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Abstract—This paper presents a novel approach for improving
automated analog yield optimization using a two step exploration
strategy. First, a global optimization phase relies on a modified
Lipschitizian optimization to sample the potential optimal sub-
regions of the feasible design space. The search locates a design
point near the optimal solution that is used as a starting
point by a local optimization phase. The local search constructs
linear interpolating surrogate models of the yield to explore the
basin of convergence and to rapidly reach the global optimum.
Experimental results show that our approach locates higher
quality design points in terms of yield rate within less run time
and without affecting the accuracy.

I. INTRODUCTION

Novel and robust techniques for automated analog yield
optimization are urgently needed to shorten time-to-market
and avoid costly re-design iterations. However, identifying an
optimized nominal design solution faces immense challenges.
The difficulty mainly lies in locating the global optimum of a
multivariate and nonlinear optimization problem. On the other
hand, the increasingly large process variation has an adverse
impact on the performances and renders the transistor-level
yield estimation computationally expensive [5].

Existing techniques face problems in terms of sub-optimal
solution, low flexibility and computational cost [6]. Indeed,
deterministic optimizations highly depend on a near optimal
initial design point and often reach local minimum [6]. In
addition, stochastic optimizations suffer from a slow rate of
convergence [5] and a limited coverage of the search space.
Also, they necessitate multiple runs and are very sensitive
to various search parameters. Corner-based and worst-case
design methods can be efficient due to the limited number of
simulations they require. However, while corner models can be
either inaccurate or too pessimistic [6], the inherent error in the
gradients computation required for worst case methods limits
their usefulness [8]. This paper addresses the above issues
by providing designers with an optimization strategy able to
improve sizing robustness with minimum computational cost.

DIRECT (Dlviding RECTangles) [3] is a modified Lips-
chitzian optimization [2] approach that eliminates the need to
specify a Lipschitz constant. Its search strategy implies a high
guarantee on the convergence to the global optimum. In fact,
the method was created to solve difficult global optimization
problems with bound constraints. Thus, it has received a great
attention from the optimization community to solve modern
large-scale, multidisciplinary engineering problems [7]. The
method requires no knowledge about the starting point or the

objective function gradient. Instead, it samples points in the
search domain, and relies on the iteration history to decide
about the next potential sample location.

In this paper, we propose an approach to enhance analog
yield optimization for variation-aware circuits sizing, which
incorporates Lipshitizian optimization and local Radial Basis
Function (RBF) model-based search methods. Compared with
existing techniques: (1) it is able to minimize the risk of
missing potentially optimal design points; (2) it does not
require multiple runs and only a few parameters need to be
set; and (3) it minimizes the number of yield evaluations.

The rest of the paper is organized as follows: Section II
details our yield optimization methodology. In Section III, we
provide experimental results for a folded cascode amplifier.
Finally, Section IV concludes the paper.

II. PROPOSED METHODOLOGY

An overview of our proposed framework for variation-
aware circuits sizing is shown in Figure 1. We assume a
continuous set of interval-valued sizing solutions that char-
acterizes the feasible design space Djy. Any design point
x € Dy is guaranteed to satisfy the specification in nominal
condition [4]. The focus of this paper is to find a design point
z* € Dy that maximizes the yield. First, a global search
step uses a parallelized Lipshitizian algorithm that trades off
between the computational cost and the solution optimality.
This step partitions and samples the centers of potentially
optimal subregions of Dy and locates the area near the global
optimum. Second, a local search mechanism is used to rapidly
reach the optimal design point starting from the best solution
computed by the global search. Besides, it employs previously
evaluated points to locally model the objective function and
drives the optimization. At each optimization iteration, Monte
Carlo simulation in HSPICE is employed to estimate the yield
rate.
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Figure 1. Framework for variation-aware circuits sizing



A. Parallel Global Optimization

The aim of the global search is to locate a design point z*
near to the optimal solution z* of the problem:

*

x* = maxg(x)= xrgli%lo f(x) (1)

x€Dg

where g : Dy — R is a positive real-valued yield function
and f = —g is smooth and continuous in Dj.

