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Abstract. Coupled transmission lines are essential components of mod-
ern electronic systems, which facilitate a reliable and an efficient trans-
mission of high-frequency signals from source to destination and are
widely used in various industries, including telecommunications, aerospace,
and automotive. Moreover, their dynamics are generally represented by a
set of differential equations involving voltages and currents, known as the
telegrapher’s equations. This paper proposes to use Higher-Order-Logic
(HOL) theorem proving for formal modeling and verification of coupled
transmission lines. In particular, we formalize the equations capturing
the line voltages and currents, and their relationship in a system of cou-
pled transmission lines. We then formally verify the equivalence between
these equations and their matrix representations. Finally, we conduct a
formal proof of the correctness of the general solutions of these general-
ized telegrapher’s equations using the HOL Light theorem prover.

Keywords: Coupled Transmission Lines · Telegrapher’s Equation · Higher-
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1 Introduction

The transmission of electrical signals and power is a pivotal achievement of
engineering technology, significantly advancing modern civilization. These elec-
trical systems transmit a wide range of communication signals, including data
and control over distances reaching thousands of miles. Furthermore, electrical
transmission engineering encompasses not only long transmission systems but
also a vast array of shorter transmission line segments that perform numerous
functions within the terminal units of the system [1]. Beyond their role in carry-
ing information and energy, they can be also used as circuit elements for passive
circuits such as impedance transformers [2], resonators [3] and baluns [4]. Cou-
pled transmission lines (CTLs), in particular, play an important role in building
the functionality of modern high speed communication systems.

Electromagnetic coupling occurs when two or more unshielded transmission
lines are in close proximity due to the interaction of their electric and magnetic
fields. This effect is particularly noticeable when the line axes are parallel, defin-
ing them as CTLs [5]. CTLs typically consist of two transmission lines but may
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include more than two. Furthermore, coupled line structures are applicable to
all forms and types of transmission lines. For instance, microstriplines [6] and
coplanar waveguides [7] are among the most popular planar forms [8]. When
the coupled lines are identical (also known as symmetrical coupled lines), they
can be analyzed in terms of even and odd modes to understand their behavior
and characteristics. By applying even- and odd-mode excitations separately and
then combining their solutions, engineers conveniently analyze the behavior of
symmetric coupled transmission lines. This simplifies the problem by breaking
it down into two more manageable parts, making it easier to understand and
design transmission lines for specific applications.

Traditionally, the analysis of coupled transmission lines involves paper-and-
pencil methods and simulation techniques. In the former approach, the lines
are modeled using the telegrapher’s equations [9], and the resulting system of
coupled transmission line equations is expressed in matrix form [10]. Although
this analytical method provides closed-form mathematical solutions, conducting
such analyses manually is prone to human error, especially when dealing with
complex transmission line configurations. The latter method, which includes
commonly used numerical techniques such as the finite-difference time-domain
(FDTD) modeling of electromagnetic equations [11] and the transmission line
modeling (TLM) method [12], has been shown to be quite time-consuming in
many electromagnetic and transmission line problems, such as waveguide struc-
tures and high-frequency circuit designs. In addition to requiring a significant
amount of memory and computational time, these techniques cannot provide
perfectly accurate results because of the discretization of continuous parameters
and the use of unverified numerical algorithms.

To address the inaccuracy problems mentioned earlier, formal methods-based
techniques are capable of overcoming these issues. In the most pertinent related
study on formally analyzing transmission systems using theorem proving [13], the
authors formalized the telegrapher’s equations for single Transmission Line (TL)
and verified the analytical solutions of the equations. Moreover, they formally
analyzed the terminated transmission line and its special cases, i.e., short- and
open-circuited lines in the HOL Light theorem prover. However, it should be
noted that single transmission lines may not offer the same level of versatility as
CTLs, which allow for signal interaction and are therefore better suited for more
complex applications such as power transmission from Power Grids to users [14].

The primary objective of this paper is to enhance the formal reasoning sup-
port within the domain of transmission lines. In this paper, we propose to
use Higher-Order-Logic (HOL) theorem proving to formally model and ana-
lyze CTLs. HOL Light was selected due to the availability of a library for single
TL and its potential to connect this library with CTLs. Moreover, the HOL
Light theorem prover offers users the flexibility to develop and apply customized
automation methods.

Our contributions can be summarized as follows:

– Formal modeling of CTL dynamics through the telegrapher’s equations
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– Formalization of the telegrapher’s equations in phasor domain based on their
matrix representations.

– Formal verification of the equivalence between the linear equation systems
governing voltages and currents and their matrix descriptions

– Formal verification of the correctness of the analytical solutions of the gen-
eralized telegrapher’s equations for CTLs.

