiable atreal y)

⇒ laplace operator (λ(x,y). a * psi(x,y) + b * phi(x,y)) (x,y) =

a * laplace operator (λ(x,y). psi(x,y)) (x,y) +

b * laplace operator (λ(x,y). phi(x,y)) (x,y)

Assumptions A1 and A2 ensure that the real-valued functions psi and phi are
differentiable at x, respectively. Assumptions A3 and A4 assert the differentiabil-
ity of the functions psi and phi at y, respectively. Additionally, Assumptions A5
and A6 provide the differentiability conditions for the derivatives of the functions
psi and phi at x, respectively. Similarly, Assumptions A7 and A8 guarantee the
differentiability conditions for the derivatives of the functions psi and phi at x,
respectively. The proof of the above theorem mainly relies on the properties of
derivatives and the differentiability of real-valued functions.

5.1 The Rankine Oval

By combining the exact solutions for uniform and source/sink flows, we can
construct a flow field around an oval-shaped object. The resultant configuration
is known as the Rankine oval. We start by analyzing the flow pattern around a
source and a sink. The source and sink are placed along the x-axis, separated
by a distance of 2a, as depicted in Fig. 5(a). The origin is situated equidistantly
between them. We now superimpose the uniform, source and sink flows, all
positioned in the x-direction, with a line source located at (−a, 0) and a line
sink of equal and opposite strength located at (+a, 0), as depicted in Fig. 5(b).
Assume the strengths of these source and the sink are +m and −m, respectively.
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source sink

+a-a

(a)

-a +a. .
source sink

(b)

Fig. 5. Source/Sink Flow

The overall stream function (ψ) and velocity potential (φ) for this combina-
tion of flows are expressed as:

ψ = ψuniform + ψsource + ψsink (17)

φ = φuniform + φsource + φsink (18)

Mathematically, they are represented by the combination of Eqs. (9), (10), (11)
and (12) for the stream function and the velocity potential as:

ψ(x, y) = −Uy +
m

2π

[
arctan

(
y

x + a

)
− arctan

(
y

x − a

)]
(19)

φ(x, y) = Ux +
m

4π
ln

(
(x + a)2 + y2

(x − a)2 + y2

)
(20)

Next, we formally verify these combined flows for the stream function as the
following HOL Light theorem:

Theorem 5. Verification of the Rankine Oval for the Stream Function
�thm ∀U m a psi x0 x1 y0 y1.

[A1] (∀x. x �= a) ∧ [A2] (∀x. x �= --a) ∧ [A3] x0 = --a ∧
[A4] x1 = a ∧ [A5] y0 = &0 ∧ [A6] y1 = &0 ∧
[A7] (∀x y. psi(x,y) = sum (0..2) (λn. EL n [--stream uniform U y;

stream source m x y x0 y0; stream sink m x y x1 y1]))

⇒ laplace equation psi x y

Assumptions A1 and A2 guarantee that the validity of our expression by spec-
ifying that x must be different from a and --a, respectively. Asssumptions A3
and A4 provide the distance from the origin. Assumptions A5 and A6 assert that
the points y0 and y1 are equal to zero since the flows are oriented in towards
the x-direction. Assumption A7 provides the combined solutions for the stream
function, i.e., Eq. (19). Here, the function EL n l extracts the nth element from
a list l. The verification of Theorem 5 is mainly based on the properties of real
derivatives, some real arithmetic reasoning and the following HOL Light lemma:
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Lemma 1. Superposition of the Solutions
�lem ∀U m x y x0 x1 y0 y1.

sum (0..2) (λn. EL n [--stream uniform U y; stream source m x y x0 y0;

stream sink m x y x1 y1]) = --stream uniform U y + stream source m x y x0 y0

+ stream sink m x y x1 y1

The above lemma states that the summation of the list equals to the linear
combination of uniform, source and sink flows.

5.2 Potential Flow Past a Circular Cylinder

As shown in Fig. 6, we can build a potential flow solution for the flow around a
circular cylinder using the superposition of a uniform (Fig. 6(a)) and a doublet
flow (Fig. 6(b)) in the x-direction. This combination produces a non-lifting flow
over the cylinder, as represented in Fig. 6(c). The resulting stream function and
velocity potential for this particular combination of potential flows can be given
as:

ψ = ψuniform + ψdoublet (21)

φ = φuniform + ψdoublet (22)

+

(a) Uniform Flow

=k

(b) Doublet Flow

R r θ

(c) Non-Lifting Flow over
a Cylinder

Fig. 6. Potential Flow Past a Circular Cylinder [14]

We can mathematically express this combination by adding the solutions for
uniform and doublet flows, i.e., Eqs. (9), (10), (13) and (14). It is known that
y = rsinθ in polar coordinates.

ψ(r, θ) = U
(
r +

κ

2πr

)
sinθ (23)

φ(r, θ) = U
(
r − κ

2πr

)
cosθ (24)

Next, we formally verify Eq. (23) in HOL Light as follows:
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Theorem 6. Verification of Potential Flow Past a Circular Cylinder
�thm ∀U K y psi.

