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Abstract. Coupled transmission lines are essential components of mod-
ern electronic systems, which facilitate a reliable and an efficient 
transmission of high-frequency signals from source to destination and 
are widely used in various industries, including telecommunications, 
aerospace, and automotive. Moreover, their dynamics are generally rep-
resented by a set of differential equations involving voltages and currents, 
known as the telegrapher’s equations. This paper proposes to use Higher-
Order Logic (HOL) theorem proving for formal modeling and verification 
of coupled transmission lines. In particular, we formalize the equations 
capturing the line voltages and currents, and their relationship in a sys-
tem of coupled transmission lines. We then formally verify the equiva-
lence between these equations and their matrix representations. Finally, 
we conduct a formal proof of the correctness of the general solutions of 
these generalized telegrapher’s equations using the HOL Light theorem 
prover. 
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1 Introduction 

The transmission of electrical signals and power is a pivotal achievement of 
engineering technology, significantly advancing modern civilization. These elec-
trical systems transmit a wide range of communication signals, including data 
and control over distances reaching thousands of miles. Furthermore, electri-
cal transmission engineering encompasses not only long transmission systems 
but also a vast array of shorter transmission line segments that perform numer-
ous functions within the terminal units of the system [ 1]. Beyond their role in 
carrying information and energy, they can be also used as circuit elements for 
passive circuits such as impedance transformers [ 2], resonators [ 3] and baluns 
[ 4]. Coupled transmission lines (CTLs), in particular, play an important role in 
building the functionality of modern high speed communication systems. 
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Electromagnetic coupling occurs when two or more unshielded transmission 
lines are in close proximity due to the interaction of their electric and magnetic 
fields. This effect is particularly noticeable when the line axes are parallel, defin-
ing them as CTLs [ 5]. CTLs typically consist of two transmission lines but may 
include more than two. Furthermore, coupled line structures are applicable to 
all forms and types of transmission lines. For instance, microstriplines [ 6] and  
coplanar waveguides [ 7] are among the most popular planar forms [ 8]. When 
the coupled lines are identical (also known as symmetrical coupled lines), they 
can be analyzed in terms of even and odd modes to understand their behavior 
and characteristics. By applying even- and odd-mode excitations separately and 
then combining their solutions, engineers conveniently analyze the behavior of 
symmetric coupled transmission lines. This simplifies the problem by breaking 
it down into two more manageable parts, making it easier to understand and 
design transmission lines for specific applications. 

Traditionally, the analysis of coupled transmission lines involves paper-and-
pencil and simulation techniques. In the former approach, the lines are modeled 
using the telegrapher’s equations [ 9], and the resulting system of coupled trans-
mission line equations is expressed in matrix form. Although this analytical 
method provides closed-form mathematical solutions, conducting such analy-
ses manually is prone to human error, especially when dealing with complex 
transmission line configurations. The latter method, which includes commonly 
used numerical techniques such as the finite-difference time-domain (FDTD) 
modeling of electromagnetic equations [ 10] and the transmission line model-
ing (TLM) method [ 11], has been shown to be quite time-consuming in many 
electromagnetic and transmission line problems, such as waveguide structures 
and high-frequency circuit designs. In addition to requiring a significant amount 
of memory and computational time, these techniques cannot provide perfectly 
accurate results because of the discretization of continuous parameters and the 
use of unverified numerical algorithms. 

To address the inaccuracy problems mentioned earlier, formal methods-based 
techniques are capable of overcoming these issues. In the most pertinent related 
study on formally analyzing transmission systems using theorem proving [ 12], 
the authors formalized the telegrapher’s equations for single Transmission Line 
(TL) and verified the analytical solutions of the equations. Moreover, they for-
mally analyzed the terminated transmission line and its special cases, i.e., short-
and open-circuited lines in the HOL Light theorem prover 1. However, it should be 
noted that single TL may not offer the same level of versatility as CTLs, which 
allow for signal interaction and are therefore better suited for more complex 
applications such as power transmission from Power Grids to users [ 13]. 

The primary objective of this paper is to enhance the formal reasoning sup-
port within the domain of transmission lines. In this paper, we propose to 
use Higher-Order Logic (HOL) theorem proving to formally model and ana-
lyze CTLs. In particular, HOL Light was selected due to the availability of a 
library for single TL and its potential to connect this library with CTLs. More-

1 https://www.cl.cam.ac.uk/∼jrh13/hol-light/ 
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over, the HOL Light theorem prover offers users the flexibility to develop and 
apply customized automation methods. 

