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Abstract. Potential flow is a theoretical model that describes the move-
ment of a fluid, e.g., water or air in situations where viscosity and tur-
bulence are assumed to be negligible. This type of flow is often used as
an idealized model to describe the behavior of fluids in specific contexts,
such as in fluid dynamics and aerodynamics. In this paper, we present
a higher-order logic formalization of potential flows that are governed
by the Laplace’s equation. We focus on formally modeling fundamental
flows such as the uniform, source/sink, doublet, and vortex flows in the
HOL Light theorem prover. We then prove the validity of the exact solu-
tions of the Laplace’s equation for these types of flows. We also present
the formal verification of the linearity of the Laplace’s operator, which
is essential for applying the superposition principle. In order to demon-
strate the practical effectiveness of our formalization, we formally verify
several applications such as rankine oval, flow past a circular cylinder and
flow past a rotating circular cylinder, each of which involves combining
these standard flows to model more complex fluid dynamics.

Keywords: Potential Flows, Partial Differential Equations, Laplace’s
Equation, Higher-Order Logic, Theorem Proving, HOL Light

1 Introduction

Potential flow theory is a key concept in the discipline of fluid dynamics. It uses
harmonic functions to study a wide range of fluid-related phenomena within the
theoretical framework of this field of study. Potential flow describes the velocity
field as the gradient of a scalar function known as the velocity potential. More-
over, it characterizes the flow as irrotational and incompressible and provides
valuable insights into fluid dynamics. This idealization is in close approximation
to real-world scenarios of practical importance. For instance, in aerodynamics,
this theory has played a pivotal role in developing analytical models to under-
stand airflow around airfoils, wings, and related aerodynamic surfaces, which in
turn facilitate the prediction of crucial aerodynamic forces such as lifts [12].

The foundation of addressing aerodynamic problems lies in the equations
that govern the flow. While fluid motion is governed by the Navier-Stokes (NS)
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equations [17], which is a vector equation that includes three different scalar
equations along with the conservation of the mass equation [18], their nonlinear
nature renders them challenging to solve [13]. Consequently, the Laplace equa-
tion, which is a prevalent class of partial differential equations [16] emerges as
a preferred alternative, providing an exact representation of incompressible, in-
viscid and irrotational flows. Unlike the NS equations, the use of the Laplace
equation is much easier than using fully viscous NS equations. This equation
forms the basis of potential flow theory, where both the stream function and ve-
locity potential, as algebraic functions satisfying the Laplace’s equation, can be
combined to construct flow fields. Moreover, the superposition of basic potential
flow solutions is a crucial step in the analysis of aerodynamic configurations.
This method leverages the linearity of the Laplace equation, enabling for the
construction of models that represent intricate scenarios by combining simpler
flow elements [15].

Due to the fundamental importance of the Laplace equation in physics, ap-
plied mathematics, and engineering, numerous well-established analytical and
numerical techniques exist for solving this equation, especially in the field of
aerodynamics. These techniques are also useful in developing advanced com-
putational methods for determining potential flows around the complex three-
dimensional geometries common in modern aircraft design [12]. For instance, the
method of images [8] are applied to model potential flows around airfoils and
wings, where a combination of real and image sources helps satisfy the no-flow
boundary conditions on solid surfaces. On the other hand, numerical techniques
such as the panel methods [3] are computational models that simplify the as-
sumptions concerning the aerodynamic principles and characteristics of airflow
over an aircraft. Despite the prevalence of traditional techniques in analyzing
aerodynamic problems, there exists a notable concern regarding their accuracy.
For instance, paper-and-pencil methods carry a risk of human errors. It is possi-
ble that a mathematical result may be misapplied when using a manual method,
as it is not possible to guarantee that all required assumptions are valid. In
regard to simulation tools, the accuracy of simulation results depends on vari-
ous factors, including the precision of numerical techniques, and computational
issues may arise, especially in the context of large models.

