
Extending XReason: Formal Explanations for
Adversarial Detection

Amira Jemaa, Adnan Rashid, and Sofiène Tahar

Department of Electrical and Computer Engineering
Concordia University, Montreal, QC, Canada,
{a jem, rashid, tahar}@ece.concordia.ca

Abstract. Explainable Artificial Intelligence (XAI) plays an important
role in improving the transparency and reliability of complex machine
learning models, especially in critical domains such as cybersecurity. De-
spite the prevalence of heuristic interpretation methods such as SHAP
and LIME, these techniques often lack formal guarantees and may pro-
duce inconsistent local explanations. To fulfill this need, few tools have
emerged that use formal methods to provide formal explanations. Among
these, XReason uses a SAT solver to generate formal instance-level ex-
planation for XGBoost models. In this paper, we extend the XReason
tool to support LightGBM models as well as class-level explanations.
Additionally, we implement a mechanism to generate and detect adver-
sarial examples in XReason. We evaluate the efficiency and accuracy of
our approach on the CICIDS-2017 dataset, a widely used benchmark for
detecting network attacks.

Keywords: Explainable AI, LightGBM, Formal Explanations, Adver-
sarial Robustness, XReason.

1 Introduction

Artificial Intelligence (AI) has revolutionized various industries by automating
complex tasks and enabling data-driven decision-making. However, as AI systems
become more sophisticated, concerns about their transparency and trust have
emerged, leading to the rise of Explainable Artificial Intelligence (XAI) [1]. XAI
allows the decision-making processes of AI models to be comprehended by human
users which is a crucial requirement for raising trust in high-stakes domains
such as healthcare, finance, and network security. Moreover, AI models remain
vulnerable to adversarial attacks [2], where malicious inputs can manipulate
outcomes. XAI plays a pivotal role in mitigating these risks by providing insights
into model behavior, aiding in the detection of vulnerabilities, and strengthening
the robustness and security of AI applications.

Well-known XAI tools, such as SHAP [3], LIME [4], are model-agnostic,
meaning that they can be applied to any machine learning model without re-
quiring access to the internal structure of the model. These tools work by treating
the model as a black box and focusing on explaining the relationship between

2 Amira Jemaa, Adnan Rashid, and Sofiène Tahar

inputs and outputs. While model-agnostic methods are useful for a variety of
models, they have significant limitations. In fact, these methods are often heuris-
tic, meaning they can generate different explanations for the same prediction.
Furthermore, they are not always correct, which can result in counterexamples,
where the explanations do not hold.

On the other hand, formal methods in XAI have emerged as a robust alterna-
tive for generating precise and reliable explanations. Formal methods translate
complex machine learning models into mathematical logic representations [5].
Subsequently, formal methods ensure the soundness and completeness of expla-
nations by identifying the minimal set of features responsible for the model’s
decision. This approach strengthens the model’s defenses against adversarial
attacks by accurately identifying exploitable features in its decision-making pro-
cess. Moreover, the generation of adversarial examples, i.e., small perturbations
in input data designed to mislead a model, highlights the importance of un-
derstanding the feature-level behavior. In this regard, the identification of the
features influencing decisions of the model allows the generation of more tar-
geted and effective adversarial samples. XAI is essential in this context as it
reveals the feature importance, enabling precise manipulation of only those fea-
tures that drive the model’s prediction. However, this strategy is only reliable
when the truly relevant features are accurately identified. By rigorously analyz-
ing the decision-making process, formal methods ensure that perturbations are
applied to the correct features, improving both the generation and detection of
adversarial examples.