The rest of the paper is organized as follows: In Section 2, we present some
of the fundamental formal definitions of the multivariate calculus theories of
HOL Light that are necessary for understanding the rest of the paper. Section
3 describes the mathematical modeling of CTLs. In Section 4, we provide the
formal modeling of CTLs. In Section 5, we present the formal verification of the
analytical solutions of the generalized telegrapher’s equations, which are used to
model CTLs. Finally, Section 6 concludes the paper.

2 Preliminaries

In this section, we present some HOL Light definitions that are used in our
proposed formalization and are important to understand the rest of the paper.

2.1 Complex Vectors and Matrices

The complex vectors and matrices have been formalized in HOL Light [15,16].
In this section, we explain some of the commonly used HOL Light fuctions in
the proposed formalization as follows:

Definition 1. Vector
⊢ ∀l. vector l = (lambda i. EL (i - 1) l)

The function vector takes an arbitrary list l : α list and returns a vector
having each component of data-type α . It uses the function EL i l, which
accepts an index i and a list l, and returns the ith element of a list l. In HOL
Light, the lambda operator is utilized to construct a vector from its individual
components. A complex vector is defined as a vector having every elements as a
complex number.

Definition 2. Complex Row and Column Vector
⊢ ∀v. crowvector v = (lambda i j. vj)
⊢ ∀v. ccolumnvector v = (lambda i j. vi)

where crowvector and ccolumnvector accept an N -dimensional complex vector
v and return the same vector represented as row and column matrices with
dimensions 1×N and 1×N , respectively.

In HOL Light, matrices are fundamentally formalized as vectors of vectors,
where a M matrix is formally represented as of type (complexN)M. For example,
a 2× 2 complex matrix can be formalized as follows:
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Definition 3. 2× 2 Complex Matrix
⊢ ∀a b c d. cmat2x2 a b c d = vector [vector [a; b]; vector [c; d]]

where cmat2x2 accepts the complex numbers a:C, b:C, c:C and d:C, and
returns the corresponding 2× 2 matrix.

2.2 Complex Analysis Library

Definition 4. Cx and ii
⊢ ∀a. Cx a = complex (a, &0)
⊢ ii = complex (&0, &1)

Cx is a type casting function with a data-type R → C. It accepts a real number
and returns its corresponding complex number with the imaginary part as zero.
The & operator has data-type N → R and is used to map a natural number to a
real number. Similarly, the function ii (iota) represents a complex number with
a real part equal to 0 and the magnitude of the imaginary part equal to 1.

Definition 5. Exponential Functions
⊢ ∀x.exp x = Re (cexp (Cx x))

The HOL Light functions exp and cexp with data-types R → R and C → C
represent the real-valued and complex-valued exponential functions, respectively.

Definition 6. Complex Derivative
⊢ ∀f x. complex_derivative f x =

(@f’.(f has_complex_derivative f’) (at x))

The function complex_derivative describes the complex derivative in func-
tional form. It accepts a function f: C → C and a complex number x, which is
the point at which f has to be differentiated, and returns a variable of data-type
C, providing the derivative of f at x. Here, the term at indicates a specific point
at which the differentiation is being evaluated, namely, at the value of x.

Definition 7. Complex Derivative for Vectors
⊢ ∀f x. complex_derivative_vector Fn x =

(lambda i.complex_derivative (λx. (Fni) x) x)

The function complex_vector_derivative takes a vector Fn, whose elements
are complex functions of data type C → C and a complex number x, which is the
point at which every element of Fn has to be differentiated, and returns a vector
data-type Fn: (C → C)N , where each element corresponds to the derivatives of
the complex functions.
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3 Mathematical Modeling of Coupled Transmission Lines

In various transmission line applications, the proximity of neighboring lines of-
ten results in a level of coupling. This close proximity leads to modifications in
the electromagnetic fields, consequently influencing the propagating voltage and
current waves and in turn, altering the characteristic impedance of the transmis-
sion line. While this coupling may pose a drawback where it leads to undesired
signals, commonly referred to as "cross-talk," it can also serve as a mean of
intentionally transferring a set amount of signal to another circuit for various
purposes such as monitoring, measurement, or signal processing [9]. There ex-
ist two forms of coupling, namely electric and magnetic. The electric coupling
results from charges on one line inducing charges on another, often explained
by mutual capacitance. The magnetic coupling, on the other hand, arises from
the interaction of magnetic flux between the lines and is typically described by
mutual inductance. Figure 1 shows a generic circuit model for the CTLs. Un-
der the assumption of lossless conditions, we consider two isolated transmission
lines characterized by distributed inductances and capacitances per unit length,
represented as Li and Ci for i = 1, 2. The respective propagation velocities and
characteristic impedances are defined as vi = 1/

√
LiCi and Zi =

√
Li/Ci, re-

spectively. To model an interaction between these lines, mutual inductance and
capacitance per unit length, denoted as Lm and Cm, are introduced.