In contrast, formal verification employs computer-based techniques for the
mathematical modeling, analysis, and verification of abstract and physical sys-
tems. A prominent technique in formal verification is higher-order-logic (HOL)
theorem proving [10], which is an interactive approach that involves human-
machine collaboration for the development of correct proofs. Its expressive capa-
bilities are sufficient for the description of the majority of classical mathematical
theories, including differentiation, integration, higher transcendental functions,
and topological spaces. Given the fundamental role of potential flow theory in
the early stages of aircraft design, where it is used to predict the behavior of
airflow around wings, the safety-critical nature of potential flow applications
becomes evident. Therefore, it is imperative to employ robust verification tools
that can ensure the accuracy and reliability of these theoretical models.
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In this paper, we propose to use higher-order logic theorem proving for the
formalization of standard potential flows that are governed by the Laplace’s
equation. We also provide the formal verification of these exact potential flow
solutions along with their applications in aerodynamics.

The major contributions of the paper are:

◦ Higher-order logic formalization of real potential flows, namely, uniform,
source/sink, doublet and vortex flows.

◦ Formal verification of the validity of these potential flow solutions for the
Laplace’s equation for aerodynamic applications

◦ Formal verification of the linearity of the Laplace’s operator
◦ Formal verification of several applications built by superimposing these real

flows

While there exist some formalization work of other types of partial differen-
tial equations, such as the Wave Equation [4], the Heat Equation [6] and the
Telegrapher’s Equation [7], to the best of our knowledge, there exists no formal-
ization of the Laplace equation in the literature. Therefore, the formal analysis of
potential flows governed by the Laplace’s equation using HOL theorem proving
is the first of its kind, which could be very useful for safety-critical applications.

The rest of the paper is organized as follows: Section 2 describes some pre-
liminary details of the potential flow theory and the HOL Light theorem prover
that are necessary for understanding the rest of the paper. We present the for-
malization of standard potential flows in Section 3. In Section 4, we provide the
formal verification of the validity of the exact potential flow solutions for the
Laplace’s equation. Section 5 provides the formal verification of the linearity of
the Laplace’s operator as well as the verification of more complicated flows that
are constructed by combining the standard potential flows. Finally, Section 6
concludes the paper.

2 Preliminaries

In this section, we briefly describe the HOL Light theorem prover as well as some
of the associated functions and symbols that are necessary for understanding the
rest of the paper. We also provide some background knowledge about potential
flow theory.

2.1 HOL Light Theorem Prover

Interactive theorem proving is a collaborative process between a machine and a
human user, where they work together interactively to generate a formal proof.
The use of theorem proving systems is common in the verification of both soft-
ware and hardware as well as in pure mathematics. For instance, a verification
engineer can manually build a logical model of the system and subsequently
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verify the desired properties while providing guidance to the theorem proving
tool. Similarly, a mathematician can use theorem provers in the verification of
standard pure mathematical contexts. HOL Light [11], developed by Harrison,
is one of the theorem provers in the HOL family [10], characterized by its small
logical kernel. In HOL Light, the process of proving a theorem begins with the
user entering the theorem’s statement as the goal in a new proof. The proofs in
HOL Light rely on tactics that break down complex goals into more straightfor-
ward subgoals. Furthermore, HOL Light provides a variety of automated proof
procedures and proof assistants to assist users in guiding and completing their
proofs. In addition, users have the flexibility to craft and implement their own
personalized automation methods.

Table 1 provides the mathematical interpretations of some of the HOL Light
symbols and functions used in this paper.

Table 1: HOL Light Symbols
HOL Light Symbols Standard Symbols Description

&a N → R Type casting from Natural numbers to Reals
&num {0, 1, 2..} Positive Integers data type
λx.t λx. t Function that maps x to t(x)
real R Real data type
@f Hilbert choice operator Returns f if it exists

atreal x Real net At real variable x
--x −x Unary negation of x

2.2 Brief Review of Potential Flow Theory

Potential flow can be defined as steady, incompressible and irrotational flow. A
condition that is necessary and sufficient to identify a flow as irrotational:

−→
∇ ×

−→
V = 0 (1)

This indicates that the velocity field V is a conservative vector field denoted by
the gradient of a scalar velocity potential function (ϕ):

−→
V = −→

∇ϕ (2)
If the velocity potential is known, then the velocity at any point can be deter-
mined using

u = ∂ϕ

∂x
, v = ∂ϕ

∂y
(3)

The irrotationality condition for two-dimensional flows vorticity is given by:

∂v

∂x
− ∂u

∂y
= ξ (4)
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Here, ξ = 0 since the flow is irrotational.
Similarly, in the case of an incompressible flow, it follows from the continuity

equation that:
−→
∇ .