A few formal XAI tools, such as XReason [6], Silas [7] and PyXAI [8], have
been recently introduced to provide formal explanations. For instance, XReason
uses XGBoost models [9] and SAT solvers [10] to provide detailed, instance-level
explanations, while Silas focuses on Random Forest models [11] and employs
SMT solvers [12]. PyXAI, on the other hand, focuses on models such as Random-
Forest Classifier, XGBoost Classifier, XGBoost Regressor, and LGBM Regressor
with the use of SAT solvers. After considering these options, we selected XRea-
son due to its open-source nature and flexibility, allowing for customization and
extensibility. While XReason is effective for XGBoost models, it lacks support for
other more efficient machine learning models, such as LightGBM [13], which is a
gradient boosting framework that is widely recognized for its efficiency and scal-
ability, especially when dealing with large datasets and requiring faster training
times. Additionally, XReason only provides instance-level explanations, which
focus on single predictions without offering a broader understanding of model
behavior across classes. To overcome these limitations, we propose in this paper
to extend XReason by integrating support for LightGBM and introduce class-
level explanations. These explanations identify the most important features for
each class, providing a more comprehensive view of the model’s decision-making
process. Moreover, since XReason does not address adversarial robustness, we
also propose to incorporate the ability to both generate and detect adversarial
examples.

Extending XReason: Formal Explanations for Adversarial Detection 3

The rest of the paper is organized as follows: In Section 2, we explain the
methods used in our framework for extending XReason. Section 3 describes our
approach for the propositional encoding of LightGBM. In Section 4, we discuss
class-level explanations. In Section 5, we present our methods for generating
and detecting adversarial examples. Finally, in Section 6, we present our exper-
iments using the CICIDS-2017 dataset [14], where we evaluate the robustness
and correctness of our formal explanation method in generating and detecting
adversarial examples.

2 Proposed Framework

The proposed methodology builds on the existing tool XReason[6], which ad-
dresses classification problems by providing abductive formal explanations (AXps)
[15] for XGBoost models using a SAT solver. XReason explains why an XGBoost
model makes a particular prediction for a given sample by identifying a minimal
subset of features responsible for the decision. Figure 1 presents our proposed
extensions to XReason, called XReason+. Our framework enhances XReason’s
capabilities in several key areas:

– Model Support: We expand XReason to support LightGBM in addition
to XGBoost, enabling formal reasoning and explanations across multiple
machine learning models.

– Class-Level Explanations: We introduce class-level explanations, which
create intervals for the most important features defining each class. This
provides a broader view of model behavior compared to instance-based ex-
planations, offering insights into how features contribute to predictions for
each class.

– Adversarial Sample Handling: Using formal explanations, we implement
an adversarial attack mechanism that can both generate and detect adver-
sarial samples. Detection is based on calculating the probability of a sample
being adversarial by analyzing changes in explanations in response to small
input perturbations.

As depicted in Figure 1, the XReason+ process begins by training either XG-
Boost or LightGBM (LGBM) models on the provided training data. Once the
model is trained, test data is processed to compute both instance-level and class-
level formal explanations using a MaxSAT [16] solver. These explanations are
then used to produce class predictions for the test data, accompanied by formal
explanations. Moreover these explanations are used as input for the adversarial
attack unit, which can either generate adversarial samples from the test data or
detect the probability of the test data being adversarial by analyzing explanation
changes in response to small perturbations.

In the next section, we describe the formal encoding of LightGBM models in
XReason. This encoding captures the exact paths leading to predictions, enabling
formal analysis.

4 Amira Jemaa, Adnan Rashid, and Sofiène Tahar

MaxSAT Solver
Machine
Learning

Model

XGBoost

LGBM

Computing a
Local Formal

Based
Explanation

XReason+

Trained ModelTraining
Data

Class
Prediction with

Explanations

Testing
Data

Computing a
Class Formal

Based
Explanation Probability of

Being
Adversarial

Adversarial
Attack Unit

Generating
Adversarial

Sample

Fig. 1: XReason+ Tool.

3 Propositional Encoding of LightGBM

3.1 Overview of LightGBM

LightGBM is a widely used gradient boosting framework designed for efficiency
and scalability. Its leaf-wise growth strategy differs from the level-wise approach
in traditional tree-based models. LightGBM prioritizes leaves that offer the high-
est reduction in loss, resulting in deeper and more complex trees. While this
design improves training time and accuracy, it complicates interpretability due
to the unbalanced tree structures.

In this section, we propose a formal encoding of LightGBM model to produce
precise explanations that capture the model’s decision-making process.