VG1
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ZL1

ZL2

G1Z

ZG2

Z1

2Z

l

Fig. 1. Coupled Transmission Lines [17]

The dynamics of the CTLs can then be mathematically described as follows [9]:
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∂I2
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∂V1

∂t
(4)
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These equations are generalizations of the telegrapher’s equations incorporating
the mutual inductance and capacitance, which were originally developed for a
single transmission line.

To overcome the considerable challenges of solving time-domain PDEs [18],
we utilize the phasor concept to transform them into a set of coupled Or-
dinary Differential Equations (ODEs) for the voltages and currents. For si-
nusoidal steady-state (phasor) excitation of the lines, we obtain by replacing
∂/∂t ⇒ jω [19]:

dV1

dz
= −jωL1I1(z)− jωLmI2(z) (5)

dV2

dz
= −jωLmI1(z)− jωL2I2(z) (6)

dI1
dz

= −jωC1V1(z) + jωCmV2(z) (7)

dI2
dz

= jωCmV1(z)− jωC2V2(z) (8)

Any system of linear equations can be represented in a compact form by a
matrix-vector multiplication equation. For our case, we present Equations (5)-
(8), in matrix form describing the relationship between the currents and voltages
on the coupled transmission line as [9]:

dV
dz

= −jω

[
L1 Lm

Lm L2

]
︸ ︷︷ ︸

L

I (9)

dI
dz

= −jω

[
C1 −Cm

−Cm C2

]
︸ ︷︷ ︸

C

V (10)

where V and I are the column vectors. Moreover, the specific line inductance
L and capacitance C in single transmission line have been replaced with 2 ×
2 matrices denoted as L and C. This modification provides a more detailed
representation of the interaction between two coupled transmission lines, and
hence a more comprehensive understanding of their dynamics.

4 Formal Modeling of Coupled Transmission Lines

In order to formalize the telegrapher’s equations (Equations (5)-(8)) and their
matrix-based representations (Equations (9) and (10)), we first model voltages
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and currents in HOL Light. Furthermore, we model the distributed inductance
and a mutual inductance as well as distributed capacitance and a mutual capac-
itance using the feature of type abbreviation as follows:

new_type_abbrev (“vol",‘:(V1 × V2)‘)
new_type_abbrev (“cur",‘:(I1 × I2)‘)
new_type_abbrev (“vol_cur",‘:(V1 × V2) × (I1 × I2)‘)
new_type_abbrev (“ind_ctls,‘:(L1 × L2) × Lm‘)
new_type_abbrev (“cap_ctls,‘:(C1 × C2) × Cm‘)

Here, V1, V2 are of types voltage functions and I1 and I2 are of types current
functions and they are modeled in HOL Light as:

new_type_abbrev (“vol_fun",‘:(C → C)‘)
new_type_abbrev (“cur_fun",‘:(C → C)‘)

Here, the vol_fun type is employed to represent a voltage function V1(z),
where z is a variable of complex type C.

Now, we formalize Equations (5) and (6) capturing the voltages on CTLs in
HOL Light as follows:

Definition 8. First Equation for Voltage
⊢ ∀V1 I1 I2 L1 Lm w z.

coupled_vol_ode_fst ((V1,V2),(I1,I2))(L1,L2),Lm) z ⇔
complex_derivative (λz. V1(z)) z =

–-ii * Cx w * (Cx L1 * I1(z) + Cx Lm * I2(z))

Definition 9. Second Equation for Voltage
⊢ ∀V1 I1 I2 L1 Lm w z.
coupled_vol_ode_snd ((V1,V2),(I1,I2))(L1,L2),Lm) z ⇔

complex_derivative (λz. V2(z)) z =
–ii * Cx w * (Cx Lm * I1(z) + Cx L2 * I2(z))

where coupled_vol_ode_fst and coupled_vol_ode_snd use the complex-derivative
function in HOL Light to model the telegrapher’s equations. The variables L1:R
and Lm:R represent the distributed and mutual inductance per unit length, re-
spectively. Here, the variables z:C, and w:R denote the spatial coordinate and
the angular frequency, respectively.