−→
V = ∂u

∂x
+ ∂u

∂y
= 0 (5)

The two-dimensional continuous flow is described by the stream function (for
incompressible flow) ψ, which determines the velocity at any point as:

u = ∂ψ

∂y
, v = −∂ψ

∂x
(6)

Substituting Equations (3) and (6) into Equations (5) and (4), respectively,
yields the conditions for continuous irrotational flow:

∂2ϕ

∂x2 + ∂2ϕ

∂y2 = 0 = ∂2ψ

∂x2 + ∂2ψ

∂y2 (7)

which is Laplace’s equation in Cartesian coordinates [12]. It can also be written
in polar coordinates as:

∇2ψ = ∂2ψ

∂r2 + 1
r

∂ψ

∂r
+ 1
r2
∂2ψ

∂θ2 (8)

where the operator nable squared

∇2 = ∂2

∂x2 + ∂2

∂y2

is referred to as the Laplacian operator.
Both the velocity potential (ϕ) and the stream function (ψ) are employed to

describe the flow field in fluid dynamics and they satisfy the Laplace’s equation.
There are notable similarities and differences between the stream function and
the velocity potential. For instance, while the stream function can be employed
to describe both rotational and irrotational flows, the velocity potential is only
defined for irrotational flow. On the other hand, the velocity potential is ap-
plicable to three-dimensional flows, whereas the stream function has only been
defined for two-dimensional flows.

There are several techniques available to determine both the velocity poten-
tial (ϕ) and the stream function (ψ). For instance, commmon numerical and
analytical techniques such as Finite Element Method (FEM) [5] and sepera-
tion of variables [9], respectively are frequently used to solve Laplace’s equation
with the appropriate boundary conditions. Another popular technique is to find
some simple functions that satisfy the Laplace’s equation and to model the flow
around the body of interest, which is possible due to the linearity of the Laplace’s
equation. The focus of this paper will be this latter method, which is the most
widely used procedure for potential flows. In the next section, we will present
the formalization of these basic flows.
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3 Formalizing Standard Potential Flow Solutions

In this section, we present some basic functions which satisfy the Laplace’s equa-
tion. Any function that satisfies this equation describes a potential flow. It is
noteworthy that in this work, we are interested in employing exact potential
flow solutions to formally validate them for the Laplace’s equation. Furthermore,
our objective is to use these elementary flows as building blocks to construct a
desired flow field, rather than deriving them.

3.1 Uniform Flow

The most basic type of flow is a uniform steady flow as shown in Figure 1. A
uniform flow directed in the positive x-direction has the velocity components
u = U and v = 0 everywhere. This type of flow is irrotational and therefore
possesses a velocity potential ϕ, which can be shown as follows:

Fig. 1: Uniform Flow

ϕ = Ux (9)
Additionally, the stream function can be
expressed as:

ψ = Uy (10)

The formal representation of a uniform flow
for the stream function is given as follows:
Definition 1. Uniform Flow
⊢def ∀U y. stream uniform U y = U * y

3.2 Source/Sink Flow

In two-dimensional fluid dynamics, a source is defined as a point where fluid
propagates radially outward, while a sink represents a point of negative source
characterized by inward radial fluid movement as illustrated in Figure 2(a) and
2(b), respectively.