3.2 Propositional Representation of LightGBM

Each decision tree in LightGBM can be represented as a series of logical con-
straints that encode the conditions (splits) at each node. For instance, a split
condition such as f1 > 0.5 is encoded as a Boolean variable, where f1 = 1 if
the condition holds and f1 = 0 otherwise. Each path through the tree repre-
sents a conjunction of these Boolean variables, and each leaf node contains the
prediction (or score) that the tree generates. Formally, the encoding of a tree
is a logical formula representing the conjunction of feature conditions that lead
to a particular leaf. By encoding the trees in this manner, we can capture the
exact decision path taken by an instance and represent it as a formal logical
expression.

Extending XReason: Formal Explanations for Adversarial Detection 5

3.3 Algorithm for Encoding Decision Trees

Algorithm 1 outlines the steps to encode a decision tree into a logical representa-
tion in XReason. The algorithm starts by receiving a decision tree as input, which
includes its features, thresholds (the values used to split data), and branches.
The first step is to collect all the thresholds used in the tree for each feature.
Then, for each of these thresholds, the algorithm assigns logical variables that
represent the decision points in the tree where the data is split. Once the thresh-
olds and logical variables are assigned, the algorithm moves to the branches of
the tree. For each branch, it creates a logical path, which describes how the
features and thresholds lead to a specific decision.

Algorithm 1 Propositional Encoding of Decision Tree

1: Input: Decision tree with nodes, features fi, thresholds ti, and branches bi.
2: Output: Encoded paths P with logical constraints.
3: Initialize Thresholds← ∅, Lvars← ∅, Paths← ∅
4: Step 1: Threshold Encoding
5: for each feature fi do
6: Extract the thresholds ti used for splitting
7: Add ti to Thresholds(fi)
8: end for
9: Step 2: Logical Variable Encoding
10: for each feature fi do
11: Assign logical variables Li for each split point
12: Add Li to Lvars(fi)
13: end for
14: Step 3: Path Representation
15: for each branch bi in the tree do
16: Traverse the branch and extract the feature and logical variable constraints
17: Formulate the path pi as a set of logical conditions from Lvars
18: Add pi to Paths
19: end for
20: Step 4: Path Expansion
21: for each path pi in Paths do
22: Expand pi into a set of logical constraints: [L1, L2, ..., Ln, 0]
23: Add the expanded constraints to the final encoded set
24: end for
25: Step 5: Additional Path Encoding
26: for each new path generated by further splits do
27: Repeat Steps 3 and 4 for the new paths
28: end for
29: Step 6: Order and Domain Encoding
30: Ensure that each path respects the hierarchical order of the tree
31: Encode the domain of each feature and its corresponding logical variables
32: Finalize the encoded representation for all paths
33: Return: Encoded paths P

6 Amira Jemaa, Adnan Rashid, and Sofiène Tahar

These paths are then expanded into a set of logical rules or constraints that
represent how the decision-making process works in the tree. If the tree splits
further and creates new paths, the algorithm applies the same process to these
additional paths. In the final steps, the algorithm ensures that the order of
decisions in each path matches the structure of the tree and that the feature
values are encoded correctly.

4 Class-Level Explanations

The Class-Level Explanation constructs explanations for each class in the model
by aggregating important features from training instances that belong to a spe-
cific class. This process helps identify the common characteristics that define
each class and can be used to understand the behavior of the model at the class
level.

Algorithm 2 details the procedure for building the class-level explanations in
XReason. The algorithm begins by iterating over all classes in the trained model
M . For each class c, it creates an empty set Ec to store the important features.
It then analyzes each instance xi in the training dataset Dtrain, where the model
predicts the class c (i.e., M(xi) = c).

Algorithm 2 Class-Level Explanation Building

Require: Trained model M , training dataset Dtrain

Ensure: Class-level explanations Ec for each class c
1: procedure BuildClassLevelExplanations
2: for each class c in model M do
3: Initialize Ec as an empty set
4: for each instance xi in Dtrain where M(xi) = c do
5: Extract important features Fi from formal explanation of xi

6: Ec ← Ec ∪ Fi

7: end for
8: for each important feature f in Ec do
9: Collect all values V c

f of feature f in Ec
10: Determine interval [ac

f , b
c
f] using clustering on V c

f

11: end for
12: end for
13: end procedure

For each instance, a formal explanation method is used to extract the impor-
tant features Fi. These latter highlight the key input features that contributed to
the model’s decision for that particular instance. The important features of each
instance xi are added to the class-level explanation set Ec, which accumulates
the significant features for the entire class.