The rest of the paper is organized as follows: In Sect. 2, we present some 
of the fundamental formal definitions of the multivariate calculus theories of 
HOL Light that are necessary for understanding the rest of the paper. Section 3 
describes the mathematical modeling of CTLs. In Sect. 4, we provide the formal 
modeling of CTLs. In Sect. 5, we present the formal verification of the analytical 
solutions of the generalized telegrapher’s equations, which are used to model 
CTLs. Finally, Sect. 6 concludes the paper. 

2 Preliminaries 

In this section, we present some HOL Light definitions that are used in our 
proposed formalization and are important to understand the rest of the paper. 

2.1 Complex Vectors and Matrices 

Here, we explain some of the commonly used HOL Light fuctions in the proposed 
formalization as follows: 

Definition 1. Vector
� ∀l. vector l = (lambda i. EL (i - 1) l) 

The function vector takes an arbitrary list l: α list and returns a vector having 
each component of data-type α. It uses the function EL i l, which accepts an 
index i and a list l, and returns the ith element of a list l. In HOL Light, the 
lambda operator is utilized to construct a vector from its individual components. 
A complex vector is defined as a vector having every elements as a complex 
number. 

In HOL Light, matrices are fundamentally formalized as vectors of vectors, 
where a M × N matrix is formally represented as of type (complexN)M. For  
example, a 2 × 2 complex matrix can be formalized as follows: 

Definition 2. 2 × 2 Complex Matrix

� ∀a b c d. cmat2x2 a b c d =  vector [vector [a; b]; vector [c; d]] 

where cmat2x2 accepts the complex numbers a:C, b:C, c:C and d:C, and  
returns the corresponding 2 × 2 matrix. 

2.2 Complex Analysis Library 

This library includes fundamental concepts in complex analysis, including com-
plex derivatives and transcendental functions. 

Definition 3. Cx and ii
� ∀a. Cx a = complex (a, &0)
� ii = complex (&0, &1)
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Cx is a type casting function with a data-type R → C. It accepts a real number 
and returns its corresponding complex number with the imaginary part as zero. 
The & operator has data-type N → R and is used to map a natural number to a 
real number. Similarly, the function ii (iota) represents a complex number with 
a real part equal to 0 and the magnitude of the imaginary part equal to 1. 

Definition 4. Exponential Functions
� ∀x.  exp x = Re  (cexp (Cx x)) 

The HOL Light functions exp and cexp with data-types R → R and C → C 
represent the real-valued and complex-valued exponential functions, respectively. 

Definition 5. Complex Derivative

� ∀f x. complex derivative f x =  

(@f’.(f has complex derivative f’) (at x)) 

The function complex derivative describes the complex derivative in func-
tional form. It accepts a function f: C → C and a complex number x, which  
is the point at which f has to be differentiated, and returns a variable of data-
type C, providing the derivative of f at x. Here, the term at indicates a specific 
point at which the differentiation is being evaluated, namely, at the value of x. 

Definition 6. Complex Derivative for Vectors

� ∀f x. complex derivative vector Fn x = 
(lambda i.complex derivative (λx. (Fni) x) x)  

The function complex vector derivative takes a vector Fn, whose elements are 
complex functions of data type C → C and a complex number x, which is the 
point at which every element of Fn has to be differentiated, and returns a vector 
data-type Fn: (C → C)N , where each element corresponds to the derivatives of 
the complex functions. It is important to note that throughout the paper, we 
use a combination of HOL Light code and mathematical notation to enhance 
readability. 

3 Mathematical Modeling of Coupled Transmission Lines 

In various transmission line applications, the proximity of neighboring lines often 
results in a level of coupling. This close proximity leads to modifications in the 
electromagnetic fields, consequently influencing the propagating voltage and cur-
rent waves and in turn, altering the characteristic impedance of the transmission 
line. While this coupling may pose a drawback where it leads to undesired signals, 
commonly referred to as “cross-talk,” it can also serve as a mean of intentionally 
transferring a set amount of signal to another circuit for various purposes such as 
monitoring, measurement, or signal processing [ 9]. There exist two forms of cou-
pling, namely electric and magnetic. The electric coupling results from charges 
on one line inducing charges on another, often explained by mutual capacitance.
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Fig. 1. Coupled Transmission Lines [14] 

The magnetic coupling, on the other hand, arises from the interaction of mag-
netic flux between the lines and is typically described by mutual inductance. 
Figure 1 shows a generic circuit model for the CTLs. Under the assumption 
of lossless conditions, we consider two isolated transmission lines characterized 
by distributed inductances and capacitances per unit length, represented as Li 
and Ci for i = 1, 2. The respective propagation velocities and characteristic 
impedances are defined as vi = 1/

√
LiCi and Zi =

√
Li/Ci, respectively. To 

model an interaction between these lines, mutual inductance and capacitance 
per unit length, denoted as Lm and Cm, are introduced. 
The dynamics of the CTLs can then be mathematically described as follows [ 9]: 

∂V1 

∂z 
= −L1 

∂I1 
∂t 

− Lm 
∂I2 
∂t 

(1) 

∂V2 

∂z 
= −L2 

∂I2 
∂t 

− Lm 
∂I1 
∂t 

(2) 

∂I1 
∂z 

= −C1 
∂V1 

∂t 
+ Cm 

∂V2 

∂t 
(3) 

∂I2 
∂z 

= −C2 
∂V2 

∂t 
+ Cm 

∂V1 

∂t 
(4) 

These equations are generalizations of the telegrapher’s equations incorporating 
the mutual inductance and capacitance, which were originally developed for a 
single transmission line. 