(a) (b)Source flow Sink flow

Fig. 2: Source/Sink Flow



Formalizing Potential Flows using the HOL Light Theorem Prover 7

The exact potential flow solutions centered at point (x0,y0) for the stream func-
tion and the velocity potential are mathematically expressed as [12]:

ψ(x, y) = m

2π tan
−1

(
y − y0

x− x0

)
(11)

ϕ(x, y) = m

4π In((x− x0)2 + (y − y0)2) (12)

Here, m denotes the strength of the source. A positive m (m > 0) denotes a
source flow, whereas a negative m (m < 0) indicates a sink flow.

Now, we formalize the above equations, i.e., Equations (11) and (12) in HOL
Light as follows:

Definition 2. Source Flow for the Stream Function
⊢def ∀m x y x0 y0.

stream source m x y x0 y0 =
m / (&2 * pi) * atn ((y - y0) / (x - x0))

Definition 3. Source Flow for the Velocity Potential
⊢def ∀m x y x0 y0.

velocity source m x y x0 y0 =
m / (&4 * pi) * log ((x - x0) pow 2 + (y - y0) pow 2)

Here, atn and log indicate the inverse of the tangent function and the natural
logarithm, respectively.

In the next subsections, we will use the polar coordinates r and θ to describe
the doublet and vortex flows. Note that uniform and source/sink flows can be
similarly represented using polar coordinates, utilizing the relationships x =
r cos θ, y = r sin θ. These transformations are particularly useful for practical
examples.

3.3 Doublet Flow

As depicted in Figure 3, the doublet is a special flow pattern that arises when a
source and a sink of equal strength are constrained to have a constant ratio of
strength to distance (κ), as the distance approaches zero.

Fig. 3: Doublet Flow

The resulting solutions for the stream
function and the velocity potential are as
follows:

ψ(r, θ) = − κ

2πr sinθ (13)

ϕ(r, θ) = κ

2πr cosθ (14)
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The next step is to formalize the above equations (Equations (13) and (14)) in
HOL Light:

Definition 4. Doublet Flow for the Stream Function
⊢def ∀K theta r.

stream doublet K theta r = --(K / (&2 * pi * r)) * sin (theta)

Definition 5. Doublet Flow for the Velocity Potential
⊢def ∀K theta r.

velocity doublet K theta r = (K / (&2 * pi * r)) * cos (theta)

where stream doublet and stream doublet accept the strength K, the radius
r and the angle theta and return the corresponding functions.

3.4 Vortex Flow

A two-dimensional, steady flow that circulates about a point is known as a line
vortex. In this type of flow, the streamlines form concentric circles around a
specific point as shown in Figure 4.

Fig. 4: Vortex Flow

It is important to note that
the irrotational nature of the flow
is not contradicted by the poten-
tial vortex formulation. Fluid el-
ements travel in a circular path
around the vortex centre without
rotating about their axes, thus
meeting the condition of irrota-
tional flow.

The exact potential flow so-
lution centered at the origin is
mathematically expressed as:

ψ(r, θ) = Γ

2π In(r) (15)

ϕ(r, θ) = − Γ

2π θ (16)

where Γ represents the circulation, which is often positive when moving counter-
clockwise.

Next, we formalize the vortex flow for the stream function and the velocity
potential, i.e., Equations (15) and (16) as:

Definition 6. Vortex Flow for the Stream Function
⊢def ∀gamma r.

stream vortex gamma r = gamma / (&2 * pi) * log (r)
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Definition 7. Vortex Flow for the Velocity Potential
⊢def ∀gamma theta.

velocity vortex gamma theta = --gamma / (&2 * pi) * theta

Table 2 summarizes the potential flows that are presented in this section.

Table 2: Standard Flows Overview

Flow Type Stream Function Velocity Potential
Uniform flow in
the x-direction ψ(x, y) = Uy ψ(x, y) = Ux

Source/Sink ψ(x, y) = m

2π tan
−1

(
y − y0

x− x0

)
ϕ(x, y) = m

4π In((x− x0)2 +
(y − y0)2)

Doublet ψ(r, θ) = − κ

2πr sinθ ϕ(r, θ) = κ

2πr cosθ

Vortex ψ(r, θ) = Γ

2π In(r) ϕ(r, θ) = − Γ

2π θ

4 Formal Verification of the Laplace Equation’s Solutions

In this section, we present the formal verification of the exact potential flow
solutions of the Laplace’s equation. The purpose of this verification is to ensure
the correctness of analytical solutions and then establish their foundational role
in describing fluid behavior and facilitating engineering applications.

