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In modern data-driven decision-making, transparency and clarity in Machine Learning
(ML) models are critical. Explainable Artificial Intelligence (XAI) [1] fulfills this demand
by offering human-understandable explanations for the predictions and decisions made by
complex Artificial Intelligence (AI) algorithms. XAI bridges the gap between algorithmic
processes and end-users, enabling stakeholders to trust and comprehend Al system decisions,
thus promoting accountability, fairness, and ethical use of technology.

Heuristic approaches like SHAP [2], LIME [3], and Anchor [4] are commonly used to
explain predictions from non-interpretable ML models. However, these methods lack global
guarantees, often providing locally valid explanations that fail to hold true across the entire
instance space. This limitation highlights a need for more rigorous approaches, particularly
those based on formal methods, to ensure robust and reliable explanations.

To fulfill this need, various tools, such as XReason [5], Silas [6], and PyXAI [7], have been
recently introduced to enhance the trust in the explainability of ML models. For instance,
XReason utilizes XGBoost Classifier [8] alongside SAT solvers and SMT methods to pro-
vide detailed, instance-level abductive explanations. Similarly, Silas employs Random Forest
[9] for robust explainability, focusing on feature importance, and uses SMT in their work.
PyXAI, arecent addition to the field that specializes in explaining models like RandomForest
Classifier, XGBoost Classifier, XGBoost Regressor, and LGBM Regressor using an abductive
approach at the instance level and employs SAT solvers.

In this research, we have chosen XReason due to its open-source availability, allowing
for extensive customization and enhancement. Additionally, XReason’s robust integration
of SAT-solvers provides a comprehensive and reliable framework for generating detailed,
instance-level abductive explanations, making it an ideal choice for our needs. Building
on XReason, our approach uses Maximum Satisfiability (MaxSAT) solvers [10] to generate
explanations with the fewest essential features. We have enhanced XReason by implementing
class explanations and integrating it with the Light GBM (LGBM) Classifier [11], an advanced
gradient boosting framework. Our focus is on translating complex decision rules into concise
yet informative explanations. Unlike heuristic methods, this approach ensures explanations
are clear and efficient across all instances, offering dependable insights into model predictions.

The process of generating explanations using formal methods involves several steps. A



trained ML model, which is inherently non-interpretable, is encoded into a formal represen-
tation using techniques like MaxSAT. This encoding allows the solver to identify the most
important features of an instance, ensuring globally consistent and verifiable explanations
across the entire instance space. Moreover, the class explanations are crucial as they pro-
vide insights into how different classes are predicted by the model, and hence enhancing the
understanding of the underlying patterns and decision-making processes specific to tabular
data. By encoding and generating explanations for different classes, users gain a compre-
hensive view of the model’s behavior and predictions. In order to validate our approach,
we conducted several experiments using the segmentation dataset [12], which consists of 210
samples with 19 features of tabular data. Despite variations in the dataset specifics, a thor-
ough analysis confirms the accuracy of all explanations, showcasing the robustness of the
proposed methods.

In a second effort, we have investigated the integration of LGBM Classifier with XReason,
which resulted in improvements in explanation generation. In fact, LGBM explanations
consistently provided shorter and more concise explanations compared to those of XGBoost.
Specifically, the average length of MaxSAT explanations for LGBM is 5.51, slightly lower than
XGBoost’s 5.68. The median explanation lengths were identical for both models, which was
equal to 5, but LGBM exhibits a lower standard deviation of 1.88 compared to XGBoost’s
2.16, indicating that LGBM provides more consistent explanations across different instances.
Moreover, the percentage of shortest explanations using MaxSAT for LGBM is 49.52%, closely
matching XGBoost’s 50.47%, but with reduced explanation variability. The improvements in
consistency and conciseness without sacrificing accuracy underscore the advantages of using
LGBM in conjunction with formal methods for XAI.

In summary, integrating formal methods into XAI frameworks like XReason, coupled
with the enhancements introduced, represents a significant advancement in the field. This
tool delivers robust, efficient, and interpretable explanations, making it indispensable for
the development of trustworthy Al systems. Figure 1 depicts an abstract overview of the
XReason tool, where our contributions are identified with yellow boxes. Future work aims to
further refine XReason and expand its applicability across various ML tasks and industrial
applications. Additionally, efforts will be directed towards addressing adversarial attacks in
XAI, with the goal of enhancing the robustness and reliability of the explanations provided
by the tool.
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Figure 1: The explanation process
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