To overcome the considerable challenges of solving time-domain PDEs [ 15], 
we utilize the phasor concept to transform them into a set of coupled Ordi-
nary Differential Equations (ODEs) for the voltages and currents. For sinu-
soidal steady-state (phasor) excitation of the lines, we obtain by replacing 
∂/∂t ⇒ jω [ 16]: 

dV1 

dz 
= −jωL1I1(z) − jωLmI2(z) (5) 

dV2 

dz 
= −jωLmI1(z) − jωL2I2(z) (6)
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dI1 
dz 

= −jωC1V1(z) +  jωCmV2(z) (7) 

dI2 
dz 

= jωCmV1(z) − jωC2V2(z) (8) 

Any system of linear equations can be represented in a compact form by a 
matrix-vector multiplication equation. For our case, we present Eqs. (5)–(8), in 
matrix form describing the relationship between the currents and voltages on 
the coupled transmission line as [ 9]: 

dV 
dz 

= −jω

[
L1 Lm 
Lm L2

]

︸ ︷︷ ︸
L 

I (9) 

dI 
dz 

= −jω

[
C1 −Cm 

−Cm C2

]

︸ ︷︷ ︸
C 

V (10) 

where V and I are the column vectors. Moreover, the specific line inductance 
L and capacitance C in single transmission line have been replaced with 2 × 
2 matrices denoted as L and C. This modification provides a more detailed 
representation of the interaction between two coupled transmission lines, and 
hence a more comprehensive understanding of their dynamics. 

4 Formal Modeling of Coupled Transmission Lines 

In order to formalize the telegrapher’s equations (Eqs. (5)–(8)) and their matrix-
based representations (Eqs. (9) and (10)), we first model voltages and currents 
in HOL Light. Furthermore, we model the distributed and mutual inductance 
as well as the distributed and mutual capacitance using the feature of type 
abbreviation as follows: 

new type abbrev (‘‘vol’’,‘:(V1 × V2)’) 
new type abbrev (‘‘cur’’,‘:(I1 × I2)’) 
new type abbrev (‘‘vol cur’’,‘:(V1 × V2) × (I1 × I2)’) 
new type abbrev (‘‘ind ctls’’,‘:(L1 × L2) × Lm’) 
new type abbrev (‘‘cap ctls’’,‘:(C1 × C2) × Cm’) 

Here, V1, V2 are of types voltage functions and I1 and I2 are of types current 
functions and they are modeled in HOL Light as: 

new type abbrev (‘‘vol fun’’,‘:(C → C)’) 
new type abbrev (‘‘cur fun’’,‘:(C → C)’)) 

Here, the vol fun type is employed to represent a voltage function V1(z), 
where z is a variable of complex type C. 

Now, we formalize Eqs. (5) and (6) capturing the voltages on CTLs in HOL 
Light as follows:
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Definition 7. First Equation for Voltage
� ∀V1 V2 I1 I2 L1 L2 Lm w z. 
coupled vol ode fst ((V1,V2),(I1,I2))((L1,L2),Lm) w z ⇔ 

complex derivative (λz. V1(z)) z =

--ii * Cx w * (Cx L1 * I1(z) + Cx Lm * I2(z)) 

Definition 8. Second Equation for Voltage
� ∀V1 V2 I1 I2 L1 L2 Lm w z. 
coupled vol ode snd ((V1,V2),(I1,I2))((L1,L2),Lm) w z ⇔ 

complex derivative (λz. V2(z)) z =

--ii * Cx w * (Cx Lm * I1(z) + Cx L2 * I2(z)) 

where coupled vol ode fst and coupled vol ode snd use the complex-
derivative function in HOL Light to model the telegrapher’s equations. The 
variables L1:R and Lm:R represent the distributed and mutual inductance per 
unit length, respectively. Here, the variables z:C refers to the spatial coordinate, 
while w:R denotes the angular frequency. 