[A1] (∀r. &0 < r) ∧ [A2] (∀r theta. y = r * sin(theta)) ∧
[A3] (∀r theta. psi(r,theta) = sum (0..1) (∀n. EL n [stream uniform U y;

stream doublet K theta r]))

⇒ laplace in polar psi r theta

Assumption A1 ensures that the radial distance is greater than zero, while
Assumption A2 indicates that y = r * sin(theta) in polar coordinates.
Assumption A3 provides the superposition of the uniform and doublet flow solu-
tions for the stream function, as shown in Eq. (23). Similar to Theorem 5, we
proved a lemma regarding superposition of the solution as well as proving the
real derivatives of the solution in order to formally verify this theorem.

5.3 Potential Flow Past a Rotating Circular Cylinder

Figure 7(c) illustrates a flow around a rotating circular cylinder. This flow can
be constructed by combining a uniform flow and a doublet flow, as depicted in
Fig. 7(a), along with a vortex flow, as shown in Fig. 7(b). In this context, the
stream function and the velocity potential for this combination of potential flows
can, respectively, be given as:

ψ = ψuniform + ψdoublet + ψvortex (25)

φ = φuniform + φdoublet + φvortex (26)

(a) Non-Lifting Flow over a
Cylinder

(b) Vortex Flow (c) Lifting Flow over a
Cylinder

Fig. 7. Potential Flow Past a Rotating Circular Cylinder [14]

It is important to note that combining a uniform flow and a doublet flow effec-
tively models the flow around a non-rotating circular cylinder, as given by Eqs.
(23) and (24). Therefore, we can write the final mathematical expression of these
flows for the stream function and the velocity potential by adding the solutions,
i.e., Eqs. (15), (16), (23) and (24) as:



Formalizing Potential Flows Using the HOL Light Theorem Prover 311

ψ(r, θ) = U
(
r +

κ

2πr

)
sinθ +

Γ

2π
In(r) (27)

φ(r, θ) = U
(
r − κ

2πr

)
cosθ + − Γ

2π
θ (28)

The above equations can be alternatively written as:

ψ(r, θ) = Ursinθ

(
1 − R2

r2

)
+

Γ

2π
Inr (29)

φ(r, θ) = Urcosθ

(
1 − R2

r2

)
+

Γ

2π
θ (30)

where R2 =
m

2πU
and m is the strength of the doublet.

Finally, we formally verify Eq. (27) as the following HOL Light theorem:

Theorem 7. Verification of Potential Flow Past a Rotating Circular Cylinder
�thm ∀U K y gamma psi.

[A1] (∀r. &0 < r) ∧ [A2] (∀r theta. y = r * sin(theta)) ∧
[A3] (∀r theta. psi(r,theta) = sum (0..2) (∀n. EL n [stream uniform U y;

stream doublet K theta r; stream vortex gamma theta r]))

⇒ laplace in polar psi r theta

Assumptions A1-A2 are the same as those of Theorem 6. Assumption A3 pro-
vides the combination of the uniform, doublet and vortex flow solutions for the
stream function, i.e., Eq. (27). The verification of Theorem 7 is similar to that
of Theorem 6. We also conducted a formal verification of the combination of
these standard flows for the velocity potential. Further details on this latter
formalization can be found in our proof script [6].

5.4 Discussion

A notable aspect of the work presented in this paper is the development of the
first formalization of potential flows which has wide applications in aerodynam-
ics, particularly in airfoil theory. A key aspect of our work is the incorporation
of theorem proving into a domain typically prevalent in numerical techniques.
This approach allows for the identification of logical errors and inconsistencies in
models that may not be evident in simulation results, ultimately helping to pre-
vent potential flaws during the design process. One of the main challenges of this
work is its interdisciplinary nature, as it requires a deep understanding of aero-
dynamic principles, the integration of mathematics, and the meticulous process
of interactive theorem proving. Another significant challenge is verifying exact
analytical solutions governed by the Laplace equation. The proof process must
establish the real derivatives of these solutions and their linear combinations.
While traditional paper-and-pencil proofs can overlook trivial details, theorem
proving demands a substantial amount of time due to the undecidable nature of
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higher-order logic and requires every detail to be meticulously provided to the
computer. One of the benefits of this work is that it addresses these challenges by
formalizing the core concepts of potential flow theory, allowing available results
to be built upon to minimize user interaction. Additionally, all of the verified
theorems and lemmas are general, opening the door to future expansions. Given
the limited number of engineers and physicists with expertise in formal meth-
ods, we believe that our work can be a significant step towards bridging the gap
between theorem proving and the aerospace engineering communities, thereby
enhancing its applicability in industrial settings.

6 Conclusion

In this paper, we conducted the formal specification and verification of standard
potential flows solutions which satisfy the Laplace equation using higher-order
logic theorem proving. We first formalized four fundamental potential flows,
namely, the uniform, source/sink, doublet and vortex flows. Moreover, we for-
mally modeled the Laplace equation in both Cartesian and polar coordinates.
Furthermore, we formally verified the linearity of the Laplace operator since it
is a very powerful tool to create more complicated flow fields. We then con-
structed the formal proof for the exact potential flow solutions of the Laplace
equation. Finally, in order to demonstrate the applicability of our formalization
work, we formally analyzed several practical applications, including the Rankine
oval, potential flow past a circular cylinder and potential flow past a rotating cir-
cular cylinder. For the future work, we plan to extend our formalization for other
complex-valued potential flows in order to analyze more complicated problems
in aerodynamics.
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