Similarly, we can formalize Equations (7) and (8) capturing the currents on
CTLs as:

Definition 10. First Equation for Current
⊢ ∀V1 I1 I2 L1 Lm w z.

coupled_cur_ode_fst ((V1,V2),(I1,I2))(C1,C2),Cm) z ⇔
complex_derivative (λz. I1(z)) z =

–ii * Cx w * (Cx (C1) * V1(z) - Cx (Cm) * V2(z))
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Definition 11. Second Equation for Current
⊢ ∀V1 I1 I2 L1 Lm w z.
coupled_cur_ode_snd ((V1,V2),(I1,I2))(C1,C2),Cm) z ⇔

complex_derivative (λz. I2(z)) z =
–ii * Cx w * (–Cx (Cm) * V1(z) + Cx (C2) * V2(z))

Next, we formalize the matrix representations of the linear system of equa-
tions for voltage and current (Equations (9) and (10)) as follows:

Definition 12. Matrix Characterization of ODE System for Voltage
⊢ ∀V1 V2 I1 I2 L1 L2 Lm w z.

vol_ode_mat_rep ((V1,V2),(I1,I2))((L1,L2),Lm) w z ⇔
(let ind = ((L1,L2),Lm):ind_ctls) and

cur = ((I1,I2):cur) in
complex_derivative_vector (vector [V1; V2]) z =

(––ii * Cx w) %% inductance_mat_const ind ** cur_vec cur z)

where %% and ** model the scalar-matrix and matrix-vector multiplications,
respectively.

Definition 13. Matrix Characterization of ODE System for Current
⊢ ∀V1 V2 I1 I2 L1 L2 Lm w z.

cur_ode_mat_rep ((V1,V2),(I1,I2))((L1,L2),Lm) w z ⇔
(let cap = ((C1,C2),Cm):cap_ctls) and

vol = ((V1,V2):vol) in
complex_derivative_vector (vector [I1; I2]) z =

(–ii * Cx w) %% capacitance_mat_const cap ** vol_vec vol z)

Now, we formally verify the equivalence between the system of linear dif-
ferential equations for the voltages (Equations (5) and (6)) and their matrix
characterizations (Equation (9)) as the following HOL Light theorem:

Theorem 1. Equivalence between ODE Systems and their Matrix Characteri-
zations for Voltages
⊢ ∀V1 V2 I1 I2 L1 L2 Lm z t.

vlcr = ((V1,V2),(I1,I2):vol_cur) and
ind = ((L1,L2),Lm):ind_tls) and
[A1] coupled_vol_ode_fst V1 vlcr ind z w ∧
[A2] coupled_vol_ode_snd V2 vlcr ind z w ⇔

vol_ode_mat_rep vlcr ind w z

Assumptions A1 and A2 present the telegrapher’s equations for the voltages, in
phasor domain, i.e., Equations (5) and (6). The proof of Theorem 1 is based on
properties of complex derivative, complex vectors and complex matrices along-
side some complex arithmetic reasoning.

Next, we formally verify the equivalence of the telegrapher’s equations for
the current (Equations (7) and (8)) and their matrix representations (Equation
(10)).
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Theorem 2. Equivalence between ODE Systems and their Matrix Characteri-
zations for Currents
⊢ ∀V1 V2 I1 I2 L1 L2 Lm z t.

vlcr = ((V1,V2),(I1,I2):vol_cur) and
cap = ((C1,C2),Cm):cap_tls) and
[A1] coupled_cur_ode_fst V1 vlcr cap z w ∧
[A2] coupled_cur_ode_snd V2 vlcr cap z w ⇔

cur_ode_mat_rep vlcr cap w z

The verification of the above theorem is very similar to that of Theorem 1.

5 Formal Verification of Coupled Transmission Lines

To simplify the analysis of the telegrapher’s equations, we consider the scenario
of the identical transmission lines. In this case, we have L1 = L2 ≡ L0 and
C1 = C2 ≡ C0, so that β1 = β2 = ω

√
L0C0 ≡ β and Z1 = Z2 =

√
L0/C0 ≡ Z0.

Additionally, the wave propagation speed is defined as v0 = 1/
√
L0C0. If two

lossless coupled lines have the same self-inductance parameters L1 = L2 ≡ L0

and self-capacitance parameters C1 = C2 ≡ C0, the coupled-line structure is
considered symmetric. The final solution for symmetric coupled lines can be
efficiently derived by combining two single-line scenarios. This is achieved by
applying two specific types of excitations: even and odd mode excitations. In
the even mode, currents in the conductors exhibit equal magnitudes and flow
in parallel directions, while in the odd mode, currents in the conductors possess
equal magnitudes but flow in opposite directions. It is important to emphasize
that this paper primarily focuses on verifying the final solution of the telegra-
pher’s equation rather than the derivation process of the solution.