Alg. 1 Parallel global optimization
Require: Dg: Design search space, f: Objective function
1: D§75+« Divide(Dy)
2: for all ind =1 — S do in parallel
3: D« normalize(D""d)
4: In1t1al1ze T g center(Dmd) fmin f(xmd), co — ¥

f( ) f:;zzin, F’L’I’Ld — {607f(00)}

ind’

5:  while stopping criteria is unsatisfied do

6: Identify S: all potential optimal hyperrectangles H
7: for all H; € S do

8: Identify M: the dimensions with max. side length d,
9: Evaluate in parallel f(c; + aem), m € M, a = d/3
10: Ting < Dina U {c] + aem, f(c; £ aem)}

11: Update «?, ,, fIm4"

12: Evaluate wy, and divide H; according to wp,

13: end for

14: end while

15: end for

s
16: return z*=min_s— d,fmm(fmd ) T'=Ujg—1 Lind

Tin

The approach is summarized in Algorithm 1. It is based on
the DIRECT method [3] that is a variant of the Lipschitzian
optimization. Hence, it is effective in finding the basin of
convergence [2]. Also, it can operate in high-dimensional
space as it uses an especially easy-to-manage partitioning of
the search spaces into hyperrectangles, where only their center
points are sampled.

In order to decrease the optimization running time and to
conduct a refined exploration of the search space, we start by
subdividing the yield optimization process into .S subproblems
that we invoke simultaneously (Line 1). Each subproblem is
limited to a subregion of Dy that is transformed into the unit
hypercube (Line 3). The near optimal point is initialized by
sampling the center of the search space (Line 4). Then, the set
of potentially optimal hyperrectangles S is identified (Line 6).
A hyperrectangle H; is said to be potentially optimal if there
exists a rate of change constant X > 0 such that:

flej) —Kdj < f(ei)—Kdi,Viel (2)
flej) = Kd; < fi — A fim

where I is the set of all indices of all hypererctangles, c; is the
center of H; and d; is the size of H; defined as the distance
from the center to the vertices of H; [3]. The mathematical
formula of d; can be found in [3]. f%" is the current best
function value The first inequality in Equation 2 expresses the
decision to choose the hyperrectangle which promises the best
improvement (i.e., decrease) in the objective function. It also
ensures that as soon as a larger hyperrectangle with a lower
function value at the center exists, the algorithm switches the

search to that more promising (i.e., potential) region. The

parameter v in the second inequality guarantees that there
is a sufficient decrease in the objective function. Once H;
is identified as potentially optimal, it is divided into smaller
hyperrectangles (Lines 7 to 13). The divisions are performed
only along its longest sides. It starts by determining the set
M of all dimensions of maximal length (Line 8). Then, the
function f is evaluated in parallel at c¢; + ae,,, where « is
one-third the maximum side-length, and e,,, m € M is the
h unit vector (i.e., a vector with a one in the m*" position
and zeros elsewhere) (Line 9). The first division is performed
perpendicular to the side with the lowest w,,,, where:

min{ f(c; + aen), f(c; — aen)}, m e M (3)

The new hyperrectangle that has center c; is divided perpen-
dicular to the direction of the second lowest w,,,. The process
is repeated until H; is divided in all directions m € M. The
subdivision ensures that previous function evaluations are at
the center of the new hyperrectangles (Figure 2).
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Figure 2. Two global optimization iterations

The global convergence of Algorithm 1 may come at
the cost of a slow optimization at the final phase. In this
work, we overcome this limitation by stopping the search
when the hyperrectangle with the lowest objective function
is sufficiently small. At this stage, the subdivisions become
clustered near the global solution and the algorithm enters a
refinement stage. The stopping criteria is given as d; < odp. It
stops the search when the size of the hyperrectangle H; with
the best objective function at its center c; (i.e., d;) reaches
a certain percentage of the original unit hypercube size dj.
0 < 0 < 1 is adjusted for a tradeoff between computational
cost and the solution optimality. It should ensure that no region
is omitted and minimizes the risk of a premature termination.

The outputs of of Algorithm 1 are the best solution x*
reached by the subproblems and the simulation data I" (Line
16), where I' is composed of all sampled center points and
their function evaluations.

B. Local Optimization

After a design point z* in the basin of convergence is iden-
tified, a local search is invoked to speed up the convergence.
The local search iteratively builds and optimizes a linear and
non expensive RBF model of the objective function within a
neighborhood of a current iterate, as given in Equation 4 [9]:

min  mg(xg +8), xp + s € By
By, = {zr+s,s€R" :||s|la < Ar}
|7
my (T + ) =

Z Aid(lls = yillz) +p(s) (@)
=1

f(yi) = mg(y;), Yy, €U



where z, is the current state, By, is the so called trust region
for an implied (center, radius) pair (zg, Ar > 0) and ||.||2
is the lo norm. The model mj approximates f within a
neighborhood of the current trust region Bj. It is a linear
combination of RBFs (Line 3 in Equation 4). ¢ : R — R is
a univariate RBF. )\; are the linear model coefficients, which
are determined by requiring that the model my interpolates
the function f at a set of linearly independent data points
U = {y;, f(y;)} (Line 4 in Equation 4) at which the values of
f are known, including the current iterate . The interpolation
results in a system of linear equations [9]. p(s) is a low order
polynomial tail that guarantees the uniqueness of my (i.e.,
the model unknown coefficients A;). |¥| is the cardinality of
W. The model my, can be formed using as little as n + 1 data
points [9]. Algorithm 2 illustrates the method at each iteration.