Similarly, we can formalize Eqs. (7) and (8) capturing the currents on CTLs 
as: 

Definition 9. First Equation for Current
� ∀V1 V2 I1 I2 C1 C2 Cm w z. 
coupled cur ode fst ((V1,V2),(I1,I2))((C1,C2),Cm) w z ⇔ 

complex derivative (λz. I1(z)) z =

--ii * Cx w * (Cx (C1) * V1(z) - Cx (Cm) * V2(z)) 

Definition 10. Second Equation for Current
� ∀V1 V2 I1 I2 C1 C2 Cm w z. 
coupled cur ode snd ((V1,V2),(I1,I2))((C1,C2),Cm) w z ⇔ 

complex derivative (λz. I2(z)) z =

--ii * Cx w * (--Cx (Cm) * V1(z) + Cx (C2) * V2(z)) 

Next, we formalize the matrix representations of the linear system of equa-
tions for voltage and current (Eqs. (9) and (10)) as follows: 

Definition 11. Matrix Characterization of ODE System for Voltage

� ∀V1 V2 I1 I2 L1 L2 Lm w z. 
vol ode mat rep ((V1,V2),(I1,I2))((L1,L2),Lm) w z ⇔ 
(let ind = ((L1,L2),Lm):ind ctls) in 

complex derivative vector (vector [V1;V2]) z = 

(--ii * Cx w) %% inductance mat const ind ** cur vec (I1,I2) z) 

where %% and ** model the scalar-matrix and matrix-vector multiplications, 
respectively. 

Definition 12. Matrix Characterization of ODE System for Current

� ∀V1 V2 I1 I2 C1 C2 Cm w z. 
cur ode mat rep ((V1,V2),(I1,I2))((C1,C2),Cm) w z ⇔
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(let cap = ((C1,C2),Cm):cap ctls) in 

complex derivative vector (vector [I1;I2]) z = 

(--ii * Cx w) %% capacitance mat const cap ** vol vec (V1,V2) z) 

Now, we formally verify the equivalence between the system of linear differ-
ential equations for the voltages (Eqs. (5) and (6)) and their matrix characteri-
zations (Eq. (9)) as the following HOL Light theorem: 

Theorem 1. Equivalence between ODE Systems and their Matrix Characteri-
zations for Voltages
� ∀V1 V2 I1 I2 L1 L2 Lm w z. 

let vlcr = ((V1,V2),(I1,I2):vol cur) and 

ind = ((L1,L2),Lm):ind tls) in 

[A1] coupled vol ode fst vlcr ind w z ∧ 
[A2] coupled vol ode snd vlcr ind w z ⇔ 

vol ode mat rep vlcr ind w z 

Assumptions A1 and A2 present the telegrapher’s equations for the voltages, in 
phasor domain, i.e., Eqs. (5) and (6). The proof of Theorem 1 is based on prop-
erties of complex derivative, complex vectors and complex matrices alongside 
some complex arithmetic reasoning. 

Next, we formally verify the equivalence of the telegrapher’s equations for 
the current (Eqs. (7) and (8)) and their matrix representation (Eq. (10)). 

Theorem 2. Equivalence between ODE Systems and their Matrix Characteri-
zations for Currents
� ∀V1 V2 I1 I2 C1 C2 Cm w z. 

let vlcr = ((V1,V2),(I1,I2):vol cur) and 

cap = ((C1,C2),Cm):cap tls) in 

[A1] coupled cur ode fst V1 vlcr cap z w ∧ 
[A2] coupled cur ode snd V2 vlcr cap z w ⇔ 

cur ode mat rep vlcr cap w z 

The verification of the above theorem is very similar to that of Theorem 1. 

5 Formal Verification of Coupled Transmission Lines 

To simplify the analysis of the telegrapher’s equations, we consider the scenario 
of the identical transmission lines. In this case, we have L1 = L2 ≡ L0 and 
C1 = C2 ≡ C0, so that β1 = β2 = ω

√
L0C0 ≡ β and Z1 = Z2 =

√
L0/C0 ≡ Z0. 

Additionally, the wave propagation speed is defined as v0 = 1/
√

L0C0. If two 
lossless coupled lines have the same self-inductance parameters L1 = L2 ≡ L0 

and self-capacitance parameters C1 = C2 ≡ C0, the coupled-line structure is 
considered symmetric. The final solution for symmetric coupled lines can be 
efficiently derived by combining two single-line scenarios. This is achieved by 
applying two specific types of excitations: even and odd mode excitations. In
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the even mode, currents in the conductors exhibit equal magnitudes and flow 
in parallel directions, while in the odd mode, currents in the conductors possess 
equal magnitudes but flow in opposite directions. It is important to emphasize 
that this paper primarily focuses on verifying the final solution of the telegra-
pher’s equation rather than the derivation process of the solution. 