We now mathematically express the final solutions of the telegrapher’s equa-
tions for the CTLs in terms of even and odd modes for the voltages and currents
as follows:

V1(z) =
e−jβ+z + ΓL+e

−2jβ+lejβ+z

1− ΓG+ΓL+e−2jβ+l
V+︸ ︷︷ ︸

even

+
e−jβ−z + ΓL−e

−2jβ−lejβ−z

1− ΓG−ΓL−e−2jβ−l
V−︸ ︷︷ ︸

odd

(11)

V2(z) =
e−jβ+z + ΓL+e

−2jβ+lejβ+z

1− ΓG+ΓL+e−2jβ+l
V+︸ ︷︷ ︸

even

− e−jβ−z + ΓL−e
−2jβ−lejβ−z

1− ΓG−ΓL−e−2jβ−l
V−︸ ︷︷ ︸

odd

(12)

Similarly, the general solutions for the currents can be mathematically express
as:
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I1(z) =
1

Z+

e−jβ+z − ΓL+e
−2jβ+lejβ+z

1− ΓG+ΓL+e−2jβ+l
V+︸ ︷︷ ︸

even

+
e−jβ−z − ΓL−e

−2jβ−lejβ−z

1− ΓG−ΓL−e−2jβ−l
V−︸ ︷︷ ︸

odd


(13)

I2(z) =
1

Z−

e−jβ+z − ΓL+e
−2jβ+lejβ+z

1− ΓG+ΓL+e−2jβ+l
V+︸ ︷︷ ︸

even

− e−jβ−z − ΓL−e
−2jβ−lejβ−z

1− ΓG−ΓL−e−2jβ−l
V−︸ ︷︷ ︸

odd


(14)

In this context, the parameters β± and Z± indicate the wave numbers and the
impedances, respectively and they can be mathematically express as follows:

β+ = ω
√
(L0 + Lm)(C0)− Cm

β− = ω
√
(L0 − Lm)(C0) + Cm

(15)

and

Z+ =

√
L0 + Lm

C0 − Cm

Z− =

√
L0 − Lm

C0 + Cm

(16)

In order to formalize the general solutions of telegrapher’s equations for the
voltages and currents, we first define the types of the reflection coefficients, i.e.,
g1, g2, g3, g4 denoted by ΓL+, ΓG+, ΓL− and ΓG− and the transmission line
constants for identical lines as 4-tuples, and the complex constants associated
with V+ and V− in HOL Light. Also, the types of the coefficients are given in
Table 1.

new_type_abbrev (“ref_cons",‘: (g1 × g2 × g3 × g4)‘)
new_type_abbrev (“ind_cap",‘: (L1 × L2 × C1 × C2)‘)
new_type_abbrev (“vol_const",‘: (Vp × Vm)‘)

Next, we model the inductances and capacitances as non-negative quantities in
HOL Light as:

Definition 14. Valid Transmission Line
⊢ ∀L0 Lm C0 Cm. valid_tlc (L1,L2,C1,C2) =

(&0 < L1) ∧ (&0 < L2) ∧ (&0 < C1) ∧ (&0 < C2)
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Table 1. Data Types of Coefficients

Parameter
Description

Standard
Symbol

HOL Light
Symbol: Type

The reflection coefficient at the load in even mode ΓL+ g1: C
The reflection coefficient at the generator in even mode ΓG+ g2: C
The reflection coefficient at the load in odd mode ΓL− g3: C
The reflection coefficient at the generator in odd mode ΓG− g4: C
Complex constant V+ Vm: C
Complex constant V− Vp: C

Following that, we formalize conditions indicating that transmission lines are
considered identical as:

Definition 15. Identical Lines
⊢ ∀L0 C0 L1 L2 C1 C2.

ind_cap_asm ((L1,L2,C1,C2):inds_caps) =
(L1 = L0) ∧ (L2 = L0) ∧ (C1 = C0) ∧ (C2 = C0))

We now present the formalization of the general solutions of the telegrapher’s
equations (Equations (9) and (10)) for voltage and current. For brevity, we only
provide the solutions for the first voltage and current, i.e., Equations (11) and
(13). These solutions are formalized in HOL Light as follows:

Definition 16. First Voltage Solution
⊢ ∀Vm Vp L1 L2 C1 C2 g1 g2 g3 g4 z l w.
vol_sol_fst (Vm,Vp)(L1,L2,C1,C2)(g1,g2,g3,g4) z l w =
(let tlc = ((L1,L2,C1,C2):ind_cap) in
Vm * ((cexp(––ii * Cx(wn_fst tlc w) * z) + g1 * cexp (Cx(&2) *