Alg. 2 Local optimization

Require: I': Available simulation data points, o = x*: Starting point,
f: Objective function

1: while |[Vmyg(zg)|| > € do
2:  Select ¥ € I' in the neighborhood of By.
3 Build my, interpolating f at ¥
4:  minimize m; within By and compte s
5: Evaluate f(zj + sx) and update T"
6:  Compute py and adjust By
7: end while
8: return z*: optimal solution

The current iterate xj is usually surrounded by several
neighbored points which have been evaluated previously in
Algorithm 1. These simulation data points are reused to
accelerate the local optimization phase. That is, at each
iteration, the algorithm selects a set of data points ¥ € T’
within a neighborhood of the trust region By, (Line 2). If the
neighboring points are not enough for linear interpolation, new
points in the neighborhood of zj, are properly generated [9].
Then, the model my that interpolates f is built (Line 3)
and the unknown model coefficients \; are determined. The
approximated solution s; (i.e., the step) is computed by
optimizing my, over the trust region By (Line 4). The yield
is evaluated at xj + s; and the set I' is updated (Line 5). In
fact, any evaluated design point is saved in I', which allows
the algorithm to gain additional insight into the function in the
next iterations.

The pair (xg, Ag) of the trust region By is adjusted
according to the ratio of the achieved versus the predicted
improvement (i.e., decrease of the objective function f),
= mf: gi:g:ﬁ:(’fkfgw (Line 6). if py is sufficiently pos-
itive, then the iteration 1s successful; the next iteration point
Tpt+1 = T + s will be taken and the trust-region radius
A is enlarged. If pj is not sufficiently positive, then the
iteration was not successful; the current x; will be kept and
the trust-region radius is reduced. The process is repeated until
the model gradient ||[Vmy(x)|| is smaller than a threshold
parameter . That is, the sequence of z; converges to a
stationary point. The convergence criteria proof can be found
in [9].

III. APPLICATION - FOLDED CASCODE AMPLIFIER

In this section, we present the results of the application
of our yield optimization technique on a folded cascode
amplifier [6] circuit as shown in Figure 3.
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Figure 3. Fully differential folded-cascode amplifier

In the experiments, the circuit is designed in a commercial
TSMC 65 nm process and simulated in HSPICE with BSIM4
transistor models. We use the TSMC 65 nm transistor mis-
match model [1]. The local mismatch variables are considered
as the process parameters including the oxide thickness At,,,
threshold voltage under zero bias AV, channel width Aw
and channel length AL. Each process parameter follows a
truncated normal distribution [1]. All presented methods are
implemented via a link between MATLAB and HSPICE. Also,
the yield of each feasible design point is evaluated using MC
analysis with the LHS technique and 2000 samples. In Algo-
rithm 1, we set v = 1073 and we subdivide the optimization
into S' = 4 subproblems. Algorithm 2 uses sequential quadratic
programming (SQP) and cubic RBF models.

After applying the symmetry constraints, the number of
independent design variables is 9. The local mismatch vari-
ables of each transistor pair are considered, which results in
48 process parameters. Table I provides the specifications for
the gain Av, gainbandwidth GBW, power Ppc and slew rate
SR.

Table 1
SET OF SPECIFICATIONS FOR THE FOLDED CASCODE AMPLIFIER
[ Perf metrics [ Spec [ Perf metrics | Spec |
Ao(dB) | =50 | GBW(MHz) | = 40
Ppc(mW) | <1 SR(V/us) > 60