Once the important features for all instances belonging to the class c have
been collected, the algorithm identifies the key ranges of values for each feature.
For each important feature f in Ec, it collects all values V c

f observed across the

Extending XReason: Formal Explanations for Adversarial Detection 7

instances. Using a clustering technique, the algorithm determines an interval
[acf , b

c
f], which represents the typical range of feature values for the class c.

These intervals provide a condensed representation of the features that are
most relevant for each class, offering insights into how the model differentiates be-
tween classes based on specific feature ranges. This information can be valuable
for both interpreting the model and for downstream tasks, such as adversarial
sample generation, where these feature intervals can be used to manipulate input
data to fool the model. In next section, we propose an approach to generate and
detect such adversarial attacks.

5 Adversarial Example Detection Method

Algorithm 3 outlines the process of detecting adversarial examples by compar-
ing the explanations of an input sample with the class-level explanations derived
from the training data. The detection relies on two checks: verifying the impor-
tance of the features and ensuring that their values fall within expected intervals
for the predicted class.

The process begins by predicting the label of the input sample, xinput, using
the trained model M . Once the label is predicted, the important features and
their values are extracted from the formal explanation of xinput. For the predicted
class, class-level explanations Eyinput are retrieved, which contain the important
features and their typical intervals.

Algorithm 3 Adversarial Sample Detection Using Class-Level Explanations

Require: Trained model M , class-level explanations {Ec}, input sample xinput

Ensure: Adversarial likelihood score sadv
1: yinput ←M(xinput) ▷ Predict label of input sample
2: Extract important features Finput and their values Vinput from explanation of xinput

3: Retrieve class-level explanations Eyinput
4: Initialize discrepancy count d← 0
5: for each feature f in Finput do
6: if f is not in Eyinput then
7: d← d+ 1 ▷ Feature not expected to be important
8: else
9: Retrieve interval [a

yinput
f , b

yinput
f]

10: if Vinput(f) /∈ [a
yinput

f , b
yinput
f] then

11: d← d+ 1 ▷ Value outside expected interval
12: end if
13: end if
14: end for

15: Compute adversarial likelihood score sadv ←
d

|Finput|
16: return sadv

The algorithm then compares the features from the input sample with the
class-level explanations. For each important feature, two checks are performed:

8 Amira Jemaa, Adnan Rashid, and Sofiène Tahar

– Feature Importance Check: The algorithm verifies if the feature is con-
sidered important for the predicted class by checking its presence in the
class-level explanation.

– Feature Value Interval Check: If the feature is important, its value is
checked against the interval defined in the class-level explanation for the
predicted class.

If a feature is either not present in the class-level explanation or its value
falls outside the defined interval, it is considered a discrepancy. The number of
such discrepancies is accumulated, and the adversarial likelihood score sadv is
computed as the ratio of discrepancies to the total number of important features
in the input sample.

6 Case Study: CICIDS-2017 Dataset

As a case study for our proposed XReason+ tool, we utilize a customized version
of the Canadian Institute for Cybersecurity’s Intrusion Detection System 2017
(CICIDS-2017) dataset [14], which is widely used for network security research.
The original dataset simulates both normal network traffic and various types
of network attacks, making it highly representative of real-world conditions. It
contains over 3 million records, 80 network features and 14 attack types, with
an imbalanced class distribution. This dataset is particularly suitable for clas-
sification tasks, as it includes a labeled target variable indicating whether each
instance represents normal traffic or an attack. We adopt the modified version
of CICIDS-2017 proposed by Li et al. [17], which reduces the feature set to 19
essential attributes, selected for their relevance to network traffic patterns. Table
1 summarizes the features utilized from the customized CICIDS-2017 dataset for
analysis.

6.1 Preprocessing and Model Performance

To ensure the quality and relevance of the data, we applied additional prepro-
cessing steps:

– Duplicate Removal: We eliminate any duplicate records in the dataset.
– Feature Selection: Using the Autospearman method [18], which automat-

ically removes features with high Spearman correlation to each other, we
reduce the set to 18 critical features.