––ii * Cx(wn_fst tlc w) * Cx l) * cexp(ii * Cx(wn_fst tlc w) * z)) /
(Cx(&1) - g2 * g1 * cexp(Cx(&2) * ––ii * Cx(wn_fst tlc w) * Cx l))) +
Vp * ((cexp (––ii * Cx(wn_snd tlc w) * z) + g3 * cexp(Cx(&2) *
––ii * Cx(wn_snd tlc w) * Cx l) * cexp(ii * Cx(wn_snd tlc w) * z)) /
(Cx(&1) - g4 * g3 * cexp (Cx(&2) * ––ii * Cx(wn_snd tlc w) * Cx l))))

Definition 17. First Current Solution
⊢ ∀Vm Vp L1 L2 C1 C2 g1 g2 g3 g4 z l w.
cur_sol_fst (Vm,Vp)(L1,L2,C1,C2)(g1,g2,g3,g4) z l w =
(let tlc = ((L1,L2,C1,C2):ind_cap) in
Cx (&1 / char_imp_fst tlc) * (Vm * ((cexp(––ii * Cx(wn_fst tlc w) * z) -
g1 * cexp (Cx(&2) * ––ii * Cx(wn_fst tlc w) * Cx l) *
cexp(ii * Cx(wn_fst tlc w) * z)) / (Cx(&1) - g2 * g1 * cexp(Cx(&2) *
––ii * Cx(wn_fst tlc w) * Cx l)))) + Cx (&1 / char_imp_snd tlc) *
(Vp * ((cexp (––ii * Cx(wn_snd tlc w) * z) - g3 * cexp(Cx(&2) * ––ii *

Cx(wn_snd tlc w) * Cx l) * cexp(ii * Cx(wn_snd tlc w) * z)) /
(Cx(&1) - g4 * g3 * cexp (Cx(&2) * ––ii * Cx(wn_snd tlc w) * Cx l))))
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where vol_sol_fst and cur_sol_fst accept the inductances L1:R, L2:R, the
capacitances C1:R, C2:R, the complex constants Vm and Vp, the reflection coef-
ficients g1, g2, g3, g4, the spatial coordinate z, the angular frequency ω:R and
the boundary condition l:R and return the corresponding definitions. Moreover,
wn_fst and wn_snd refer to the wave numbers in Equation (15), respectively.
In addition, char_imp_fst and char_imp_snd correspond to the characteris-
tic impedances in Equation (16), respectively. The second voltage and current
solutions, i.e., Equations (12) and (14) are formalized in a similar manner.

Next, utilizing Definitions 16 and 17, we formalize the general solutions for
voltages and currents in vector form for more compact representation:

Definition 18. Vector Forms of the General Solutions for the Voltages
⊢ ∀Vm Vp L1 L2 C1 C2 g1 g2 g3 g4 z l w.

vol_sol_vec (V1,V2)(Vm,Vp)(L1,L2,C1,C2)(g1,g2,g3,g4) z l w ⇔
(let ind_cap = ((L1,L2,C1,C2):ind_cap) and

rc = ((g1,g2,g3,g4):ref_cons) and
vc = ((Vm,Vp):vol_const) in
vector[V1 z; V2 z] = vector[vol_sol_fst vc tlc rc z l w ;

vol_sol_snd vc tlc rc z l w])

Here, vol_sol_fst and vol_sol_snd represent the general solutions for the
voltages.

Definition 19. Vector Forms of the General Solutions for the Currents
⊢ ∀Vm Vp L1 L2 C1 C2 g1 g2 g3 g4 z l w.

cur_sol_vec (V1,V2)(Vm,Vp)(L1,L2,C1,C2)(g1,g2,g3,g4) z l w ⇔
(let ind_cap = ((L1,L2,C1,C2):ind_cap) and

rc = ((g1,g2,g3,g4):ref_cons) and
vc = ((Vm,Vp):vol_const) in
vector[I1 z; I2 z] = vector[cur_sol_fst vc tlc rc z l w ;

cur_sol_snd vc tlc rc z l w])

Similarly, cur_sol_fst and cur_sol_snd represent the general solutions for the
currents. The final step is to formally verify the correctness of the solutions of
the generalized telegrapher’s equations as the following HOL Light theorem:

Theorem 3. Verification of the General Solutions of the Telegrapher’s Equation
⊢ ∀V1 V2 I1 I2 C1 C2 L1 L2 V3 V4 L0 Lm C0 Cm g1 g2 g3 g4 l w.