For this verification, our first step is to formalize the Laplace’s equation in
both Cartesian and polar coordinates in the HOL Light as follows 1:

Definition 8. The Laplace’s Equation in Cartesian Coordinates
⊢def laplace equation psi(x,y) ⇔ laplace operator psi(x,y) = &0

where Laplace equation accepts the real function psi: R × R → R, the space
variables x:R and y:R and returns the corresponding Laplace’s equation. The
function Laplace operator is formalized as:

Definition 9. Laplace Operator
⊢def ∀psi x y.
laplace operator psi(x,y) =

higher real derivative 2 (λx. psi(x,y)) x +
higher real derivative 2 (λy. psi(x,y)) y

1 Here, we present the formalizations for the stream function for brevity. The verifi-
cation presented in this section was also done for the velocity potential.
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Here, higher real derivative represents the nth-order real derivative of a
function.

The formal representation of the Laplace’s equation in polar coordinates, i.e.,
Equation (8) is given as follows:

Definition 10. The Laplace’s Equation in Polar Coordinates
⊢def ∀psi r theta.
laplace in polar psi r theta =

higher real derivative 2 (λr. psi(r,theta)) r +
&1/r * higher real derivative (λr. psi(r,theta)) r +

&1/(r pow 2) * higher real derivative (λtheta. psi(r,theta)) theta = &0

where the HOL Light function laplace in polar mainly accepts the function
psi of type R × R → R, the radial distance r and the angle theta and returns
the corresponding equation. We can also formalize the Laplace’s equation for
the velocity potential in a similar manner.

With the formal definitions outlined previously, an important step is to verify
that these potential flow solutions satisfy the Laplace’s equation. In other words,
this is the main condition for potential flows to be valid, which is fundamental for
understanding fluid behavior in various contexts. We start with the verification
of the source flow for the stream function, i.e., Equation (11) in HOL Light as
follows:

Theorem 1. Verification of Source Flow for the Stream Function
⊢thm ∀m x0 y0 psi.

[A1] (∀x. x ̸= x0) ∧ [A2] (∀y. y ̸= y0) ∧
[A3] (∀x y. psi(x,y) = stream source m x y x0 y0)

⇒ stream laplace psi x y

Assumptions A1 and A2 ensure that the points in a Cartesian coordinate sys-
tem are different than each other. Assumption A3 provides the solution of the
Laplace’s equation for source flow, i.e., Equation (11). The proof of the above
theorem is mainly based on the real differentiation of the source flow solution
with respect to the parameters x and y.

Our next step is to formally verify the doublet flow (Equation (13)) as the
following HOL Light theorem:

Theorem 2. Verification of Doublet Flow for the Stream Function
⊢thm ∀K u.

[A1] (λr. &0 < r) ∧
[A2] (∀r theta. psi(r,theta) = stream doublet K theta r))

⇒ laplace in polar psi r theta

Assumption A1 is required to ensure that the radial distance is greater than zero.
Assumption A2 provides the solution of the Laplace’s equation in polar coordi-
nates (Equation (8)) for doublet flow (Equation (13)).
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The verification of Theorem 2 is mainly based on the properties of real deriva-
tive [1] and some real arithmetic reasoning.

Finally, the vortex flow, i.e., Equation (15) is verified as the following theo-
rem:

Theorem 3. Verification of Vortex Flow for the Stream Function
⊢thm ∀gamma u.

[A1] (λr. &0 < r) ∧
[A2] (∀r theta. psi(r,theta) = stream vortex gamma u r theta))

⇒ laplace in polar psi r theta

Assumption A1 is the same as that of Theorem 2. The conclusion of Theorem 3
provides that the vortex flow solution satisfies the Laplace’s equation. The proof
of Theorem 3 is primarily based on the real differentiation of the vortex flow
solution with respect to the parameters r and theta.