The results of the proposed approach are reported in Ta-
ble II. Algl refers to the parallel global optimization (i.e.,
Algorithm 1) and Alg2 refers to the local optimization (i.e.,
Algorithm 2). The number of yield evaluations and the yield
values reached by each phase are reported in Columns 2
and 3, respectively. We also perform the optimization with
different stopping criteria parameter values o of the global
optimization step. The relative error of the yield estimation
at the optimized design point z* is computed by evaluating
its relative deviation to the yield provided by 70000 MC
simulations in HSPICE at the same design point and given

as Rel Brr = 100000t ca B00—stmll 100,




Table 1I

EXPERIMENTAL RESULTS FOR THE CASCODE AMPLIFIER
Yield Eval (#) Yield (%) Rel Err

7 Algl | Alg2 | Total [ Algl [ Alg2 (%)
02 | 189 | 45 | 234 | 73.05 | 75.02 | 021
0.1 | 247 | 11 | 258 | 81.03 | 8435 | 0.21
0.005 | 602 9 611 | 83.54 | 8434 | 020

Using ¢ = 0.1, the proposed method locates the best

yield solution. In this case, Algl reaches a near optimal
solution with 247 yield evaluations. The local optimization
needs to perform only 11 yield evaluations to converge to a
higher quality design point. A close solution is reached with
o = 0.005. However, it requires 2X more yield evaluations. In
fact, the value o = 0.1 (i.e., 10% of the original search space
size) offers a good tradeoff between the solution optimality
and the required number of yield estimations.

The proposed method finds a lower yield percentage with
o = 0.2. In this case, the sampling and subdivision strategy did
not accurately locate the basin of convergence. Consequently,
Alg?2 fails to locate a high yield solution. In fact, the result of
the local refinement requires a good starting point. However, in
all experiments, it uses a small number of yield evaluation. Its
low computational cost is achieved thanks to the optimization
of a non expensive and local model of the yield and the
simulation data reuse strategy.

Table IIT
EXPERIMENTAL RESULTS OF ALGORITHM 1 APPLIED SOLELY

[ o [ Yield Eval () [ Yield (%) [ Rel Err (%) |
0.0001 961 84.34 0.20
0.0003 871 84.02 0.21

We apply Alg 1 solely to locate the most robust design point
with the optimum yield. The results are reported in Table III.
Alg 1 applied with a low o value succeeds in locating a
good solution. However, it requires almost 4X higher number
of yield evaluations, when compared to our approach with
o = 0.1. This observation confirms the slow convergence of
the modified Lipshitiz optimization, despite its good search
ability. The integration of a local refinement phase significantly
decreases the number of yield evaluations and accelerates the
optimization.

We compare our experimental results with high-ability
algorithms including Genetic Algorithm (GA), Differential
Evolution (DE) algorithm and GA-SA (Genetic Algorithm-
Simulated Annealing), employed to optimize the yield for
the cascode amplifier circuit. GA-SA uses GA as the global
exploration mechanism and the simulated annealing (SA)
algorithm to perform a local refinement. For all three methods,
the feasible design space Dy (i.e., the search space) is the same
as the one used in the proposed method. The evaluation of the
yield is accomplished using MC simulations in HSPICE. For
both GA and DE, the population size is 80 and the crossover
rate is 0.8 [6]. The population is initialized by randomly
selecting values of the design variables within Dy.

We executed 20 runs of each algorithm starting from 20
different initializations. Table IV shows the best results in
terms of yield quality among the 20 runs. We also include
the result of the proposed method with o = 0.1.

Table TV
COMPARISON WITH SIMULATION-BASED STOCHASTIC SEARCH METHODS

. . Rel Err Time

Method | Yield Eval (#) | Yield (%) (%) (h]
Proposed 258 84.35 0.19 37.33
GA 495 60.61 0.20 110.01
DE 485 65.98 0.20 107.77
GA-SA 508 68.11 0.19 112.88

Our method is able to locate a higher yield rate with less
computational time. The reduced computational time comes
from: (1) the reduction of the search space allowed by the
problem subdivision and the parallel computation; and (2)
alleviating the slow convergence problem of the global search
by the integration of a non expensive and linear local model-
based optimization. Furthermore, the search ability of our
approach obviously outperforms the stochastic optimization-
based method thanks to an exhaustive exploration of poten-
tially optimal regions. It can also be observed that neither DE
nor the hybrid approach GA-SA is able to perform a reliable
optimization, even though multiple runs were tried and the
best optimization result is presented.

IV. CONCLUSION

In this paper, we proposed a novel method for analog yield
optimization using a partition-based global search algorithm,
which samples the most potential region of the feasible design
space. A surrogate model-based local search is then integrated
to highly speedup the convergence. Its efficiency is elevated by
the reuse of existing simulation data of the global search phase.
Compared with simulation-based stochastic optimization, our
method identifies more robust design points with less run-time
and without affecting the accuracy.
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