We now mathematically express the final solutions of the telegrapher’s equa-
tions for the CTLs in terms of even and odd modes for the voltages and currents 
as follows: 

V1(z) =  e
−jβ+z + ΓL+e−2jβ+l ejβ+z 

1 − ΓG+ΓL+e−2jβ+l V+

︸ ︷︷ ︸
even 

+ e
−jβ−z + ΓL−e−2jβ−l ejβ−z 

1 − ΓG−ΓL−e−2jβ−l V−
︸ ︷︷ ︸

odd 

(11) 

V2(z) =  e
−jβ+z + ΓL+e−2jβ+l ejβ+z 

1 − ΓG+ΓL+e−2jβ+l V+

︸ ︷︷ ︸
even 

− e
−jβ−z + ΓL−e−2jβ−l ejβ−z 

1 − ΓG−ΓL−e−2jβ−l V−
︸ ︷︷ ︸

odd 

(12) 

Similarly, the general solutions for the currents can be mathematically express 
as: 

I1(z) =  1 
Z+ 

⎡ 

⎢⎢ 
⎣ 

e−jβ+z − ΓL+e−2jβ+l ejβ+z 

1 − ΓG+ΓL+e−2jβ+l V+

︸ ︷︷ ︸
even 

+ e
−jβ−z − ΓL−e−2jβ−l ejβ−z 

1 − ΓG−ΓL−e−2jβ−l V−
︸ ︷︷ ︸

odd 

⎤ 

⎥⎥ 
⎦ 

(13) 

I2(z) =  1 
Z− 

⎡ 

⎢ 
⎢ 
⎣ 

e−jβ+z − ΓL+e−2jβ+l ejβ+z 

1 − ΓG+ΓL+e−2jβ+l V+

︸ ︷︷ ︸
even 

− e
−jβ−z − ΓL−e−2jβ−l ejβ−z 

1 − ΓG−ΓL−e−2jβ−l V−
︸ ︷︷ ︸

odd 

⎤ 

⎥ 
⎥ 
⎦ 

(14) 

In this context, the parameters β± and Z± indicate the wave numbers and the 
impedances, respectively and they can be mathematically express as follows: 

β+ = ω
√

(L0 + Lm)(C0) − Cm (15) β− = ω
√

(L0 − Lm)(C0) +  Cm (16) 

and 

Z+ =
√

L0 + Lm 

C0 − Cm 
(17) Z− =

√
L0 − Lm 

C0 + Cm 
(18)
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Table 1. Data Types of Coefficients 

Parameter Description Standard 
Symbol 

HOL Light 
Symbol: Type 

Reflection coefficient at the load in even mode ΓL+ g1: C 

Reflection coefficient at the generator in even mode ΓG+ g2: C 

Reflection coefficient at the load in odd mode ΓL− g3: C 

Reflection coefficient at the generator in odd mode ΓG− g4: C 

Complex constant V+ Vm: C 

Complex constant V− Vp: C 

In order to formalize the general solutions of telegrapher’s equations for the 
voltages and currents, we first define the types of the reflection coefficients, i.e., 
g1, g2, g3, g4 denoted by ΓL+, ΓG+, ΓL− and ΓG− and the transmission line 
constants for identical lines as 4-tuples, and the complex constants associated 
with V+ and V− in HOL Light. Also, the types of the coefficients are given in 
Table 1. 

new type abbrev (‘‘ref cons’’,‘:(g1 × g2 × g3 × g4)’) 
new type abbrev (‘‘ind cap’’,‘:(L1 × L2 × C1 × C2)’) 
new type abbrev (‘‘vol const’’,‘:(Vp × Vm)’)) 

We now present the formalization of the general solutions of the telegrapher’s 
equations (Eqs. (9) and (10)) for voltage and current. For brevity, we only provide 
the solutions for the first voltage and current, i.e., Eqs. (11) and (13). These 
solutions are formalized in HOL Light as follows: 

Definition 13. First Voltage Solution
� ∀Vm Vp L0 Lm C0 Cm g1 g2 g3 g4 z l w. 
vol sol fst (Vm,Vp)((L0,Lm),(C0,Cm))(g1,g2,g3,g4) z l w =  

(let tlc = ((L0,Lm),(C0,Cm)) in 

Vm * 
e-jCx(wn fst tlc w)z + g1  ∗ e-Cx(&2)jCx(wn fst tlc w)Cx(l) ∗ ejCx(wn fst tlc w)z 

Cx(&1) - g2 ∗ g1 ∗ e-Cx(&2)jCx(wn fst tlc w)Cx(l) 
+ 

Vp * 
e-jCx(wn fst tlc w)z + g3  ∗ e-Cx(&2)jCx(wn fst tlc w)Cx(l) ∗ ejCx(wn fst tlc w)z 