– Data Splitting: The dataset is split into 70% for training (20,655 samples)
and 30% for testing (8,853 samples).

We trained a LightGBM model, following the recommendation of Li et al.[17],
and evaluated the model’s performance on the testing set using key metrics:
Accuracy, Precision, Recall, F1 Score, and Area Under the ROC Curve (AUC)
[19]. Table 2 explains the metrics and provides the respective values obtained,
which range from 90% to 93%.

Extending XReason: Formal Explanations for Adversarial Detection 9

Table 1: Description of the Customized CICIDS-2017 Dataset [17].

Feature Description

Flow Duration Duration of the flow in microseconds.

Total Length of Fwd Packets Total length of packets sent in the forward direction.

Fwd Packet Length Max Maximum size of packets in the forward direction.

Fwd Packet Length Mean Average size of packets in the forward direction.

Bwd Packet Length Max Maximum size of packets in the backward direction.

Bwd Packet Length Min Minimum size of packets in the backward direction.

Flow IAT Mean Average inter-arrival time between packets within the
flow.

Flow IAT Min Minimum inter-arrival time within the flow.

Fwd IAT Min Minimum inter-arrival time of forward packets.

Fwd Header Length Total length of headers in the forward packets.

Bwd Header Length Total length of headers in the backward packets.

Fwd Packets/s Number of packets sent per second in the forward direc-
tion.

Bwd Packets/s Number of packets sent per second in the backward di-
rection.

Min Packet Length Minimum size of packets within the flow.

URG Flag Count Count of packets with the URG (urgent) flag set.

Down/Up Ratio Ratio of bytes sent in the forward direction to bytes re-
ceived.

Init Win bytes forward Initial window size in bytes for the forward packets.

Init Win bytes backward Initial window size in bytes for the backward packets.

min seg size forward Minimum segment size observed in the forward packets.

Label Binary label indicating normal (0) or attack (1) traffic.

Table 2: Model Performance Metrics

Metric Definition Value

Accuracy The overall proportion of correct predictions for both at-
tack and non-attack samples.

0.920

Precision Measures the proportion of correctly identified attacks
out of all samples classified as attacks.

0.930

Recall Measures the proportion of actual attacks that were cor-
rectly identified by the model.

0.924

F1 Score The balance between Precision and Recall, showing how
well the model detects attacks without missing or mis-
classifying them.

0.923

AUC Indicates how well the model can distinguish between
attacks and non-attacks.

0.909

10 Amira Jemaa, Adnan Rashid, and Sofiène Tahar

6.2 Robustness and Correctness of Formal Explanations

Many previous studies have used SHAP and LIME to explain models trained
on CICIDS-2017 data (e.g., [20, 21]). While these methods provide valuable
insights into feature importance, they are prone to instability and lack formal
guarantees. In contrast, our formal explanation method provides consistent and
provably correct explanations.

Robustness of Explanations To assess the robustness of these methods, we
applied SHAP, LIME, and our formal approach on the same instances twice. This
comparison helps to evaluate the consistency of the feature values and rankings
across both runs. We obtained following results:

– SHAP demonstrated 100% consistency when run twice on the same in-
stance. Both the feature importance scores and the resulting features rank-
ings were identical in each run.

– LIME showed 0% consistency between runs. The feature rankings and
importance scores changed each time, indicating that LIME’s explanations
are highly variable and not reliable.

– XReason+: Our formal explanation approach is fully deterministic, pro-
ducing identical explanations and rankings in both runs. Given the same
instance, the method consistently identifies the same features and assigns
the same ranks, demonstrating robustness across repeated runs.

Correctness of Explanations The formal explanation method provides 100%
correct explanations by identifying minimal sets of features that are guaranteed
to be responsible for the prediction. We aim to evaluate how closely the rankings
of the most important features for a given instance, as determined by SHAP and
LIME, align with the rankings produced by the formal explanation method.