In the next section, we use these formally verified solutions to build more com-
plicated flows which are widely applied in the analysis of flow patterns around
an airfoil [14].

5 Applications of Standard Flows

The Laplace’s equation is a second-order, linear, eliptic partial differential equa-
tion. Thanks to the linearity of the Laplace’s equation, more complicated flow
fields can be constructed from the superposition of basic solutions. If ψ1 and
ψ2 are the solutions (stream functions) of the Laplace’s equation and then their
linear combination ψ1 + ψ2 will also be a solution for a two-dimensional in-
compressible and irrotational flow. This unique feature makes this equation a
powerful tool to analyze fluid flow problems. The ability to obtain new flow pat-
terns by superimposing known flows is fundamental to wing theory, as it provides
simple solutions to complex problems [2].

Our first step is to formally verify the linearity of the Laplace operator due
to its importance for the superposition principle.

Theorem 4. Linearity of Laplace Operator
⊢thm ∀psi phi a b.
[A1] (∀x. (λx. psi(x,y)) real differentiable atreal x) ∧
[A2] (∀x. (λx. phi(x,y)) real differentiable atreal x) ∧
[A3] (∀y. (λy. psi(x,y)) real differentiable atreal y) ∧
[A4] (∀y. (λy. phi(x,y)) real differentiable atreal y) ∧
[A5] (∀x. (λx. real derivative (λx. psi(x,y)) x)

real differentiable atreal x) ∧
[A6] (∀x. (λx. real derivative (λx. phi(x,y)) x)

real differentiable atreal x)
[A7] (∀y. (λy. real derivative (λx. psi(x,y)) y)

real differentiable atreal y)
[A8] (∀y. (λy. real derivative (λy. phi(x,y)) y)

real differentiable atreal y)
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⇒ laplace operator (λ(x,y). a * psi(x,y) + b * phi(x,y)) (x,y) =
a * laplace operator (λ(x,y). psi(x,y)) (x,y) +

b * laplace operator (λ(x,y). phi(x,y)) (x,y)

Assumptions A1 and A2 ensure that the real-valued functions psi and phi are
differentiable at x, respectively. Assumptions A3 and A4 assert the differentiabil-
ity of the functions psi and phi at y, respectively. Additionally, Assumptions A5
and A6 provide the differentiability conditions for the derivatives of the functions
psi and phi at x, respectively. Similarly, Assumptions A7 and A8 guarantee the
differentiability conditions for the derivatives of the functions psi and phi at x,
respectively. The proof of the theorem above relies mainly on the properties of
derivatives and the differentiability of real-valued functions.

5.1 Rankine Oval

By combining the exact solutions for uniform and source/sink flows, we can
construct a flow field around an oval-shaped object. The resultant configuration
is known as a Rankine oval.

source sink

+a-a -a +a. .
source sink

(a) (b)

Fig. 5: Rankine Oval [13]

We start by analyzing the flow pattern around a source and a sink. The source
and sink are placed along the x-axis, separated by a distance of 2a, as depicted
in Figure 5(a). The origin is situated equidistantly between them. We now super-
impose the uniform, source and sink flows, all positioned in the x-direction, with
a line source located at (−a, 0) and a line sink of equal and opposite strength
located at (+a, 0), as depicted in Figure 5(b). Assume the strengths of these
source and the sink are +m and −m, respectively. The overall stream function
(ψ) and velocity potential (ϕ) for this combination of flows are expressed as:

ψ = ψuniform + ψsource + ψsink (17)

ϕ = ϕuniform + ϕsource + ϕsink (18)
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Mathematically, they are represented by the combination of Equations (9), (10),
(11) and (12) for the stream function and the velocity potential:

ψ(x, y) = −Uy + m

2π

[
arctan

(
y

x+ a

)
− arctan

(
y

x− a

)]
(19)

ϕ(x, y) = Ux+ m

4π In
(

(x+ a)2 + y2

(x− a)2 + y2

)
(20)

Next, we formally verify these combined flows for the stream function as the
following HOL Light theorem2:

Theorem 5. Verification of Rankine Oval for the Stream Function
⊢thm ∀U m a psi x0 x1 y0 y1.