Cx(&1) - g4 ∗ g3 ∗ e-Cx(&2)jCx(wn fst tlc w)Cx(l) 

Definition 14. First Current Solution
� ∀Vm Vp L0 Lm C0 Cm g1 g2 g3 g4 z l w. 
cur sol fst (Vm,Vp)((L0,Lm),(C0,Cm))(g1,g2,g3,g4) z l w =  

(let tlc = ((L0,Lm),(C0,Cm)) in Cx( &1 

char imp fst tlc 
) * 

Vm * 
e-jCx(wn fst tlc w)z - g1  ∗ e-Cx(&2)jCx(wn fst tlc w)Cx(l) ∗ ejCx(wn fst tlc w)z 

Cx(&1) - g2 ∗ g1 ∗ e-Cx(&2)jCx(wn fst tlc w)Cx(l)
-

Vp * 
e-jCx(wn fst tlc w)z - g3  ∗ e-Cx(&2)jCx(wn fst tlc w)Cx(l) ∗ ejCx(wn fst tlc w)z 

Cx(&1) - g4 ∗ g3 ∗ e-Cx(&2)jCx(wn fst tlc w)Cx(l)
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where vol sol fst and cur sol fst accept the inductances L1:R, L2:R, the  
capacitances C1:R, C2:R, the complex constants Vm and Vp, the reflection coef-
ficients g1, g2, g3, g4, the spatial coordinate z, the angular frequency ω:R and 
the boundary condition l:R and return the corresponding definitions. More-
over, wn fst and wn snd refer to the wave numbers in Eq. (15) and (16), respec-
tively. In addition, char imp fst and char imp snd correspond to the charac-
teristic impedances in Eq. (17) and (18), respectively. The second voltage and 
current solutions, i.e., Eqs. (12) and (14) are formalized in a similar manner. 
The details about these definitions can be found in the HOL Light proof script 
[ 17]. 

Next, utilizing Definitions 13 and 14, we formalize the general solutions for 
voltages and currents in vector form for more compact representation: 

Definition 15. Vector Forms of the General Solutions for the Voltages

� ∀Vm  Vp  V1  V2  L0  Lm  C0  Cm  I1  I2  g1  g2  g3  g4 z l w.  

vol sol vec ((V1,V2),(I1,I2))(Vm,Vp)((L0,Lm),(C0,Cm))(g1,g2,g3,g4) z l w 

⇔ 
(let vlcr = ((V1,V2),(I1,I2)) and 

tlc = ((L0,Lm),(C0,Cm)) and 

rc = (g1,g2,g3,g4) and 

vc = (Vm,Vp) in 

vector[V1 z; V2 z] = vector[vol sol fst  vc  tlc  rc z l w;  

vol sol snd vc tlc rc z l w]) 

Here, vol sol fst and vol sol snd represent the general solutions for the volt-
ages. 

Definition 16. Vector Forms of the General Solutions for the Currents

� ∀Vm  Vp  V1  V2  L0  Lm  C0  Cm  I1  I2  g1  g2  g3  g4 z l w.  

vol sol vec ((V1,V2),(I1,I2))(Vm,Vp)((L0,Lm),(C0,Cm))(g1,g2,g3,g4) z l w 

⇔ 
(let vlcr = ((V1,V2),(I1,I2)) and 

tlc = ((L0,Lm),(C0,Cm)) and 

rc = (g1,g2,g3,g4) and 

vc = (Vm,Vp) in 

vector[I1 z; I2 z] = vector[cur sol fst  vc  tlc  rc z l w;  

cur sol snd vc tlc rc z l w]) 

Similarly, cur sol fst and cur sol snd denote the general solutions for the 
currents. The final step is to formally verify the correctness of the solutions of 
the generalized telegrapher’s equations as the following HOL Light theorem: 

Theorem 3. Verification of the General Solutions of the Telegrapher’s Equation
� ∀V1 V2 I1 I2 C1 C2 L1 L2 Vm Vp L0 Lm C0 Cm g1 g2 g3 g4 l w. 

let tlc = ((L0,Lm),(C0,Cm)) and ind = ((L1,L2),Lm) 

and cap = (C1,C2),Cm) and vlcr = ((V1,V2),(I1,I2)) 

and rc = (g1,g2,g3,g4) and vc = (Vm,Vp) in
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[A1] &0 < L1 ∧ [A2] &0 < L2  ∧ [A3] &0 < C1 ∧ [A4] &0 < C2  

[A5] Cm < C0 ∧ [A6] Lm < L0  ∧ [A7] &0 < Cm ∧ [A8] &0 < Lm  

[A9] L1 = L0 ∧ [A10] L2 = L0  ∧ [A11] C1 = C0  ∧ [A12] C2 = C0  

[A13] (∀z. vol sol vec vlcr tlc rc z l w)  ∧ 
[A14] (∀z. cur sol vec vlcr tlc rc z l w)  