let tlc = (L1,L2,C1,C2) and
ind = ((L1,L2),Lm) and
cap = (C1,C2),Cm) and
vol = (V1,V2) and
cur = (I1,I2)) and
rc = (g1,g2,g3,g4) and
vc = (Vm,Vp) in
[A1] valid_tc tlc ∧ [A2] ind_cap_asm tlc ics ∧
[A3] (∀z. vol_sol_vec vol vc tlc rc z l w) ∧
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[A4] (∀z. cur_sol_vec cur vc tlc rc z l w)
⇒ vol_ode_mat_rep vol cur ind w z ∧

cur_ode_mat_rep vol cur cap w z

Assumption A1 ensures the validity of the TLs. Assumption A2 models the condi-
tions pertaining identical transmission lines. Assumptions A3 and A4 provide the
general solutions of the telegrapher’s equations for the voltages and the currents
in vector form. Finally, the conclusion of the theorem presents the generalized
telegrapher’s equations, i.e., Equations (9) and (10). The verification of Theo-
rem 3 is mainly based on the following four important formally verified lemmas
about the complex derivatives of the general solutions.

Lemma 1. Verification of the First Voltage Solution
⊢ ∀I1 I2 V1 Vm Vp g1 g2 g3 g4 L0 L1 C0 Cm l w.

let ind = ((L1,L2),Lm)):ind_ctls) and
cur = ((I1,I2):currents) and
tlc = ((L1,L2,C1,C2):ind_cap) and
rc = ((g1,g2,g3,g4):ref_const) and
vc = ((Vm,Vp):vol_const) in
[A1] valid_tc tlc ∧ [A2] Lm < L0 ∧ [A3] Cm < C0 ∧ [A4] L1 = L0 ∧
[A5](∀z.V1 z = vol_sol_fst vc tlc rc z l w) ∧
[A6](∀z.I1 z = cur_sol_fst vc tlc rc z l w) ∧
[A7](∀z.I2 z = cur_sol_snd vc tlc rc z l w)
⇒ coupled_vol_ode_fst V1 cur ind z w

Assumption A1 ensures the validity of the TLs. Assumptions A2 and A3 indicate
that the distributed inductance and capacitance are greater than the mutual
inductance and capacitance, respectively. Assumption A4 is a condition for the
identical lines. Assumption A5 provides the first voltage solution (Equation (11))
of the telegrapher’s equation. Assumptions A6 and A7 provide the general solu-
tions of the telegrapher’s equations for the currents (Equations (13) and (14)).
The conclusion of the lemma provides the telegrapher’s equation for the first
voltage (Equation (5)). The proof of Lemma 1 is mainly based on the proper-
ties of transcendental functions [20], complex derivatives [21] along with some
complex arithmetic reasoning.

Lemma 2. Verification of the Second Voltage Solution
⊢ ∀I1 I2 V1 Vm Vp g1 g2 g3 g4 L0 L2 C0 Cm l w.

let ind = ((L1,L2),Lm)):ind_ctls) and
cur = ((I1,I2):currents) and
tlc = ((L1,L2,C1,C2):ind_cap) and
rc = ((g1,g2,g3,g4):ref_const) and
vc = ((Vm,Vp):vol_const) in
[A1] valid_tc lc ∧ [A2] Lm < L0 ∧ [A3] Cm < C0 ∧ [A4] L2 = L0 ∧
[A5](∀z.V2 z = volt_sol_snd vc tlc rc z l w) ∧
[A6](∀z.I1 z = cur_sol_fst vc tlc rc z l w) ∧
[A7](∀z.I2 z = cur_sol_snd vc tlc rc z l w)
⇒ coupled_vol_ode_snd V2 cur ind z w
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Assumptions A1-A4 are the same as those of Lemma 1. Assumption A5 provides
the second voltage solution (Equation (12)) of the telegrapher’s equation. As-
sumptions A6-A7 are also the same as those of Lemma 1. The conclusion of the
lemma provides the telegrapher’s equation for the second voltage (Equation (6)).
The verification of the above lemma is very similar to that of Lemma 1.

In the next two HOL Light lemmas, we formally verify the derivatives of the
general solutions for currents.