– Ranking in Formal Explanations: Features included in our formal ex-
planation are assigned rank 1, while all other features are assigned the next
following rank.
Example: For this instance with values:

[0.05230066, -0.71498734, -0.59981065, -0.0993616, -0.24724035,

-0.32174034, 0.903657, -0.20532016, 0.18419513, 0.61847005,

0.45396074, 0.25984816, -0.2581599, -0.17959084, 0.67872539,

-0.11816232, 0.39183229, 1.5487759, -0.05288477]

the features Bwd Packet Length Max (0.05230066) and Fwd Packet Length
Max (0.61847005) represent the maximum size of packets in the backward
and forward directions, respectively. Our formal explanation was:

"IF Bwd Packet Length Max == 0.05230066

AND Fwd Packet Length Max == 0.61847005 THEN 0"

Extending XReason: Formal Explanations for Adversarial Detection 11

In this case, we assigned rank 1 to the features included in the explanation:
Bwd Packet Length Max and Fwd Packet Length Max. Since these two fea-
tures are included, all other features were ranked 3.

– Comparison with SHAP and LIME: SHAP and LIME generate feature
importance scores, and we generated the rankings based on the absolute
scores, with the most important feature receiving rank 1, the next receiv-
ing rank 2, and so on. To compare these ranks with the formal method,
we used Spearman’s Rank Correlation [22], Kendall’s Tau [23], and Rank-
Biased Overlap (RBO) [24] to evaluate the results. Spearman and Kendall
range from -1 to 1, where higher values indicate stronger agreement between
ranks. RBO ranges from 0 to 1, with higher values representing greater over-
lap between ranked lists.

• Spearman’s Rank Correlation:
∗ For SHAP, the Spearman values range from -0.2818 to 0.5892, with
an average of 0.1352.

∗ LIME exhibited greater variability, with Spearman values ranging
from -0.6983 to 0.7201 and an average of 0.1811.

• Kendall’s Tau:
∗ SHAP’s Kendall Tau values range from -0.2361 to 0.4936, with an
average of 0.1133.

∗ LIME’s Kendall Tau values ranged from -0.5850 to 0.6032, with an
average of 0.1517.

• Rank-Biased Overlap (RBO):
∗ SHAP and LIME exhibited moderate overlap in the top-ranked fea-
tures compared to the formal method, with RBO values ranging from
0.1849 to 0.6684. SHAP had an average RBO of 0.3885, while LIME
had an average of 0.3715.

In summary, the formal explanation method for LightGBM predictions proves
to be more robust and correct compared to SHAP and LIME. Given this strong
foundation of reliability and correctness, we leveraged our formal explanations
to explore their utility in generating and detecting adversarial examples. By
using the key features identified through our method, we can craft and detect
adversarial samples that exploit the model’s vulnerabilities.

6.3 Adversarial sample generation and detection

To evaluate the robustness of our approach, we applied the adversarial sample
generation method across the entire test set, consisting of 8,853 samples. Out
of these, 2,821 samples (31.86%) successfully fooled the model, highlighting its
vulnerability to adversarial attacks. The average Euclidean distance between the
original and adversarial samples was 1.67, indicating that only small perturba-
tions were needed to manipulate the model’s predictions.

12 References

Further analysis showed a significant difference in the impact of adversarial
attacks based on the original class. Out of the 3,058 samples that were originally
predicted as attacks (class 1), 2,044 (66.84%) were misclassified as normal traffic
(class 0) after the perturbation. Moreover, 777 out of the 5,795 samples originally
predicted as normal (class 0) were flipped to attacks (class 1), which represents
13.41%.

Using our formal explanation-based detection method, we were able to iden-
tify 1,731 out of the 2,821 adversarial examples (those that changed the model’s
prediction) as likely adversarial, achieving a detection rate of 61.36%. This
demonstrates the effectiveness of the detection mechanism in identifying samples
that exploit model vulnerabilities, particularly in the case of misclassified attack
samples.

7 Conclusion

In this paper, we proposed a framework extending the XReason tool by adding
formal explanations for LightGBMmodels, class-level explanations, and a method
to generate and detect adversarial samples. Our approach provides deterministic
and consistent explanations, addressing the limitations of heuristic methods like
SHAP and LIME. We applied our XReason+ tool to the CICIDS-2017 dataset,
demonstrating its effectiveness in generating adversarial samples and improving
robustness. In the future, we plan to extend the developed framework to support
additional machine learning models and apply it to other large-scale datasets.
We also aim to enhance the adversarial detection mechanism.