⇒ vol ode mat rep vlcr ind w z ∧ cur ode mat rep vlcr cap w z 

Assumptions A1-A4 ensure that the inductances and capacitances are positive 
quantities. Assumptions A5-A6 indicate that the distributed capacitance and 
inductance are greater than the mutual inductance and capacitance, respectively. 
Assumptions A7-A8 guarantee that the mutual capacitance and inductance are 
greater than zero. Assumptions A9-A12 model the conditions pertaining identical 
transmission lines. Assumptions A13 and A14 provide the general solutions of the 
telegrapher’s equations for the voltages and the currents in vector form. Finally, 
the conclusion of the theorem presents the generalized telegrapher’s equations, 
i.e., Eqs. (9) and (10). The verification of Theorem 3 is mainly based on the 
following four important formally verified lemmas about the complex derivatives 
of the general solutions. 

Lemma 1. Verification of the First Voltage Solution
� ∀I1  I2  V1  Vm  Vp  g1  g2  g3  g4  L0  L1  Lm  C0  Cm z l w.  

let vlcr = ((V1,V2),(I1,I2)) and tlc = ((L0,Lm),(C0,Cm)) 

and ind = ((L1,L2),Lm) and rc = (g1,g2,g3,g4) and vc = (Vm,Vp) in 

[A1] L1 = L0  ∧ [A2] Cm < C0  ∧ [A3] Lm < L0  ∧ [A4] &0 < Cm  ∧ 
[A5] &0 < Lm  ∧ [A6](∀z. V1 z = vol sol fst  vc  tlc  rc z l w)  ∧ 
[A7](∀z. I1 z = cur sol fst  vc  tlc  rc z l w)  ∧ 
[A8](∀z. I2 z = cur sol snd  vc  tlc  rc z l w)  

⇒ coupled vol ode fst vlcr ind z w 

Assumption A1 is the condition for the identical lines. Assumptions A2-A5 are 
same as those of Assumptions A5-A8 of Theorem 3. Assumption A6 provides 
the first voltage solution (Eq. (11)) of the telegrapher’s equation. Assumptions 
A7 and A8 provide the general solutions of the telegrapher’s equations for the 
currents (Eqs. (13) and (14)). The conclusion of the lemma provides the telegra-
pher’s equation for the first voltage (Eq. (5)). The proof of Lemma 1 is mainly 
based on the properties of transcendental functions [ 18], complex derivatives [ 19] 
along with some complex arithmetic reasoning. 

Lemma 2. Verification of the Second Voltage Solution
� ∀I1  I2  V1  Vm  Vp  g1  g2  g3  g4  L0  L2  Lm  C0  Cm z l w.  

let vlcr = ((V1,V2),(I1,I2)) and tlc = ((L0,Lm),(C0,Cm)) 

and ind = ((L1,L2),Lm) and rc = (g1,g2,g3,g4) and vc = (Vm,Vp) in 

[A1] L2 = L0  ∧ [A2] Cm < C0  ∧ [A3] Lm < L0  ∧ [A4] &0 < Cm  ∧ 
[A5] &0 < Lm  ∧ [A6](∀z. V2 z = vol sol snd  vc  tlc  rc z l w)  ∧ 
[A7](∀z. I1 z = cur sol fst  vc  tlc  rc z l w)  ∧ 
[A8](∀z. I2 z = cur sol snd  vc  tlc  rc z l w)  

⇒ coupled vol ode snd vlcr ind z w
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Assumption A1 is the condition for the identical lines. A2-A5 are the same as those 
of Lemma 1. Assumption A6 provides the second voltage solution (Eq. (12)) of 
the telegrapher’s equation. Assumptions A7-A8 are also the same as those of 
Lemma 1. The lemma concludes by providing the telegrapher’s equation for the 
second voltage, as shown in Eq. (6). The proof of the above lemma is similar to 
that of Lemma 1. 

In the next two HOL Light lemmas, we formally verify the derivatives of the 
general solutions for currents. 