[A1] (∀x. x ̸= a) ∧ [A2] (∀x. x ̸= --a) ∧ [A3] x0 = --a ∧
[A4] x1 = a ∧ [A5] y0 = &0 ∧ [A6] y1 = &0 ∧
[A7] (∀x y. psi(x,y) = sum (0..2) (λn. EL n [--stream uniform U y;

stream source m x y x0 y0; stream sink m x y x1 y1]))

⇒ stream laplace psi x y

Assumptions A1 and A2 guarantee that the validity of our expression by spec-
ifying that x must be different from a and --a, respectively. Asssumptions A3
and A4 provide the distance from the origin. Assumption A5 and A6 assert that
the points y0 and y1 are equal to zero since the flows are oriented in towards
the x-direction. Assumption A7 provides the combined solutions for the stream
function, i.e., Equation (19). Here, the function EL n l extracts the nth element
from a list l. The verification of Theorem 5 is mainly based on the properties
of real derivatives, some real arithmetic reasoning and the following HOL Light
lemma:

Lemma 1. Superposition of the Solutions
⊢lem ∀U m x y x0 x1 y0 y1.
sum (0..2) (λn. EL n [--stream uniform U y; stream source m x y x0 y0;

stream sink m x y x1 y1]) = --stream uniform U y + stream source m x y x0 y0
+ stream sink m x y x1 y1

The above lemma states that the summation of the list equals to the linear
combination of uniform, source and sink flows.

2 Here, we only present the verification of applications that are provided in this section
for the stream function, for brevity. Additionally, we conducted a formal verification
for the velocity potential as well.
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5.2 Potential Flow Past a Circular Cylinder
As shown in Figure 6, we can build a potential flow solution for the flow around
a circular cylinder using the superposition of a uniform and a doublet flow in
the x-direction. The resulting stream function and velocity potential for this
particular combination of potential flows can be given as:

ψ = ψuniform + ψdoublet (21)
ϕ = ϕuniform + ψdoublet (22)

+ =k
R r θ

Uniform flow Doublet flow Non-lifting flow over a cylinder

Fig. 6: Potential Flow Past a Circular Cylinder [13]

We can mathematically express this combination by adding the solutions for
uniform and doublet flow, i.e., Equations (9), (10), (13) and (14). It is known
that y = rsinθ in polar coordinates.

ψ(r, θ) = U
(
r + κ

2πr

)
sinθ (23)

ϕ(r, θ) = U
(
r − κ

2πr

)
cosθ (24)

Next, we formally verify Equation (23) in HOL Light as follows:
Theorem 6. Verification of Potential Flow Past a Circular Cylinder
⊢thm ∀U K y psi.
[A1] (∀r. &0 < r) ∧ [A2] (∀r theta. y = r * sin(theta)) ∧
[A3] (∀r theta. psi(r,theta) = sum (0..1) (∀n. EL n [stream uniform U y;

stream doublet K theta r]))
⇒ laplace in polar psi r theta

Assumption A1 ensures that the radial distance is greater than zero, while As-
sumption A2 indicates that y = r * sin(theta) in polar coordinates. Assump-
tion A3 provides the superposition of the uniform and doublet flow solutions
for the stream function, i.e., Equation (23). Similar to Theorem 5, we proved
a lemma regarding superposition of the solutions as well as proving the real
derivatives of the solution in order to formally verify this theorem.
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5.3 Potential Flow Past a Rotating Circular Cylinder

The flow around a rotating circular cylinder can be constructed by combining a
doublet flow, a vortex flow, and a uniform flow using superposition as shown in
Figure 7. In other words, the stream function and the velocity potential for this
combination of potential flows can be given as:

ψ = ψuniform + ψdoublet + ψvortex (25)