References

[1] A. Darwiche and A. Hirth. On the reasons behind decisions. In European
Conference on Artificial Intelligence, pages 712–720, 2020.

[2] H. Baniecki and P. Biecek. Adversarial attacks and defenses in explainable
artificial intelligence: A survey. Information Fusion, page 102303, 2024.

[3] S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model
predictions. In Advances in Neural Information Processing Systems, pages
4765–4774, 2017.

[4] M. T. Ribeiro, S. Singh, and C. Guestrin. Why should i trust you? ex-
plaining the predictions of any classifier. In International Conference on
Knowledge Discovery and Data Mining, pages 1135–1144, ACM 2016.

[5] J. Marques-Silva and A. Ignatiev. Delivering trustworthy AI through for-
mal XAI. In AAAI Conference on Artificial Intelligence, volume 36, pages
12342–12350, 2022.

[6] XReason. https://github.com/alexeyignatiev/xreason. [Online; accessed
2024].

[7] Silas. https://www.depintel.com/silas download.html. [Online; accessed
2024].

[8] PyXAI. https://www.cril.univ-artois.fr/pyxai/. [Online; accessed 2024].

https://github.com/alexeyignatiev/xreason
https://www.depintel.com/silas_download.html
https://www.cril.univ-artois.fr/pyxai/

References 13

[9] T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In
International Conference on Knowledge Discovery and Data Mining, pages
785–794, ACM 2016.

[10] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of
Satisfiability. IOS Press, 2021.

[11] L. Breiman. Random forests. Machine learning, 45:5–32, 2001.
[12] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In Tools and

Algorithms for the Construction and Analysis of Systems, volume 4963 of
LNCS, pages 337–340. Springer, 2008.

[13] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, and Q. Ye. Light-
GBM: A highly efficient gradient boosting decision tree. In Advances in
Neural Information Processing Systems, pages 3149–3157, 2017.

[14] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani. Toward generating a
new intrusion detection dataset and intrusion traffic characterization. In In-
ternational Conference on Information Systems Security and Privacy, pages
108–116, 2018.

[15] A. Ignatiev, N. Narodytska, N. Asher, and J. Marques-Silva. From con-
trastive to abductive explanations and back again. In Advances in Artificial
Intelligence, pages 335–355, LNCS vol, 2020. Springer.

[16] A. Ignatiev, A. Morgado, and J. Marques-Silva. RC2: An efficient MaxSAT
solver. Journal on Satisfiability, Boolean Modeling and Computation,
11(1):53–64, 2019.

[17] Y. Li and S. Abdallah. IoT data analytics in dynamic environments: From
an automated machine learning perspective. Engineering Applications of
Artificial Intelligence, 116:105366, 2022.

[18] J. Jiarpakdee, C. Tantithamthavorn, and C. Treude. AutoSpearman: Au-
tomatically mitigating correlated software metrics for interpreting defect
models. In International Conference on Software Maintenance and Evolu-
tion, pages 92–103, IEEE 2018.

[19] T. Fawcett. An introduction to ROC analysis. Pattern Recognition Letters,
27(8):861–874, 2006.

[20] T. T. Le, H. Kim, H. Kang, and H. Kim. Classification and explanation
for intrusion detection system based on ensemble trees and shap method.
Sensors, 22(3):1154, 2022.

[21] S. Patil, V. Varadarajan, S. M. Mazhar, A. Sahibzada, N. Ahmed, O. Sinha,
S. Kumar, K. Shaw, and K. Kotecha. Explainable artificial intelligence for
intrusion detection system. Electronics, 11(19):3079, 2022.

[22] C. Spearman. The proof and measurement of association between two
things. The American Journal of Psychology, 15(1):72–101, 1904.

[23] M. G. Kendall. A new measure of rank correlation. Biometrika, 30(1-2):81–
93, 1938.

[24] W. Webber, A. Moffat, and J. Zobel. A similarity measure for indefinite
rankings. ACM Transactions on Information Systems, 28(4):1–38, 2010.

	Extending XReason: Formal Explanations for Adversarial Detection