Lemma 3. Verification of the First Current Solution
⊢ ∀I1 I2 V1 Vm Vp g1 g2 g3 g4 L0 C0 C1 C0 Cm l w.

let cap = ((C1,C2),Cm)):cap_ctls) and
vol = ((V1,V2):voltages) and
tlc = ((L1,L2,C1,C2):ind_cap) and
rc = ((g1,g2,g3,g4):ref_const) and
vc = ((V3,V4):vol_const) in
[A1]valid_tc tlc ∧ [A2] Lm < L0 ∧ [A3] Cm < C0 ∧ [A4] C1 = C0 ∧
[A5] (∀z.I1 z = cur_sol_fst vc tlc rc z l w) ∧
[A6] (∀z.V1 z = vol_sol_fst vc tlc rc z l w) ∧
[A7] (∀z.V2 z = vol_sol_snd vc tlc rc z l w )
⇒ coupled_cur_ode_fst I1 vol cap z w

Assumptions A1-A4 are the same as those of the above lemmas. Assumption A5
provides the first current solution (Equation (13)) of the telegrapher’s equation.
Assumptions A6-A7 provide the general solutions for the voltages (Equations
(11) and (12)). The conclusion of the lemma provides the telegrapher’s equation
for the first current (Equation (7)). The verification of the above lemma is very
similar to those of Lemmas 1 and 2.

Lemma 4. Verification of the Second Current Solution
⊢ ∀I1 I2 L1 V1 Vm Vp g1 g2 g3 g4 L0 Lm C0 C2 Cm l w.

let cap = ((C1,C2),Cm)):cap_ctls) and
vol = ((V1,V2):voltages) and
tlc = ((L1,L2,C1,C2):ind_cap) and
rc = ((g1,g2,g3,g4):ref_const) and
vc = ((V3,V4):vol_const) in
[A1] valid_tc lc ∧ [A2] Cm < C0 ∧ [A3] Lm < L0 ∧ [A4] C2 = C0 ∧
[A5] (∀z.I2 z = cur_sol_snd vc tlc rc z l w) ∧
[A6] (∀z.V1 z = vol_sol_fst vc tlc rc z l w) ∧
[A7] (∀z.V2 z = vol_sol_snd vc tlc rc z l w )
⇒ coupled_cur_ode_snd I2 vol cap z w

Assumptions A1-A4 are the same as those of the above lemmas. Assumption A5
provide the second current solution (Equation (14)) of the telegrapher’s equation.
Assumptions A6-A7 provide the general solutions for the voltages (Equations (11)
and (12)). The conclusion of the lemma provides the telegrapher’s equation for
the second current (8)). The verification of the above lemma is very similar to
those of the lemmas above.
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Discussion

In this paper, we proposed to use the HOL Light proof assistant for the for-
mal verification of coupled transmission lines. An important aspect of our work
is the utilization of theorem proving into a domain that has been traditionally
dominated by numerical techniques. The analysis of coupled transmission lines
requires to understand various fundamental aspects, ranging from electromag-
netic theory to microwave engineering. In particular, for those of us who are not
experts in electromagnetics, it has been challenging to comprehend the formal
definitions used to model transmission systems and phenomena. Another chal-
lenge encountered during this formalization was the mathematical proof itself.
We relied on snippets of proofs gathered from the literature including textbooks,
articles and courses. However, we frequently found these traditional pen-and-
paper proofs to be somewhat incomplete or lack rigorous details. Due to the
nature of the analysis, we had to develop our own proof with all necessary de-
tails for the verification process. The primary benefit of this work includes the
accuracy of verified results and the revelation of hidden assumptions, which are
often omitted in textbooks and engineering literature. Furthermore, every ver-
ified theorem and lemma is made general, allowing for further extensions. We
believe our work to be useful in the design and analysis of systems involving
transmission lines from various engineering and physical science disciplines such
as communication systems, electromagnetics, RF and microwave engineering.

6 Conclusion

Coupled transmission lines are traditionally described by a system of differential
equations. In this paper, we first formalized the dynamics of the CTLs using the
telegrapher’s equations in phasor domain. Since the behavior of the line can be
fully characterized using circuit theory parameters, such as matrices represent-
ing inductances, capacitances, resistances, and conductances per unit length, we
modeled these equations in matrix forms for a more compact representation and
ease of the formal analysis. We then formally verified the analytical solutions of
the telegrapher’s equations for the CTLs. It is important to note that our anal-
ysis is conducted under the assumption of lossless lines, where resistances and
conductances are assumed to be zero. Our research revealed numerous promis-
ing directions for future work. Our first goal is to extend the phasor domain
solutions into the time domain and verify their correctness for the time domain
partial differential equations. Second, we intend to explore the possibility of for-
mally analyzing the results to determine crosstalk in communication circuits.
Finally, we aim to formally analyze cable coupling, which is significant in in-
dustrial automation systems where precise control and monitoring of machinery
and processes are crucial.
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