ϕ = ϕuniform + ϕdoublet + ϕvortex (26)

Fig. 7: Potential Flow Past a Rotating Circular Cylinder [13]

It is important to note that combining a uniform flow and a doublet flow ef-
fectively models the flow around a non-rotating circular cylinder, as given by
Equations (23) and (24). Therefore, we can write the final mathematical expres-
sion of these flows for the stream function and the velocity potential by adding
the solutions, i.e., Equations (15), (16), (23) and (24) as:

ψ(r, θ) = U
(
r + κ

2πr

)
sinθ + Γ

2π In(r) (27)

ϕ(r, θ) = U
(
r − κ

2πr

)
cosθ + − Γ

2π θ (28)

The above equations can be alternatively written as:

ψ(r, θ) = Ursinθ

(
1 − R2

r2

)
+ Γ

2π Inr (29)

ϕ(r, θ) = Urcosθ

(
1 − R2

r2

)
+ Γ

2π θ (30)

where R2 = m

2πU and m is the strength of the doublet.
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Finally, we formally verify Equation (27) as the following HOL Light theorem:

Theorem 7. Verification of Potential Flow Past a Rotating Circular Cylinder
⊢thm ∀U K y gamma psi.

[A1] (∀r. &0 < r) ∧ [A2] (∀r theta. y = r * sin(theta)) ∧
[A3] (∀r theta. psi(r,theta) = sum (0..2) (∀n. EL n [stream uniform U y;

stream doublet K theta r; stream vortex gamma theta r]))
⇒ laplace in polar psi r theta

The assumptions A1-A2 are the same as those of Theorem 6. Assumption A3
provides the combination of the uniform, doublet and vortex flow solutions for
the stream function, i.e., Equation (27). The verification of Theorem 7 is similar
to that of Theorem 6.

5.4 Discussion

Potential flow theory is a unique field at the intersection of mathematical physics
and aerodynamics, driven primarily by its practical applications. This theory is
extensively employed in aerodynamics to model and analyze potential flows,
which describe the behavior of inviscid and incompressible fluids. A notable as-
pect of the work presented in this paper is the development of the first formaliza-
tion of potential flows which has wide applications in aerodynamics, particularly
in airfoil theory. One of the main challenges of this work is its interdisciplinary
nature, as it requires a deep understanding of aerodynamic principles, the inte-
gration of mathematics, and the meticulous process of interactive theorem prov-
ing. Another significant challenge is verifying exact analytical solutions governed
by the Laplace’s equation. The proof process must establish the real derivatives
of these solutions and their linear combinations. While traditional paper-and-
pencil proofs can overlook trivial details, theorem proving demands a substantial
amount of time due to the undecidable nature of higher-order logic and requires
every detail to be meticulously provided to the computer. One of the benefits of
this work is that it addresses these challenges by formalizing the core concepts
of potential flow theory, allowing available results to be built upon to minimize
user interaction. Additionally, all of the verified theorems and lemmas are gen-
eral, opening the door to future expansions. We also believe that our work can
be a significant step towards bridging the gap between theorem proving and
the aerospace engineering communities, thereby enhancing its applicability in
industrial settings.

6 Conclusion

In this paper, we conducted the formal specification and verification of standard
potential flows solutions which satisfy the Laplace’s equation using higher-order
logic theorem proving. We first formalized four fundamental potential flows,
namely, the uniform, source/sink, doublet and vortex flows. Moreover, we for-
mally modeled the Laplace’s equation in both Cartesian and polar coordinates.
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Furthermore, we formally verified the linearity of the Laplace’s equation since
it is a very powerful tool to create more complicated flow fields. We then con-
structed the formal proof for the exact potential flow solutions of the Laplace’s
equation. Finally, in order to demonstrate the applicability of our formalization
work, we formally analyzed several practical applications, including rankine oval,
potential flow past a circular cylinder and a potential flow past a rotating circu-
lar cylinder. For the future work, we plan to extend our formalization for other
complex-valued potential flows in order to analyze more complicated problems
in aerodynamics.
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