Lemma 3. Verification of the First Current Solution
� ∀I1  I2  V1  V2  Vm  Vp  g1  g2  g3  g4  L0  C0  C1  Lm  Cm z l w.  

let vlcr = ((V1,V2),(I1,I2)) and tlc = ((L0,Lm),(C0,Cm)) 

and cap = ((C1,C2),Cm) and rc = (g1,g2,g3,g4) and vc = (Vm,Vp) in 

[A1] C1 = C0  ∧ [A2] Cm < C0  ∧ [A3] Lm < L0  ∧ [A4] &0 < Cm  ∧ 
[A5] &0 < Lm  ∧ [A6] (∀z. I1 z = cur sol fst  vc  tlc  rc z l w)  ∧ 
[A7] (∀z. V1 z = vol sol fst  vc  tlc  rc z l w)  ∧ 
[A8] (∀z. V2 z = vol sol snd  vc  tlc  rc z l w)  

⇒ coupled cur ode fst vlcr cap z w 

Assumption A1 is the condition for the identical lines. Assumptions A2-A5 are the 
same as those of the above lemmas. Assumption A6 provides the first current 
solution (Eq. (13)) of the telegrapher’s equation. Assumptions A7-A8 provide 
the general solutions for the voltages (Eqs. (11) and (12)). The conclusion of 
Lemma 3 provides the telegrapher’s equation for the first current (Eq. (7)). The 
verification of the above lemma is very similar to those of Lemmas 1 and 2. 

Lemma 4. Verification of the Second Current Solution
� ∀I1  I2  L1  V1  V2  Vm  Vp  g1  g2  g3  g4  L0  Lm  C0  C2  Cm z l w.  

let vlcr = ((V1,V2),(I1,I2)) and tlc = ((L0,Lm),(C0,Cm)) 

and cap = ((C1,C2),Cm) and rc = (g1,g2,g3,g4) and vc = (Vm,Vp) in 

[A1] C2 = C0  ∧ [A2] Cm < C0  ∧ [A3] Lm < L0  ∧ [A4] &0 < Cm  ∧ 
[A5] &0 < Lm  ∧ [A6] (∀z. I2 z = cur sol snd  vc  tlc  rc z l w)  ∧ 
[A7] (∀z. V1 z = vol sol fst  vc  tlc  rc z l w)  ∧ 
[A8] (∀z. V2 z = vol sol snd  vc  tlc  rc z l w)  

⇒ coupled cur ode snd vlcr cap z w 

Assumption A1 is the condition for the identical lines. Assumptions A2-A5 are 
the same as those of the above lemmas. Assumption A6 provide the second 
current solution (Eq. (14)) of the telegrapher’s equation. Assumptions A7-A8 
provide the general solutions for the voltages (Eqs. (11) and (12)). The conclusion 
of the lemma provides the telegrapher’s equation for the second current (8)). The 
verification of the above lemma and the other lemmas and theorems can be found 
in our proof script [ 17]. 

Discussion 

In this paper, we proposed to use the HOL Light proof assistant for the formal 
verification of coupled transmission lines. An important aspect of our work is
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the utilization of theorem proving into a domain that has been traditionally 
dominated by numerical techniques. The analysis of coupled transmission lines 
requires to understand various fundamental aspects, ranging from electromag-
netic theory to microwave engineering. In particular, for those of us who are 
not experts in electromagnetics, it has been challenging to comprehend the for-
mal definitions used to model transmission systems and phenomena. Another 
challenge encountered during this formalization was the mathematical proof 
itself. We relied on snippets of proofs gathered from the literature including 
textbooks, articles and courses. However, we frequently found these traditional 
pen-and-paper proofs to be somewhat incomplete or lack rigorous details. Due 
to the nature of the analysis, we had to develop our own proof with all necessary 
details for the verification process. The primary benefit of this work includes the 
accuracy of verified results and the revelation of hidden assumptions, which are 
often omitted in textbooks and engineering literature. Furthermore, every ver-
ified theorem and lemma is made general, allowing for further extensions. We 
believe our work to be useful in the design and analysis of systems involving 
transmission lines from various engineering and physical science disciplines such 
as communication systems, electromagnetics, RF and microwave engineering. 

6 Conclusion 

Coupled transmission lines are traditionally described by a system of differential 
equations. In this paper, we first formalized the dynamics of the CTLs using the 
telegrapher’s equations in phasor domain. Since the behavior of the line can be 
fully characterized using circuit theory parameters, such as matrices represent-
ing inductances, capacitances, resistances, and conductances per unit length, 
we modeled these equations in matrix forms for a more compact representation 
and ease of the formal analysis. We then formally verified the analytical solutions 
of the telegrapher’s equations for the CTLs. It is important to note that our anal-
ysis is conducted under the assumption of lossless lines, where resistances and 
conductances are assumed to be zero. Our research revealed numerous promis-
ing directions for future work. Our first goal is to extend the phasor domain 
solutions into the time domain and verify their correctness for the time domain 
partial differential equations. Second, we intend to explore the possibility of for-
mally analyzing the results to determine crosstalk in communication circuits. 
Finally, we aim to formally analyze cable coupling, which is significant in indus-
trial automation systems where precise control and monitoring of machinery and 
processes are crucial. 
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